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Abstract—In the last decade of automatic speech recognition
(ASR) research, the introduction of deep learning has brought
considerable reductions in word error rate of more than 50%
relative, compared to modeling without deep learning. In the
wake of this transition, a number of all-neural ASR architectures
have been introduced. These so-called end-to-end (E2E) models
provide highly integrated, completely neural ASR models, which
rely strongly on general machine learning knowledge, learn more
consistently from data, with lower dependence on ASR domain-
specific experience. The success and enthusiastic adoption of deep
learning, accompanied by more generic model architectures has led
to E2E models now becoming the prominent ASR approach. The
goal of this survey is to provide a taxonomy of E2E ASR models
and corresponding improvements, and to discuss their properties
and their relationship to classical hidden Markov model (HMM)
based ASR architectures. All relevant aspects of E2E ASR are
covered in this work: modeling, training, decoding, and external
language model integration, discussions of performance and de-
ployment opportunities, as well as an outlook into potential future
developments.

Index Terms—End-to-end, automatic speech recognition.

I. INTRODUCTION

THE classical1 statistical architecture decomposes an au-
tomatic speech recognition (ASR) system into four main

components: acoustic feature extraction from speech audio sig-
nals, acoustic modeling, language modeling and search based on
Bayes’ decision rule [1], [2], [3]. Classical acoustic modeling
is based on hidden Markov models (HMMs) to account for
speaking rate variation. Within the classical approach, deep
learning has been introduced into acoustic and language mod-
eling. In acoustic modeling, deep learning has replaced Gaus-
sian mixture distributions (hybrid HMM [4], [5]) or augmented
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1The term “classical” here refers to the former, long-term, state-of-the-art

ASR architecture based on the decomposition into acoustic and language model,
and with acoustic modeling based on hidden Markov models.

the acoustic feature set (e.g., non-linear discriminant/tandem
approach [6], [7]). In language modeling, deep learning has
replaced count-based approaches [8], [9], [10]. However, in
these early attempts at introducing deep learning, the classi-
cal ASR architecture was unmodified. Classical state-of-the-art
ASR systems today are composed of many separate components
and knowledge sources: especially speech signal preprocessing;
methods for robustness with respect to recording conditions;
phoneme inventories and pronunciation lexica; phonetic clus-
tering; handling of out-of-vocabulary words; various methods
for adaptation/normalization; elaborate training schedules with
different objectives including sequence discriminative training,
etc. The potential of deep learning, on the other hand, initiated
successful approaches to integrate formerly separate modeling
steps, e.g., by integrating speech signal pre-processing and fea-
ture extraction into acoustic modeling [11], [12].

More consequently, the introduction of deep learning to ASR
also initiated research to replace classical ASR architectures
based on hidden Markov models (HMM) with more integrated
joint neural network model structures [13], [14], [15], [16].
These ventures might be seen as trading specific speech pro-
cessing models for more generic machine learning approaches
to sequence-to-sequence processing – akin to how statistical
approaches to natural language processing have come to re-
place more linguistically oriented models. For these all-neural
approaches recently the term end-to-end (E2E) [14], [17], [18],
[19] has been established. Therefore, first of all an attempt
to define the term end-to-end in the context of ASR is due
in this survey. According to the Cambridge Dictionary, the
adjective “end-to-end” is defined as: “including all the stages of
a process” [20]. We therefore propose the following definition
of end-to-end ASR: an integrated ASR model that enables joint
training from scratch; avoids separately obtained knowledge
sources; and, provides single-pass recognition consistent with
the objective to optimize the task-specific evaluation measure,
i.e., usually label (word, character, subword, etc.) error rate.
While this definition suffices for the present discussion, we note
that such an idealized definition hides many nuances involved in
the term E2E and lacks distinctiveness; we elaborate on some of
these nuances in Section II to discuss the various connotations
of the term E2E in the context of ASR.

What are potential benefits of E2E approaches to ASR? The
primary objective when developing an ASR systems is to mini-
mize the expected word error rate; secondary objectives are to re-
duce time and memory complexity of the resulting decoder, and
– assuming a constrained development budget – genericity, and
ease of modeling. First of all, an integrated ASR system, defined

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5331-6058
https://orcid.org/0000-0003-4560-8039
https://orcid.org/0000-0002-4126-6556
https://orcid.org/0000-0003-2839-9247
https://orcid.org/0000-0002-5970-8631
mailto:prabhavalkar@google.com
mailto:thori@ieee.org
mailto:tsainath@google.com
mailto:schlueter@cs.rwth-aachen.de
mailto:shinjiw@ieee.org


326 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

in terms of a single neural network structure supports genericity
of modeling and may allow for faster development cycles when
building ASR systems for new languages or domains. Similarly,
ASR models defined by a single neural network structure may
become more ‘lean’ compared to classical modeling, with a
simpler decoding process, obviating the need to integrate sep-
arate models. The resulting reduction in memory footprint and
power consumption supports embedded ASR applications [21],
[22]. Furthermore, end-to-end joint training may help to avoid
spurious optima from intermediate training stages. Avoiding
secondary knowledge sources like pronunciation lexica may
be helpful for languages/domains where such resources are
not easily available. Also, secondary knowledge sources may
themselves be erroneous; avoiding these may improve models
trained directly from data, provided that sufficient amounts of
task-specific training data are available.

With the current surge of interest in E2E ASR models and
an increasing diversity of corresponding work, the authors of
this review think it is time to provide an overview of this rapidly
evolving domain of research. The goal of this survey is to provide
an in-depth overview of the current state of research on E2E
ASR systems, covering all relevant aspects of E2E ASR, with
a contrastive discussion of the different E2E and classical ASR
architectures.

This survey of E2E speech recognition is structured as fol-
lows. Section II discusses the nuances in the term E2E as it
applies to ASR. Section III describes the historical evolution of
E2E speech recognition, with specific focus on the input-output
alignment and an overview of prominent E2E ASR models.
Section IV discusses improvements of the basic E2E models,
including E2E model combination, training loss functions, con-
text, encoder/decoder structures and endpointing. Section V
provides an overview of E2E ASR model training. Decoding
algorithms for the different E2E approaches are discussed in
Section VI. Section VII discusses the role and integration of
(separate) language models in E2E ASR. Section VIII reviews
experimental comparisons of the different E2E as well as classi-
cal ASR approaches. Section IX provides an overview of appli-
cations of E2E ASR. Section X investigates future directions of
E2E research in ASR, before concluding in Section XI. Finally,
we note that this survey paper also includes comparative discus-
sions between novel E2E models and classical HMM-based ASR
approaches in terms of various aspects; most sections end with
a summarization of the relationship between E2E models and
HMM-based ASR approaches in relation to the topics covered
within the respective sections.

II. DISTINCTIVENESS OF THE TERM E2E

As noted in Section I the term E2E provides an idealized
definition of ASR systems, and can benefit from a more detailed
discussion based on the following perspectives.

a) Joint Modeling: In terms of ASR, the E2E property can be
interpreted as considering all components of an ASR system
jointly as a single computational graph. Even more so, the
common understanding of E2E in ASR is that of a single joint
modeling approach that does not necessarily distinguish separate

components, which may also mean dropping the classical sepa-
ration of ASR into an acoustic model and a language model.
However, in practice E2E ASR systems are often combined
with external language models trained on text-only data, which
weakens the end-to-end nature of the system to some extent.

b) Joint Training: In terms of model training, E2E can be
interpreted as estimating all parameters, of all components of a
model jointly using a single objective function that is consistent
with the task at hand, which in case of ASR means minimiz-
ing the expected word error rate.2 However, the term lacks
distinctiveness here, as classical and/or modular ASR model
architectures also support joint training with a single objective.

c) Training from Scratch: The E2E property can also be
interpreted with respect to the training process itself, by re-
quiring training from scratch, avoiding external knowledge like
prior alignments or initial models pre-trained using different
criteria or knowledge sources. However, note that pre-training
and fine-tuning strategies are also relevant, if the model has
explicit modularity, including self-supervised learning [25] or
joint training of front-end and speech recognition models [26].
Especially in case of limited amounts of target task training
data, utilizing large pretrained models is important to obtain
performant E2E ASR systems.

d) Avoiding Secondary Knowledge Sources: For ASR, stan-
dard secondary knowledge sources are pronunciation lexica and
phoneme sets, as well as phonetic clustering, which in classical
state-of-the-art ASR systems usually is based on classifica-
tion and regression trees (CART) [27]. Secondary knowledge
sources and separately trained components may introduce er-
rors, might be inconsistent with the overall training objective
and/or may generate additional cost. Therefore, in an E2E
approach, these would be avoided. Standard joint training of
an E2E model requires using a single kind of training data,
which in case of ASR would be transcribed speech audio data.
However, in ASR often even larger amounts of text-only data,
as well as optional untranscribed speech audio are available.
One of the challenges of E2E modeling therefore is how to
take advantage of text-only and audio-only data jointly with-
out introducing secondary (pretrained) models and/or training
objectives [28], [29].

e) Direct Vocabulary Modeling: Avoiding pronunciation lex-
ica and corresponding subword units leave E2E recognition
vocabularies to be derived from whole word or character rep-
resentations. Whole word models [30], according to Zipf’s
law [31], would require unrealistically high amounts of tran-
scribed training data for large vocabularies, which might not be
attainable for many tasks. On the other hand, methods to generate
subword vocabularies based on characters, like the currently
popular byte pair encoding (BPE) approach [32], might be seen
as secondary approaches outside the E2E objective, even more
so if acoustic data is considered for subword derivation [33],
[34], [35], [36].

2Note that this does not necessarily require Bayes Risk training, as standard
training criteria like cross entropy, maximum mutual information and maximum
likelihood in case of classical ASR models asymptotically guarantee optimal
performance in the sense of Bayes decision rule, also [23], [24].
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f) Generic Modeling: Finally, E2E modeling also requires
genericity of the underlying modeling: task-specific constraints
are learned completely from data, in contrast to task-specific
knowledge which influences the modeling of the system ar-
chitecture in the first place. For example, the monotonicity
constraint in ASR may be learned completely from data in an
end-to-end fashion (e.g., in attention-based approaches [16]), or
it may directly be implemented, as in classical HMM structures.
However, model constraints may be considered by way of regu-
larization in E2E ASR model training, and can thus provide an
alternative way to introduce task-specific knowledge.

g) Single-Pass Search: In terms of the recognition/search
problem, the E2E property can be interpreted as integrating all
components (models, knowledge sources) of an ASR system
before coming to a decision. This is in line with Bayes’ decision
rule, which exactly requires a single global decision integrating
all available knowledge sources, which is supported by both
classical ASR models as well as E2E models. On the other hand,
multipass search is not only exploited by classical ASR models,
but also by E2E ASR models, the most prominent case here
being (external) language model rescoring.

All in all, we need to conclude that a) “E2E” does not provide
a clear distinction between classical and novel, so-called E2E
models, and b) the E2E property often is weakened in practice,
leaving the term as a more general, idealized perspective on ASR
modeling.

III. A TAXONOMY OF E2E MODELS IN ASR

Before we derive a taxonomy of E2E ASR modeling ap-
proaches, we first introduce our notation. We denote the input
speech utterance asX , which we assume has been parameterized
into D-dimensional acoustic frames (e.g., log-mel features) of
length T ′: X = (x1, . . . ,xT ′), where xt ∈ R

D. We denote the
corresponding word sequences as C, which can be decomposed
into a suitable sequence of labels of length L:C = (c1, . . . , cL),
where each label cj ∈ C. Our description is agnostic to the
specific representation used for decomposing the word sequence
into labels; popular choices include characters, words, or sub-
word sequences (e.g., BPE [32], word-pieces [37]).

ASR may be viewed as a sequence classification problem
which maps a variable length input, X , into an output, C, of
unknown length. Following Bayes’ decision rule, any statistical
approach to ASR must determine how to model the word se-
quence posterior probability,P (C|X). Thus, a natural taxonomy
of E2E ASR modeling can be based on the various strategies for
modeling this word sequence posterior: i.e., how the alignment
problem between input and output sequence is handled; and,
how sequence modeling is decomposed to the level of individual
input vectors xt′ and/or output labels cl. We find that it is useful
to distinguish implicit and explicit modeling approaches, based
on the modeling of the sequence-to-sequence alignment:

a) Explicit Alignment Modeling: does not necessarily refer
to the determination of a single unique alignment, but instead
introduces an explicit alignment modeled as a latent variable, A:

P (C|X) =
∑
A

P (C,A|X)

b) Implicit Alignment Modeling: does not introduce a latent
alignment variable, but models the label sequence posterior
P (C|X) directly.

Explicit alignment modeling approaches can mainly be distin-
guished by their choice of latent variable; these can be encoded
in terms of valid emission paths in corresponding finite state
automata (FSA) [38] which relate the input and output sequences
– the approach taken in our article. Typically, latent variables in
explicit alignment modeling in transducer E2E models intro-
duce extensions to the output label set with different forms of
continuation labels (including, but not limited to so-called blank
labels).3

A. Encoder and Decoder Modules

Irrespective of the alignment modeling approach, following
the notation introduced in [41], it is useful to view all E2E ASR
models as being composed of an encoder module and a decoder
module. The encoder module, denoted H(X), maps an input
acoustic frame sequence, X , of length T ′ into a higher-level
representation, H(X) = (h1, . . . ,hT ) of length T (typically
T ≤ T ′). Note that the encoder output is independent of the
hypothesized label sequence. The decoder module models the
label sequence posterior on top of the encoder output:

P (C|X) = P
(
C
∣∣H(X)

)
Thus, we may distinguish different approaches based upon

how the output label sequence distribution (including potential
latent variables resulting from the alignment modeling) are
decomposed into individual label (and alignment) contributions;
these may occur per output label position, per encoder frame
position, or combinations thereof:

P
(
C[, A]

∣∣H(X)
)

=
L∏

i=1

P
(
ci[, ai]

∣∣ci−1
1 [, ai−1

1 ], vi(c
i−1
1 [, ai−1

1 ], H(X))
)

where the notation mi−1
1 corresponds to the sequence

of i− 1 previous instances of the variables m; and,
vi(c

i−1
1 [, ai−1

1 ], H(X)) denotes a context-vector that provides
the connection between encoder output, H(X), and the label
output position, i. In general the context vector may depend
on the label context (and possibly the latent variable context,
for explicit alignment modeling approaches). Apart from the
underlying alignment model and corresponding output label de-
composition, decoder modules differ in terms of the assumptions
on their label context ci−1

1 (and their latent variable context
ai−1
1 ), which correspond to different conditional independence

assumptions, and by their access to the encoder output. For
example, the local posterior may only depend on a single encoder
frame output (i.e., with the context vector being reduced to a
single encoder frame’s output): vi(ci−1

1 , H(X)) = hti(X). As
we shall see in detail in the following sections, the simplest
case of an encoder frame-level decomposition (with L = T , and

3For example, these extensions may also include explicit duration variables,
leading to segmental models [39]. Such models can be rewritten into equivalent
transducer models [40], and vice-versa.
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ti = i) corresponds to CTC [13]; AED models [16] and their
variants maintain the full dependency of the context vector.

Finally, different E2E models can also be distinguished by
the specific modeling choices that are involved in the design
of the neural network used to implement the encoder and the
decoder. These might involve feed-forward neural networks,
convolutional neural networks, recurrent neural networks (either
uni-directional or bi-directional) [42], attention [43], and vari-
ous combinations thereof (e.g., transformers [44] or conform-
ers [45]). These modeling choices and corresponding training
methods can be applied across E2E ASR models and therefore
do not enter the taxonomy of E2E ASR models discussed here.
However, specific choices will be discussed as part of the exem-
plary E2E ASR models presented in Section VIII and Section IX.

B. Explicit Alignment Modeling Approaches

Early E2E modeling approaches modeled alignments explic-
itly through a latent variable, which is marginalized out (possi-
bly, approximately) during training and inference. Examples of
this family of approaches include connectionist temporal clas-
sification (CTC) [13], the recurrent neural network transducer
(RNN-T) [14], the recurrent neural aligner (RNA) [46], and
the hybrid auto-regressive transducer [47] (HAT). As will be
discussed in subsequent sections, the latter modeling approaches
in this family represent increasingly sophisticated modeling
of alignments, with fewer independence assumptions and are
thus increasingly powerful. A common feature of all explicit
alignment models discussed in this section is that they introduce
an additional blank symbol, denoted 〈b〉, and define an output
probability distribution over symbols in the set Cb = C ∪ {〈b〉}.
The interpretation of the 〈b〉 symbol varies slightly between each
of these models, as we discuss in greater details below. For now,
it suffices to say that given a specific training example, (X,C),
each of these models defines a set of valid alignments, denoted
by A(T,C), and define the conditional distribution P (C|X) by
marginalizing over all valid alignment sequences:

P (C|X) =
∑
A

P (C|A,H(X))P (A|H(X))

=
∑

A∈A(T=|H(X)|,C)

P (A|H(X)) (1)

where, by definition P (C|A,H(X)) = 1 if and only if A ∈
A(T,C) and 0 otherwise.4 We discuss the specific formulations
of each of these models in the subsequent sections.

1) Connectionist Temporal Classification (CTC): Connec-
tionist Temporal Classification (CTC) was proposed by Graves
et al. [13] as a technique for mapping a sequence of input tokens
to a corresponding sequence of output tokens. CTC explicitly
models alignments between the encoder output, H(X), and
the label sequence, C, by introducing a special “blank” label,
denoted by 〈b〉: Cb = C ∪ {〈b〉}. An alignment, A ∈ C∗

b , is thus
a sequence of labels in C or 〈b〉.5 Given a specific training

4This is equivalent to the assumption that the mapping from an alignment A
to a label sequence C is unique, by definition.

5S∗ denotes a Kleene closure: the set of all possible sequences composed of
tokens in the set S.

Fig. 1. Example alignment sequence for a CTC model with the target sequence
C = (s, e, e) (right), alongside a (non-deterministic) finite state automaton
(FSA) [38] (left) representing the set of all valid alignment paths.

example, (X,C), we denote the set of all valid alignments,
ACTC

(X,C) = {A = (a1, a2, . . . , aT )}, such that each at ∈ Cb with
the additional constraint that A is identical to C after first
collapsing consecutive identical labels, and then removing all
blank symbols. For example, if T = 10, and C = (s, e, e),
then A = (s, 〈b〉 , 〈b〉 , e, e, 〈b〉 , e, e, 〈b〉 , 〈b〉) ∈ ACTC

(X,C), as il-
lustrated in Fig. 1. As can be seen in this example, repeated
labels in the output can be represented by intervening blanks.
Following (1), CTC defines the posterior probability of the label
sequence C conditioned on the input, X , by marginalizing over
all possible CTC alignments as:

PCTC(C|X) =
∑

A∈ACTC
(X,C)

P (A|H(X))

=
∑

A∈ACTC
(X,C)

T∏
t=1

P (at|at−1, . . . , a1, H(X))

=
∑

A∈ACTC
(X,C)

T∏
t=1

P (at|ht) (2)

Critically, as can be seen in (2), CTC makes a strong indepen-
dence assumption that the model’s output at time t is condition-
ally independent of the outputs at other timesteps, given the local
encoder output at time t.

Thus, a CTC model consists of a neural network that models
the distribution P (at|X), at each step as shown in Fig. 2.
The encoder is connected to a softmax layer with |Cb| targets
representing the individual probabilities in (2): P (at = c|X) =
P (at = c|H(X)), which comprises the decoder module for
CTC. Thus, at each step, t, the model consumes a single encoded
frame ht and outputs a distribution over the labels; in other
words, the model “outputs” a single label either blank, 〈b〉, or
one of the targets in C.

2) Recurrent Neural Network Transducer (RNN-T): The Re-
current Neural Network Transducer (RNN-T) [14], [48] was
proposed by Graves as an improvement over the basic CTC
model [13], by removing some of the conditional independence
assumptions that we discussed previously. The RNN-T model,
which is depicted in Fig. 3, is best understood by contrasting
it against the CTC model. As with CTC, the RNN-T model
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Fig. 2. Representation of the CTC model consisting of an encoder which maps
the input speech into a higher-level representation, and a softmax layer which
predicts frame-level probabilities over the set of output labels and blank.

Fig. 3. RNN-T Model [14], [48] consists of an encoder which transforms the
input speech frames into a high-level representation, and a prediction-network
which models the sequence of non-blank labels that have been output previously.
The prediction network output, pit , represents the output after producing the
previous non-blank label sequence c1, . . . , cit . The joint network produces a
probability distribution over the output symbols (augmented with blank) given
the prediction network state and a specific encoded frame.

augments the output symbols with the blank symbol, and thus
defines a distribution over label sequences in Cb. Similarly, as
with CTC, the model consists of an encoder which processes the
input acoustic frames X to generate the encoded representation
H(X) = (h1, . . . ,hT ).

Unlike CTC, however, the blank symbol in RNN-T has a
slightly different interpretation; for each input encoder frame,
ht, the RNN-T model outputs a sequence of zero or more
symbols in C which are terminated by a single blank sym-
bol. Thus, we may define the set of all valid alignment se-
quences in RNN-T as: ARNNT

(X,C) = {A = (a1, a2, . . . , aT+L)},
the set of all sequences of T + L symbols in C∗

b , which
are identical to C after removing all blanks. Finally, for a
given output position τ , let iτ denote the number of non-
blank labels in the partial sequence (a1, . . . , aτ−1). Thus, the
number of blanks in the partial sequence (a1, . . . , aτ−1) is
τ − iτ − 1. For example, if T = 7, and C = (s, e, e), then
A = (〈b〉 , s, 〈b〉 , 〈b〉 , 〈b〉 , e, e, 〈b〉 , 〈b〉 , 〈b〉) ∈ ARNNT

(X,C). Note
that, unlike the CTC model, repeated labels in the output

Fig. 4. Example alignment sequence (right) for an RNN-T model with the
target sequence C = (s, e, e). Horizontal transitions in the image correspond
to blank outputs. The FSA (left) represents the set of all valid RNN-T alignment
paths.

require no special treatment as illustrated in Fig. 4, where,
i1 = i2 = 0; i3 = i4 = 1; i10 = 3; etc.

We may then define the posterior probability P (C|X) as
before:

PRNNT(C|X) =
∑

A∈ARNNT
(X,C)

P (A|H(X))

=
∑

A∈ARNNT
(X,C)

T+L∏
τ=1

P (aτ |aτ−1, . . . , a1, H(X))

=
∑

A∈ARNNT
(X,C)

T+L∏
τ=1

P (aτ |ciτ , ciτ−1, . . . , c0,hτ−iτ )

=
∑

A∈ARNNT
(X,C)

T+L∏
τ=1

P (aτ |piτ ,hτ−iτ ) (3)

where,P = (p1, . . . ,pL) represents the output of the prediction
network depicted in Fig. 3 which summarizes the sequence of
previously predicted non-blank labels, implemented as another
neural network:pj = NN(·|c0, . . . , cj−1), where c0 is a special
start-of-sentence label, 〈sos〉. Thus, as can be seen in (2), RNN-T
reduces some of the independence assumptions in CTC since
the output at time t is conditionally dependent on the sequence
of previous non-blank predictions, but is independent of the
specific choice of alignment (i.e., the choice of the frames at
which the non-blank tokens were emitted).

Our presentation of RNN-T alignments considers the “canoni-
cal” case. In principle, however, the model can encode the same
set of conditional independence assumptions in RNN-T (i.e.,
the model structure), while considering alternative alignment
structures as in the work of [49]. In their work, Moritz et al.,
represent valid frame-level alignments as an arbitrary graph.
This formulation, for example, allows for the use of “CTC-like”
alignments in the RNN-T model (i.e., outputting a single label –
blank, or non-blank – at each frame) while conditioning on the
set of previous non-blank symbols as in the RNN-T model.

3) Recurrent Neural Aligner (RNA): The recurrent neural
aligner (RNA) was proposed by Sak et al. [46]. The RNA
model generalizes the RNN-T model by removing one of its
conditional independence assumptions. The model, depicted in
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Fig. 5. RNA Model [46] resembles the RNN-T model [14], [48] in terms of the
model structure. However, this model is only permitted to output a single label
– either blank, or non-blank – in a single frame. Unlike RNN-T, the prediction
network state in the RNA model,qt−1, depends on the entire alignment sequence
at−1, . . . , a1. The joint network produces a probability distribution over the
output symbols (augmented with blank) given the prediction network state and
a specific encoded frame.

Fig. 5, is best understood by considering how it differs from
the RNN-T model. As with CTC and RNN-T, the RNA model
defines a probability distribution over blank augmented labels
in the set Cb, where 〈b〉 has the same semantics as in the CTC
model: at each frame the model can only output a single label
– either blank, or non-blank – before advancing to the next
frame; unlike CTC (but as in RNN-T) the model only outputs a
single instance of each non-blank label. More specifically, the
set of valid alignments, ARNA

(X,C) = (a1, . . . , aT ), in the RNA
model consist of length T sequences in C∗

b with exactly T − L
blank symbols, and which are identical to C after removing all
blanks. Thus, the blank symbol has a different interpretation
in RNA and the RNN-T models: in RNN-T, outputting a blank
symbol advances the model to the next frame; in RNA, however,
the model advances to the next frame after outputting a single
blank or non-blank label. Restricting the model to output a
single non-blank label at each frame improves computational
efficiency and simplifies the decoding process, by limiting the
number of model expansions at each frame (in constrast to RNN-
T decoding). For example, if T = 8, and C = (s, e, e), then
A = (〈b〉 , s, 〈b〉 , e, 〈b〉 , 〈b〉 , e, 〈b〉) ∈ ARNA

(X,C) as illustrated in
Fig. 6.

The RNA posterior probability, P (C|X), is defined as:

PRNA(C|X) =
∑

A∈ARNA
(X,C)

P (A|H(X))

=
∑

A∈ARNA
(X,C)

T∏
t=1

P (at|at−1, . . . , a1, H(X))

=
∑

A∈ARNA
(X,C)

T∏
t=1

P (at|qt−1,ht) (4)

Fig. 6. Example alignment sequence (right) for an RNA model with the target
sequence C = (s, e, e). Horizontal transitions in the image correspond to blank
outputs; diagonal transitions correspond to outputting a non-blank symbol. The
FSA (left) represents the set of valid alignments for the RNA model. Although
the FSA is identical to the corresponding FSA for RNN-T in Fig. 4, the semantics
of the 〈b〉 label are different in the two cases.

where, as before it denotes the number of non-blank symbols
in the partial alignment sequence (a1, . . . , at−1), and qt−1 =
NN(·|at−1, . . . , a1) represents the output of a neural network
which summarizes the entire partial alignment sequence, where
NN(·) represents a suitable neural network (an LSTM in [46]).
Thus, RNA removes the one remaining conditional indepen-
dence assumption of the RNN-T model, by conditioning on the
sequence of previous non-blank labels as well as the alignment
that generated them. However, this comes at a cost: the exact
computation of the log-likelihood in (3) (and corresponding
gradients) is intractable. Instead, RNA makes two simplifying
assumption to ensure tractable training: by assuming that the
model can only output a single label at each frame; and utilizing
a straight-through estimator for the alignment [50]. The latter
constraint – allowing only a single label (blank or non-blank)
at each frame – has also been explored in the context of the
monotonic RNN-T model [51]. Finally, we note that the work
in [52] further generalizes the RNA model by employing two
RNNs when defining the state: a slow RNN (which corresponds
to the sequence of previously predicted non-blank labels), and
a fast RNN (which also conditions on the frames at which the
non-blank labels were output).

C. Implicit Alignment Modeling Approaches

One of the main benefits of the explicit alignment approaches
such as CTC, RNN-T, or RNA is that they result in ASR models
that are easily amenable to frame-synchronous decoding.6 In this
section, we discuss the attention-based encoder-decoder (AED)
models (also known as, listen-attend-and-spell (LAS)) [15],
[16], [53], which employs the attention mechanism [43] to
implicitly identify and model the portions of the input acoustics
which are relevant to each output unit. These models were
first popularized in the context of machine translation [54].
Unlike explicit alignment modeling approaches, attention-based
encoder-decoder models use an attention mechanism [43] to
learn a correspondence between the entire acoustic sequence and
the individual labels. Such models support label-synchronous

6By frame-synchronous decoding, we refer to the ability of the model to
produce output label for each input frame of speech. Models such as CTC,
RNN-T, or RNA, support frame-synchronous decoding.
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Fig. 7. Attention-based encoder decoder (AED) model [15], [16], [53].
The output distribution is conditioned on the decoder state, si (which sum-
marizes the previously decoded symbols), and the context vector, vi (which
summarizes the encoder output based on the decoder state). In the seminal work
of Chan et al., [16], for example, this is accomplished by concatenating the two
vectors, as denoted by the

⊕
symbol in the figure.

decoding, meaning that during inference, each hypothesis in the
beam is expanded by 1 label.

In the explicit alignment approaches presented in
Section III-B, during inference, the model continues to output
symbols until it has processed the final frame at which point
the decoding process is complete; similarly, during training, the
forward-backward algorithm aligns over all possible alignment
sequences. Since an AED model processes the entire acoustic
sequence at once, the model needs a mechanism by which
it can indicate that it is done emitting all output symbols.
This is achieved by augmenting the set of outputs with an
end-of-sentence symbol, 〈eos〉, so that the output vocabulary
consists of the set Ceos = C ∪ {〈eos〉}. Thus, the AED model,
depicted in Fig. 7, consists of an encoder network – which
encodes the input acoustic frame sequence, X = (x1, . . . ,xT ′),
into a higher-level representation H(X) = (h1, . . . ,hT ) –
and an attention-based decoder which defines the probability
distribution over the set of output symbols, Ceos. Thus,
given a paired training example, (X,C), we denote by
Ce = (c1, . . . , cL, 〈eos〉), the ground-truth symbol sequence of
length (L+ 1) augmented with the 〈eos〉 symbol. AED models
compute the conditional probability of the output sequence
augmented with the 〈eos〉 symbol as:

P (Ce|X) = P (Ce|H(X))

=

L+1∏
i=1

P (ci|ci−1, . . . , c0 = 〈sos〉 , H(X))

=
L+1∏
i=1

P (ci|ci−1, . . . , c0 = 〈sos〉 ,vi)

=

L+1∏
i=1

P (ci|si,vi) (5)

where, vi corresponds to a context vector, which summarizes
the relevant portions of the encoder output, H(X), given the se-
quence of previous predictions ci−1, . . . , c0; and, si corresponds
to the corresponding decoder state after outputting the sequence
of previous symbols, which is produced by updating the decoder
state based on the previous context vector and output label:

si = Decoder(vi−1, si−1, ci−1)

The symbol c0 = 〈sos〉 is a special start-of-sentence symbol
which serves as the first input to the attention-based decoder
before it has produced any outputs. As can be seen in (5), an
important benefit of AED models over models such as CTC or
RNN-T is that they do not make any independence assumptions
between model outputs and the input acoustics, and are thus
more general than the implicit alignment models, while being
considerably easier to train and implement since we do not have
to explicitly marginalize over all possible alignment sequences.
However, this comes at a cost: previously generated context
vectors (which are analogous to the decoded partial alignment
in explicit alignment models) are not revised as the decoding
proceeds. Stated another way, while the encoder processing
H(X) might be bi-directional, the decoding process in AED
models reveals a left-right asymmetry [55].

1) Computing the Context Vector in AED Models: As we
mentioned before, the context vector, vi, is computed by em-
ploying the attention mechanism [43]. The central idea behind
these approaches is to define a state vector si which corresponds
to the state of the model after outputting c1, . . . , ci−1. The atten-
tion function, atten(ht, si) ∈ R, then defines a score between
the model state after outputting i− 1 previous symbols, and
each of the encoded frames in H(X). These scores can then be
normalized using the softmax function to define a set of weights
corresponding to each ht as:

αt,i =
exp{atten(ht, si)}∑T

t′=1 exp{atten(ht′ , si)}
Intuitively, the weight αt,i represents the relevance of a par-

ticular encoded frame ht when outputting the next symbol ci,
after the model has already output the symbols c1, . . . , ci−1, as
illustrated in Fig. 8. The context vector summarizes the encoder
output based on the computed attention weights:

vi =
∑
t

αt,iht

A number of possible attention mechanisms have been ex-
plored in the literature: the most common forms are called
‘content-based attention’, which include dot-product atten-
tion [16] and additive attention [43]. The content-based atten-
tion computes the attention score atten(ht, si) based on the
relevance between ht and si. However, the score does not
consider location information, i.e., it is determined by only the
content, independent of the position. This can lead to incorrect
attention weights with a large discrepancy against the previous
steps. Thus, location-based attention atten(si, fi,j) has been pro-
posed [15], where fi,j is a convolutional feature vector extracted
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Fig. 8. Unlike models such as RNN-T or CTC, AED models do not have
explicit alignment. However, it is possible to interpret the attention weights αt,i

for a particular output symbol ci as an alignment weight which is represented
above for the target sequence C = (s, e, e, 〈eos〉). In this representation, the
size of the circle and the darkness level are proportional to the corresponding
attention weights; thus the total probability mass is the same for each row. As
illustrated above, the first few frames correspond to the first symbol c1 = s,
while the latter frames correspond to the second ‘e’: c3 = e.

fromαi−1, the attention weights in the previous step. The hybrid
attention, i.e., a combination of the content- and location-based
attentions, has also been investigated in [15], showing a higher
accuracy than the separate ones. Besides, other location-based
methods use a Gaussian (mixture) model estimated with si to
obtain attention weights [56], [57]. Transformer model [44]
uses only content-based dot-product attention, but also takes
location information into account through positional encoding.
Apart from the specific choice of the attention mechanism, a
common technique to improve performance involves the use
of multiple independent attention heads – v1

i , . . . ,v
K
i – which

are then concatenated together to obtain the final context vector
vi = [v1

i ; . . . ;v
K
i ], in the so-called multi-head attention ap-

proach [44], or indeed by stacking together multiple attention-
based layers in the transformer decoder presented by Vaswani
et al. [44].

D. From Implicit to Explicit Alignment Modeling

AED models, which make no conditional independence as-
sumptions, are extremely powerful, often outperforming explicit
alignment E2E approaches such as CTC, or RNN-T [41]. How-
ever, these models also have some significant disadvantages,
most notably that the models are typically non-streaming: i.e.,
the models must process all acoustic frames before they can
generate any output hypotheses. A somewhat related issue is
that the models are extremely sensitive to the length of the
acoustic sequences, which requires special processing to be able
to decode long-form audio [58]. There is a body of work that lies
in between these two extremes: models such as the neural trans-
ducer [59], or those based on monotonic alignments [60] and its
variants (e.g., monotonic chunkwise alignments (MoChA) [61],
monotonic infinite lookback (MILK) [62] etc.) use an explicit
alignment model, while also utilizing an attention mechanism
that allows the model to examine local acoustics in order to
refine predictions. In other words, this corresponds to a class of
streaming AED models. Generally speaking, these models are
motivated by the observation that speech (unlike tasks such as
machine translation) exhibits a ‘local’ relationship between the
encoded frames (assuming that the encoder is uni-directional)
and the output units; thus, unlike the general AED model

which computes the context vector, vi, as a sum over all input
frames ht, the various proposed models constrain this sum to
be computed over a subset of frames to allow for streaming
decoding. In the context of our presentation, it is easiest to
think of these models as consisting of an underlying alignment
(whether known or unknown) which can be used to perform
streaming inference.

The Neural Transducer (NT) [59] explicitly partitions the
input encoder frames intoTW non-overlapping chunks of length
W : HW

1 = [h1, . . . ,hW ]; · · · ;HW
TW = [hTW+1, . . . ,hTWW ],

whereTW =
⌈

T
W

⌉
, andht = 0 if t > T . Unlike the AED model

which examines all encoded frames when computing the context
vector, the NT model is restricted to process a single chunk
at a time; the model only advances to the next chunk when it
outputs a special end-of-chunk symbol (analogous to 〈eos〉 in
the AED model); inference in the model terminates when the
model has output the end-of-chunk symbol in the final chunk
HW

TW . If the alignments of the ground-truth output sequence,
C, with respect to the W -length chunks are unknown, then it is
possible to train the system by using a rough initial alignment
where symbols are distributed equally among the TW chunks,
followed by iterative refinement by computing the most likely
output alignments given the current model parameters [59] sim-
ilar to forced-alignments in HMM-based systems. An alternate
approach [63] consists of using a separate system (e.g., a clas-
sical hybrid system) to get initial alignments (e.g., word-level
alignments), which can be used to assign sub-word units to the
individual chunks.

An alternative approach, proposed by Raffel et al. [60],
modifies the vanilla AED model by explicitly introducing an
alignment module which scans the encoder frames, H(X),
from left-to-right to identify whether the current frame should
be used to emit any outputs (modeled as a Bernoulli random
variable). If a frame, τ , is selected, then the model produces
an output based on the local encoder frame, hτ . The process is
then repeated starting from the currently selected frame, thus
allowing multiple outputs to be generated at the same frame.
This results in a model with hard monotonic alignments between
the input speech and the output labels since the models are con-
strained to generate outputs in a streaming fashion. A Monotonic
Chunkwise Attention (MoChA) model [61] improves upon the
work of Raffel et al., by allowing the model to generate the
next output using a context vector computed using attention
over a local window of frames to the left of the selected frame
τ : hτ−W+1, . . . ,hτ . Thus, the MoChA model consists of a
two-level process – identifying frames where output should
be produced following [60], followed by an AED model over
frames to the left of the selected frame. A refinement to the
MoChA model, proposed by Arivazhagan et al. [62] – the mono-
tonic infinite lookback (MILK) attention model – computes the
context vector over all frames to the left of the selected frame
τ (i.e., h1, . . . ,hτ ) at each step. Another two-fold approach to
enable streaming operation is presented in [64] under the term of
triggered attention, where a CTC-network is used to trigger, i.e.
control the activation of an AED model with a limited decoder
delay. We also direct interested readers to studies of various
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attention variants: Merboldt et al. [65] compare a number of
local monotonic attention variants; Zeyer et al. [66] discuss
segmental attention variants; Zeyer et al. [67] study the related
decoding and the relevance of segment length modeling, leading
to improved generalization towards long sequences. Segmental
attention models are related to transducer models [68]. However,
segmental E2E ASR models are not limited to be realized based
on the attention mechanism and may not only be related to a
direct HMM [39], but have also been shown to be equivalent
to neural transducer modeling [40], thus even providing a clear
relation between duration modeling and blank probabilities.

Relationship to Classical ASR

In classical ASR models, these frame-level alignments can be
modeled with HMMs while using generative GMMs or neural
networks to model the output distribution of acoustic frames;
frame-level alignments to train neural network acoustic models
may be obtained by force-alignment from a base GMM-HMM
systems, but direct sequence training not requiring initial align-
ments is also possible [69].

E2E models introduce alternative alignment modeling ap-
proaches to ASR. While the attention mechanism provides a
qualitatively novel approach to map acoustic observation se-
quences to label sequences, transducer approaches [13], [14],
[46], [70] handle the alignment problem in a way that can be in-
terpreted to be similar to HMMs with a specific model topology,
including marginalization over alignments [71], [72], [73]. CTC
models can also be employed in an HMM-like fashion during
decoding [74]. Moreover, transducer approaches are equivalent
to segmental models/direct HMM [40].

Another prominent feature of E2E systems besides the align-
ment property is their direct character-level modeling avoiding
phoneme-based modeling and pronunciation lexica [16], [19],
[74], [75], [76], [77], [78], [79], [80], [81], [82], with some
even heading for whole-word modeling [30], [76]. However,
character-level modeling also is viable with classical hybrid
HMM architectures [83] and has been shown to work even with
standard HMM models w/o neural networks [84].

IV. ARCHITECTURE IMPROVEMENTS TO BASIC E2E MODELS

In this section, we describe various algorithmic changes
to vanilla E2E models which are critical in order to obtain
improved performance over classical ASR systems. First, we
describe various ways of combining different complementary
E2E models to improve performance. Next, we introduce ways
to incorporate context into these models to improve performance
on rare proper noun entities. We then describe improved encoder
and decoder architectures that take better advantage of the many
cores on specialized architectures such as tensor processing units
(TPUs) [85]. Finally, we discuss how to improve the latency of
the model through an integrated E2E endpointer.

A. Combinations of Models

Different end-to-end models are complementary, and there
have been numerous attempts at combining these methods. For

example, Watanabe et al. [86] find that attention-based models
perform poorly on long or noisy utterances, mainly because
the model has too much flexibility in predicting alignments
when presented with the entire input utterance. In contrast,
models such as CTC – which have left-to-right constraints
during decoding – perform much better in these cases. They
propose to employ a multi-task learning strategy with both CTC
and attention-based losses, which provides a 5–14% relative
improvement in word error rate over attention-based models on
Wall Street Journal (WSJ) and Chime tasks. Pang et al. [87]
explore combining the benefits of RNN-T and AED. Specif-
ically, RNN-T decodes utterances in a left-to-right fashion,
which works well for long utterances. On the other hand, since
AED sees the entire utterance, it often shows improvements for
utterances where surrounding context is needed to predict the
current word, e.g.,”one dollar and fifty cents”→
$1.50. To combine RNN-T and AED, the authors propose to
produce a first-pass result with RNN-T, that is then rescored with
AED in the second-pass. To reduce computation, the authors
share the encoder between RNN-T and AED. The authors find
that RNN-T + AED provides a 17–22% relative improvement
in word error rate over RNN-T alone on a voice search task.
Other flavors of streaming 1st-pass following by attention-based
2nd-pass rescoring, such as deliberation [88], have also been
explored. One of the issues with such rescoring approaches
is that any potential improvements are limited to the lattice
produced by the 1st-pass system. To address this, methods which
run a 2nd-pass beam search have also been explored, particularly
in the context of streaming ASR – e.g. cascaded encoder [89],
Y-architecture [90] and Universal ASR [91].

B. Incorporating Context

Contextual biasing to a specific domain, including a user’s
song names, app names and contact names, is an important com-
ponent of any production-level automatic speech recognition
(ASR) system. Contextual biasing is particularly challenging
in E2E models because these models typically retain only a
small list of candidates during beam search, and tend to perform
poorly when recognizing words that are seen infrequently during
training (typically named entities), which is the main source
of biasing phrases. There have been a few approaches in the
literature to incorporate context.

One approach, known as shallow-fusion contextual bias-
ing [92], constructs a stand-alone weighted finite state transducer
(FST) representing the biasing phrases. The scores from the
biasing FST are interpolated with the scores of the E2E model
during beam search, with special care taken to ensure we do not
over- or under-bias phrases. An alternate approach proposes to
inject biasing phrases into the model in an all-neural fashion. For
example, Pundak et al. [93] represent a set of biasing phrases
by embedding vectors. These vectors are fed as additional input
to an attention-based model, which can then choose to attend
to the phrases and hence boost the chances of predicting the
phrases. Kim and Metze [94] propose to bias towards dialog
context. In addition, Bruguier et al. [95] extend [93], by lever-
aging phonemic pronunciations for the biasing phrases when
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constructing phrase embeddings. Finally, Delcroix et al. [96] use
an utterance-wise context vector like an i-vector computed by
a pooling across frame-by-frame hidden state vectors obtained
from a sub network (this sub-network is called a sequence-
summary network).

C. Encoder and Decoder Structure

There have been improvements to encoder architectures of
E2E models over time. The first end-to-end models used long
short-term memory recurrent neural networks (LSTMs), for both
the encoder and decoder. The main drawback of these sequential
models is that each frame depends on the computation from the
previous frame, and therefore multiple frames cannot be batched
in parallel.

With the improvement of hardware, specifically on-device
Edge Tensor Processing Units (TPUs), with thousands of cores,
architectures that can better take advantage of the hardware, have
been explored. Such architectures include convolution-based
architectures, such as ContextNet [97]. The use of self-attention
to replace the sequential recurrence in LSTMs was explored
in Transformers for ASR [98], [99], [100]. Finally, combining
self-attention with convolution, known as Conformer [45], or
multi-layer perceptron [101], was also explored. Both Trans-
former and Conformer have shown competitive performance to
LSTMs on many tasks [102], [103].

On the decoder side, research for transducer models has
shown that a large LSTM decoder can be replaced with a simple
embedding lookup table, that attends to only a few previous
tokens from the model [47], [104], [105], [106], [107]. This
demonstrates that most of the power of the E2E model is in
the encoder, which has been a consistent theme of both E2E as
well as classical hybrid HMM models. However, improved de-
coder modeling may also be effective depending on the specific
downstream task. Research has shown that extended decoder
architectures enable pre-training and adaptation of the decoder
using extensive text-only data, leading to accuracy gains [108],
[109]. For example, one approach separates RNN-T’s prediction
network into separate blank and vocabulary prediction (LM)
components, where the LM component can be trained with text
data [108]. In addition, in line with the growing interest in large
language models in recent years, research has also begun on
solving multiple tasks, including speech recognition, using only
an auto-regressive, GPT-style decoder [110], [111].

D. Integrated Endpointing

An important characteristic of streaming speech recognition
systems is that they must endpoint quickly, so that the ASR result
can be finalized and sent to the server for the appropriate action
to be performed. Endpointing is typically done with an external
voice-activity detector. Since endpointing is both an acoustic
and language model decision, recent works in streaming RNN-T
models [112], [113] have investigated predicting a microphone
closing token 〈eos〉 at the end of the utterance – e.g., “What’s the
weather 〈eos〉”. Following the notation from Section III, this is
done by including an 〈eos〉 token as part of the set of class labels
C and encouraging the model to predict this token to terminate

decoding. These models have shown improved latency and WER
trade-off by having the endpointing decision predicted as part
of the model. Furthermore, [114], [115] explored using the CTC
blank symbol for endpoint detection.

V. TRAINING E2E MODELS

In general, training of E2E models follows deep learning
schemes [116], [117], with specific consideration of the sequen-
tial structure and the latent alignment problem to be handled in
ASR. E2E ASR models may be trained end-to-end, notwith-
standing potential elaborate training schedules and extensive
data augmentation. Part of the appeal of end-to-end models
is that they do not assume conditional independence between
the input frames. Given a training set T = {(Xn, Cn)}Nn=1,
the training criterion L to be minimized can be written as:
L = −

∑N
n=1 logP (Cn|Xn) (which is equivalent to maximiz-

ing the total conditional log-likelihood).

A. Alignment in Training

E2E models such as RNN-T and CTC introduce an additional
blank token 〈b〉 for alignment. Therefore optimization implies
marginalizing across all alignments, as follows:

Lex = −
N∑

n=1

∑
An

logP (Cn, An|Xn)

This requires the forward-backward algorithm [118], [119] for
efficient computation of the training criterion and its gradient,
with minor modifications for CTC, RNN-T, and RNA models, as
well as classical (full-sum) hybrid ANN/HMMs corresponding
to the differences in alignments defined in each of these models.
In comparison, AED models are based on implicit alignment
modeling approaches, and the training criterion does not have a
latent variable A for explicit alignment as:

Lim = −
N∑

n=1

logP (Cn|Xn)

We refer the interested reader to the individual papers for further
details on the training algorithms [13], [14], [15], [16], [46],
[48], [53], [71], [120]. As shown in Section III-A, in both
explicit and implicit alignment cases, P (C|X) is factorized
with respect to input time t and output position i, respec-
tively, and the factorized distribution is conditioned on the
label context ci−1

1 , except for CTC. For example, in the AED
case: logP (C|X) =

∑L
i=1 logP (ci|X, ci−1

1 ). During training,
we use a teacher-forcing technique where the ground truth
history is used as a label context.

As part of the training procedure, all E2E as well as classical
hidden Markov models for ASR provide mechanisms to solve
the underlying sequence alignment problem - either explicitly
via corresponding latent variables, as in CTC, RNN-T or RNA,
and also hybrid ANN/HMM, or implicitly, as in AED models.
Also, the distinction between speech and silence needs to be
considered, which may be handled explicitly by introducing
silence as a latent label (hybrid ANN/HMM), or implicitly by
not labeling silence at all, as currently is the standard in virtually
all E2E models.



PRABHAVALKAR et al.: END-TO-END SPEECH RECOGNITION: A SURVEY 335

E2E models also may take advantage of hierarchical train-
ing schedules. These schedules may comprise several separate
training passes and explicit, initially generated alignments that
are kept fixed for some Viterbi-style [121], [122], [123] train-
ing epochs before re-enabling E2E-style full-sum training that
marginalizes over all possible alignments. Such an alternative
approach is employed by Zeyer et al. [52], where an initial
full-sum RNN-T model is used to generate an alignment and
continue with framewise cross-entropy training. This greatly
simplifies the training process by replacing the summation over
all possible alignments in (4) by a single term corresponding to
the alignment sequence generated. Recently, a similar procedure
has been introduced in [124] also employing E2E models, only.
In this work, CTC is used to initialize the training and to gener-
ate an initial alignment, followed by intermediate Viterbi-style
RNN-T training and final full-sum fine tuning, which improved
convergence compared to full-sum-only training approaches.

It is interesting to note that in contrast to the RNN-T and
RNA label-topologies, CTC does not require alignments with
single label emissions per label position. However, training
CTC models eventually does lead to single label emissions per
hypothesized label. An analysis of this property of CTC training
which is usually called peaky behavior can be found in [125] and
references therein. Laptev et al. [126] even introduces a CTC
variant without non-blank loop transitions.

B. Training With External Language Models

E2E ASR models generally are normalized on sequence
level. Therefore, sequence training with the maximum mutual
information criterion [127] is the same as standard cross en-
tropy/conditional likelihood training. However, once external
language models are included in the training phase, sequence
normalization needs to be included explicitly, leading to MMI
sequence discriminative training. This has been exploited as a
further approach to combine E2E models with external language
models trained on text-only data during the training phase it-
self [128], [129], [130].

C. Minimum Word Error Rate Training

Since the objective of speech recognition is to minimize
word error rate (WER), there has been a growing number of
research studies that incorporate this into the objective function
by minimizing the model-based expectation of the number of
word errors, as follows:

Lmwer =

N∑
n=1

∑
C ′

n

W(Cn, C
′
n)P (C ′

n|Xn)

where W(Cn, C
′
n) is the word error count in a hypothesis C ′

n

given a reference Cn, and n is an index which iterates over the
entire training set. These methods, known as sequence or dis-
criminative training, have shown great improvements for classi-
cal ASR [131], [132], [133], [134], [135], and have since been
explored in E2E models. Typically these losses are constructed
by running in ‘beam-search’ mode rather than teacher-forcing
mode, and construct a loss from the errors made from the

candidate hypotheses in the beam. Thus, this type of training
first requires training the model to optimize P (C|X) in order
to initialize the model with a good set of parameters to run
a beam search. However, also direct approaches have been
introduced that avoid this separation to train discriminatively
from scratch [69], [136].

Papers that explore penalizing word errors include, Mini-
mum Word Error Rate (MWER) training [137], where the loss
function is constructed such that the expected number of word
errors are minimized. Further work includes MWER for RNN-
T and self-attention-T [138], as well as MWER using prefix
search instead of n-best [139]. Also, there have been studies
that consider MWER in terms of reinforcement learning [140],
[141]. Optimal Completion Distillation (OCD) [81] proposes
to minimize the total edit distance using an efficient dynamic
programming algorithm. Finally, another body of research with
sequence training introduce a separate external language model
at training time [142], which can also be done efficiently via
approximate lattice recombination [129] and also lattice-free
approaches [130].

D. Pretraining

All E2E models as well as classical hidden Markov models
for ASR provide holistic models that in principle enable training
from scratch. However, many strategies exist to initialize and
guide the training process to reach optimal performance and/or to
obtain efficient convergence by applying pretraining and model
growing [143], [144]. Supervised layer-wise pretraining has
been successfully applied for classical [5], [145], as well as
attention-based ASR models [146], which can be combined with
intermediate sub-sampling schemes [147], and model grow-
ing [148]. Pretraining approaches utilizing untranscribed audio,
large-scale semi-supervised data and/or multilingual data [149],
[150], [151], [152], [153], [154], [155], [156], [157], [158],
[159], [160] would deserve a self-contained survey and they are
applicable for hybrid DNN/HMM and E2E approaches likewise
– they will not be further discussed here.

E. Training Schedules and Curricula

Dedicated training schedules have been developed to guide
the optimization process and as part of that reach proper
alignment behavior explicitly or implicitly [52], [124], [147].
Many approaches exist for learning rate control [161], [162]:
NewBob [163], [164] and enhancements [162]; global ver-
sus parameter-wise learning rate control (exponential decay,
power decay, etc.) [165]; learning rate warm-up [44]; warm
restarts/cosine annealing [166]; weight decay versus gradually
decreasing batch size [167]; fine-tuning [168] or population-
based training [169]; etc. For a survey of meta learning cf. [170].

Sequence learning approaches also consider curriculum learn-
ing [171], [172], e.g., by considering short sequences first [173],
[174]; interim increase of sub-sampling [147] initially more
sub-sampling; or, for multi-speaker ASR training sort mixed
speech by SNR and start with speakers of balanced energy and
mixed gender [175].



336 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

F. Optimization and Regularization

Optimization usually is based on stochastic gradient de-
scent [176], with momentum [177], [178], and a number of cor-
responding adaptive approaches, most prominently Adam [179]
and variants thereof [145], [179], [180].

Investing more training epochs seems to provide improve-
ments [52, Table 8], and also averaging over epochs has been
reported to help [102]. For a discussion of the double descent
effect and its relation to the amount of training data, label noise
and early stopping cf. [181].

Regularization strongly contributes to training performance:
e.g., L2 and weight decay [166], [182]; weight noise [183];
adaptive mean L1/L2 [184]; gradient noise [185]; dropout [186],
[187], [188], layer dropout [189], [190], [191]; dropcon-
nect [192]; zoneout [193]; smoothing of attention scores [15];
label smoothing [194]; scheduled sampling [195]; auxiliary
loss [194], [196]; variable backpropagation through time [197],
[198]; mixup [199]; increased frame rate [180]; or, batch nor-
malization [200].

G. Data Augmentation

Training of E2E ASR models also benefit from data augmen-
tation methods, which might also be viewed as regularization
methods. However, their diversity and impact on performance
justifies a separate overview.

Most data augmentation methods perform data perturbation
by exploiting certain dimensions of speech signal variation:
speed perturbation [201], [202], vocal tract length perturba-
tion [201], [203], frequency axis distortion [201], sequence noise
injection [204], SpecAugment [205], or semantic mask [206].
Also, text-only data may be used to generate data using text-
to-speech (TTS) on feature [207] or signal level [208]. In a
comparison of the effect of TTS-based data augmentation on
different E2E ASR architectures in [208], AED seemed to be
the only architecture that appeared to benefit significantly from
the TTS data.

In a recent study [174] and corresponding follow-up
work [180], many of the regularization and data augmenta-
tion methods listed here have been exploited jointly leading
to state-of-the-art performance on the Switchboard task for a
single-headed AED model.

Relationship to Classical ASR

E2E systems attempt to define ASR models that integrate
all knowledge sources into a single global joint model that does
not utilize secondary knowledge sources and avoids the classical
separation into acoustic and language models. These global joint
models are completely trained from scratch using a single global
training criterion based on a single kind of (transcribed) training
data and thus require less ASR domain-specific knowledge
provided sufficient amounts of training data are available.

While standard hybrid ANN/HMM training for ASR using
frame-wise cross entropy already is discriminative, it is not
yet sequence discriminative, requires prior alignments and also

lacks consideration of an (external) language model during train-
ing. However, these potential shortcomings may be remedied
by using sequence discriminative training criteria [127] and
lattice-free training approaches [69].

In contrast to strict E2E systems, the classical ASR architec-
ture includes the use of secondary knowledge sources beyond the
primary training data, i.e. (transcribed) speech audio for acoustic
model training, and textual data for language model training.
Most prominently, this includes the use of a pronunciation lexi-
con and the definition of a phoneme set. Secondary resources like
pronunciation lexica may be helpful in low-resource scenarios.
However, their generation often is costly and may even introduce
errors, like pronunciations from a lexicon not reflecting the
actual pronunciations observed. Therefore, for large enough
training resources, secondary knowledge sources might become
obsolete [209], or even harmful, in case of erroneous information
introduced [210], [211].

Classical ASR models usually are trained successively, with
knowledge derived from models trained earlier injected into
later training stages, e.g. in the form of HMM state align-
ments. However, such approaches from classical ASR might
also be interpreted as specific training schedules. Initializing
deep learning models using HMM alignments obtained from
acoustic models based on mixtures of Gaussians may be in-
terpreted in this way, with the Gaussian mixtures serving as an
initial shallow model. In classical ASR, also approaches training
deep neural networks from scratch while avoiding intermediate
training of Gaussians has been proposed [212], [213], [214], also
in combination with character-level modeling [83]. Another step
towards more integrated training of classical systems has been
to apply discriminative training criteria avoiding intermediate
(usually lattice-based) representations of competing word se-
quences [69], [136], [215], [216], [217].

The training of classical ASR systems usually applies sec-
ondary objectives to solve subtasks like phonetic clustering.
The classification and regression trees (CART) approach is
used to cluster triphone HMM states [27], [218]. More re-
cent approaches proposed clustering within a neural network
modeling framework, while still retaining secondary cluster-
ing objectives [213], [219]. However, also in E2E approaches
secondary objectives are used, most prominently for subword
generation, e.g. via byte-pair encoding [32]. Also, available
pronunciation lexica can be utilized indirectly for assisting sub-
word generation for E2E systems [35], [36], which are shown to
outperform byte-pair encoding. Within classical ASR systems,
phonetic clustering also can be avoided completely by modeling
phonemes in context directly [220].

It is interesting to observe that specifically attention-based
encoder-decoder models require larger numbers of training
epochs to reach high performance, e.g. for a comparison of
systems trained on Switchboard 300 h cf. Table 5 in [221]. Also,
attention-based encoder-decoder models have been shown to
suffer from low training resources [222], [223], which can be
improved by a number of approaches, including regularization
techniques [174] as well as data augmentation using SpecAug-
ment [224] and text-to-speech (TTS) [29]. SpecAugment also is
shown to improve classical hybrid HMM models [225]. TTS on
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the other hand considerably improved attention-based encoder-
decoder models trained on limited resources, but did not reach
the performance of other E2E approaches or hybrid HMM mod-
els, which in turn were not considerably improved by TTS [208].
Multilingual approaches also help improve ASR development
for low resource tasks, again both for classical [226], as well as
for E2E systems [227], [228].

VI. DECODING E2E MODELS

This section describes several decoding algorithms for end-
to-end speech recognition. The basic decoding algorithm of end-
to-end ASR tries to estimate the most likely sequence Ĉ among
all possible sequences, as follows:

Ĉ = argmax
C∈U∗

P (C|X)

The following section describes how to obtain the recognition
result Ĉ.

A. Greedy Search

The Greedy search algorithm is mainly used in CTC, which
ignores the dependency of the output labels as follows:

Â =
T∏

t=1

(
argmax

at

P (at|X)

)

where at is an alignment token introduced in Section III-B1. The
original character sequence is obtained by converting alignment
token sequence Â to the corresponding token sequence Ĉ. The
argmax operation can be performed in parallel over input frame
t, yielding fast decoding [13], [229], although the lack of the
output dependency causes relatively poor performance than the
attention and RNN-T based methods in general.

CTC’s fast decoding is further boosted with transformer [44],
[98], [102] and its variants [45], [103] since their entire com-
putation across the frames is parallelized [190], [230]. For ex-
ample, the non-autoregressive models, including Imputer [231],
Mask-CTC [230], Insertion-based modeling [232], Continuous
integrate-and-fire (CIF) [233] and other variants [234], [235]
have been actively studied as an alternative non-autoregressive
model to CTC. [235] shows that CTC greedy search and its
variants achieve 0.06 real-time factor (RTF)7 by using Intel(R)
Xeon(R) Silver 4114 CPU, 2.20 GHz. The paper also shows
that the degradation of the non-autoregressive models from the
attention/RNN-T methods with beam search is not extremely
large (19.7% with self-conditioned CTC [234] versus 18.5 and
18.9% with AED and RNN-T, respectively).

The greedy search algorithm is also used as approximate
decoding for both implicit and explicit alignment modeling ap-
proaches, including AED, RNA, CTC, and RNN-T, as follows:

ĉi = argmax
ci

P (ci|Ĉ1:i−1, X) for i = 1, . . . , N

ât = argmax
at

P (at|Â1:t−1, X) for t = 1, . . . , T

The greedy search algorithm does not consider alternate hy-
potheses in a sequence compared with the beam search algorithm

7The ratio of the actual decoding time to the duration of the input speech.

described below. However, it is known that the degradation of the
greedy search algorithm is not very large [16], [46], especially
when the model is well trained in matched conditions.8

B. Beam Search

The beam search algorithm is introduced to approximately
consider a subset of possible hypotheses C̃ among all possible
hypothesesU∗ during decoding, i.e., C̃ ⊂ U∗. A predicted output
sequence Ĉ is selected among a hypothesis subset C̃ instead of
all possible hypotheses U∗, i.e.,

Ĉ = argmax
C∈C̃

P (C|X) (6)

The beam search algorithm is to find a set of possible hypotheses
C̃, which can include promising hypotheses efficiently by avoid-
ing the combinatorial explosion encountered with all possible
hypotheses U∗.

There are two major beam search categories: 1) frame syn-
chronous beam search and 2) label synchronous beam search.
The major difference between them is whether it performs
hypothesis pruning for every input frame t or every output token
i. The following sections describe these two algorithms in more
detail.

C. Label Synchronous Beam Search

Suppose we have a set of partial hypotheses up to (i− 1)th
token C̃1:i−1. A set of all possible partial hypotheses up to ith
token C1:i is expanded from C̃1:i−1 as follows:

C1:i = {(C̃1:i−1, ci = c)}c∈U (7)

The number of hypotheses |C1:i| would be |C̃1:i−1| × |U|, at
most. The beam search algorithm prunes the low probability
score hypotheses from C1:i and only keeps a certain number
(beam size Δ) of hypotheses at i among C1:i. This pruning step
is represented as follows:

C̃1:i = NBESTC1:i∈C1:i P (C1:i|X), where |C̃1:i| = Δ (8)

Note thatNBEST(·) is an operation to extract topΔ hypotheses
in terms of the probability score P (C1:i|X) computed from
an end-to-end neural network, or a fusion of multiple scores
described in Section VII-B.

In the label synchronous beam search, the length of the
output sequence (N ) is unknown. Therefore, during this pruning
process, we also add the hypothesis that reaches the end of an
utterance (i.e., predict the end of sentence symbol 〈eos〉) to a set
of hypotheses C̃ in (6) as a promising hypothesis.

The label synchronous beam search does not explicitly depend
on the alignment information; thus, it is often used in implicit
alignment modeling approaches, including AED. Due to this
nature, sequence hypotheses of the same length might cover
a completely different number of encoder frames, unlike the
frame synchronous beam search, as pointed out by [40]. As a
result, we observe that the scores of very short and long segment
hypotheses often become the same range, and the beam search

8On the other hand, in the AED models, increasing the search space does not
consistently improve the speech recognition performance [77], [236] – a fact
also observed in neural machine translation [237].
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wrongly selects such hypotheses. [86] shows an example of such
extreme cases, resulting in large deletion and insertion errors for
short and long-segment hypotheses, respectively. Thus, the label
synchronous beam search requires heuristics to limit the output
sequence length to avoid extremely long/short output sequences.
Usually, the minimum and maximum length thresholds are
determined proportionally to the input frame length |X| with
tunable parameters ρmin and ρmax as Lmin = �ρmin|X|�, Lmax =
�ρmax|X|�. Although these are quite intuitive ways to control
the length of a hypothesis, the minimum and maximum output
lengths depend on the token unit or type of script in each lan-
guage. Another heuristic is to provide an additional score related
to the output length or attention weights – e.g., a length penalty,
and a coverage term [77], [238]. The end-point detection [239] is
also used to estimate the hypothesis length automatically. [236]
redefines the implicit length model of the attention decoder to
take into account beam search, resulting in consistent behavior
without degradation for increasing beam sizes.

Note that there are several studies on applying label
synchronous beam search to explicit alignment modeling
approaches. For example, label synchronous beam search algo-
rithms for CTC are realized by marginalizing all possible align-
ments for each label hypothesis [13]. [240] extends CIF [233]
to produce label-level encoder representation and realizes label
synchronous beam search in RNN-T.

D. Frame Synchronous Beam Search

In contrast to the label synchronous case in (8), the frame
synchronous beam search algorithm performs pruning at every
input frame t, as follows:

C̃1:i(t) = NBESTC1;i(t)
P (C1;i(t)|X), where |C̃1:i(t)| = Δ

where C1;i(t) is an i(t)-length label sequence obtained from
the alignment A1:t, which is introduced in Section III-B.
P (C1;i(t)|X) is obtained by summing up all possible alignments
A1:t ∈ A(X,C1;i(t)). Unlike the label synchronous beam search,
frame synchronous beam search depends on explicit alignment
A; thus, it is often used for explicit alignment modeling ap-
proaches, including CTC, RNN-T, and RNA. C1:i(t) is an ex-
panded partial hypotheses up to input frame t, similar to (7).

Compared with the label synchronous algorithm, the frame
synchronous algorithm needs to handle additional output to-
ken transitions inside the beam search algorithm. The frame
synchronous algorithm can be easily extended in online and/or
streaming decoding, thanks to the explicit alignment information
with input frame and output token.

Classical approaches to beam search for HMM, but also CTC
and RNN-T variants, are based on weighted finite state transduc-
ers (WFST) [38], [74], [241] or lexical prefix trees [106], [242],
[243]. They are categorized as frame synchronous beam search.
These methods are often combined with an N-gram language
model or a full-context neural language model [244], [245].
RNN-T [14], [246] and CTC prefix search [247] can deal with
a neural language model by incorporating the language model
score in the label transition state. Interestingly, triggered atten-
tion approaches [248], [249] allow us to use implicit alignment
modeling approaches, including AED, in frame-synchronous

beam search together with CTC and neural LM, which applies
on-the-fly rescoring to the hypotheses given by CTC prefix
search using the AED and LM scores.

E. Block-Wise Decoding

Another beam search implementation uses a fixed-length
block unit for the input feature. In this block processing, we can
use the future context inside the block by using the non-causal
encoder network based on the BLSTM, output-delayed unidi-
rectional LSTM, or transformer (and its variants). This future
context information avoids the degradation of the fully causal
network. In this setup, the chunk size becomes the trade-off
of controlling latency and accuracy. This technique is used in
both RNN-T [100], [250], [251] and AED [61], [252], [253],
[254]. Block-wise processing is especially important for implicit
alignment modeling approaches, including AED, since it can
provide block-wise monotonic alignment constraint between the
input feature and output label, and realize block-wise streaming
decoding.

F. Model Fusion During Decoding

Similar to the classical HMM-based beam search, we combine
various scores obtained from different modules, including the
main end-to-end ASR and LM scores.

1) Synchronous Score Fusion: The most simple score fusion
is performed when the scores of multiple modules are synchro-
nized. In this case, we can simply add the multiple scores at each
frame t or label i. The most well-known score combination is
LM shallow fusion.

LM shallow fusion: As discussed in Section VII, various
neural LMs can be integrated with end-to-end ASR. The most
simple integration is based on LM shallow fusion [255], [256],
[257], as discussed in Section VII-B1, which (log-) linearly adds
the LM score Plm(C1:i) to E2E ASR scores P (C1:i|X) during
beam search in (8) as follows:

logP (C1:i|X) → logP (C1:i|X) + γ logPlm(C1:i)

where γ is a language model weight. Of course, we can combine
other scores, such as the length penalty and coverage terms, as
discussed in Section VI-C.u

2) Asynchronous Score Fusion: If we combine the frame-
dependent score functions, P (at|·), used in explicit alignment
modeling approaches, e.g., CTC, RNN-T, and label-dependent
score functions, P (ci|·), used implicit alignment modeling ap-
proaches, e.g., AED, language model, we have to deal with the
mismatch between the frame and label time indices t and i,
respectively.

In the time-synchronous beam search, this fusion is performed
by incorporating the language model score in the label transition
state [22], [70], [258]. [247] also combines a word-based lan-
guage model and token-based CTC model by incorporating the
language model score triggered by the word delimiter (space)
symbol.

In the label-synchronous beam search, we first compute the
label-dependent scores from the frame-dependent score function
by marginalizing all possible alignments given a hypothesis label
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sequence. CTC/attention joint decoding [86] is a typical exam-
ple, where the CTC score is computed by marginalizing all possi-
ble alignments based on the CTC forward algorithm [229]. This
approach eliminates the wrong alignment issues and difficulties
of finding the correct end of sentences in the label-synchronous
beam search [86].

Note that the model fusion method during beam search can
realize simple one-pass decoding, while it limits the time unit
of the models to be the same or it requires additional dynamic
programming to adjust the different time units, especially for
the label-synchronous beam search. This dynamic programming
computation becomes significantly large when the length of the
utterance becomes larger and requires some heuristics to reduce
the computational cost [259].

G. Lexical Constraint During Score Fusion

Classically, we use a word-based language model to capture
the contextual information with the word unit, and also consider
the word-based lexical constraint for ASR. However, end-to-end
ASR often uses a letter or token unit and it causes further
unit mismatch during beam search. As described in previous
sections, the classical approach of incorporating the lexical
constraint from the token unit to the word unit is based on a
WFST. This method first makes a TLG transducer composed
of the token (T), word lexicon (L), and word-based language
transducers (G) [74]. This TLG transducer has been used for
both CTC [74] and attention-based [53] models.

Another approach used in the time synchronous beam search
is to insert the word-based language model score triggered by
the word delimiter (space) symbol [75]. To synchronize the
word-based language model with a character-based end-to-end
ASR, [260] combines the word and character-based LMs with
the prefix tree representation, while [239], [261] uses look-ahead
word probabilities to predict next characters instead of using the
character-based LM. The prefix tree representation is also used
for the sub-word token unit case [262], [263].

H. Multi-Pass Fusion

The previous fusion methods are performed during the beam
search, which enables a one-pass algorithm. The popular alter-
native methods are based on multi-pass algorithms where we do
not care about the synchronization and perform n-best or lattice
scoring by considering the entire context within an utterance.
[16] uses the N-best rescoring techniques to integrate a word-
based language model. [55] combines forward and backward
searches within a multi-pass decoding framework to combine
bidirectional LSTM decoder networks. Recently two-pass al-
gorithms of switching different end-to-end ASR systems have
been investigated, including RNN-T → AED [264]; CTC →
AED [265], [266]. This aims to provide streamed output in the
first pass and re-scoring with AED in the second pass to refine the
previous output, thus satisfying a real-time interface requirement
while providing high recognition performance.

In addition to the N-best output in the above discussion, there
is a strong demand for generating a lattice output for better
multi-pass decoding thanks to richer hypothesis information in

a lattice. The lattice output can also be used for spoken term
detection, spoken language understanding, and word posteriors.
However, due to the lack of Markov assumptions, RNN-T and
AED cannot merge the hypothesis and cannot generate a lattice
straightforwardly, unlike the HMM-based or CTC systems. To
tackle this issue, there are several studies of modifying these
models by limiting the output dependencies in the fixed length
(i.e., finite-history) [47], [267], or keeping the original RNN-
T structure but merging the similar hypotheses during beam
search [107].

I. Vectorization Across Both Hypotheses and Utterances

We can accelerate the decoding process by vectorizing mul-
tiple hypotheses during the beam search, where we replace
the score accumulation steps for each hypothesis with vector-
matrix operations for the vectorized hypotheses. This has been
studied in RNN-T [22], [258], [268] and attention-based [259]
models. This modification leverages the parallel computing
capabilities of multi-core CPUs, GPUs and TPUs, resulting in
significant speedups, while enabling multiple utterances to be
processed simultaneously in a batch. Major deep neural network
and end-to-end ASR toolkits support this vectorization. For
example, Tensorflow9 [269], and FAIRESEQ10 [270] provide
a vectorized beam search interface for a generic sequence to
sequence task, and it can be used for attention-based end-to-
end ASR. End-to-end ASR toolkits including ESPnet11 [259],
ESPRESSO12 [261], LINGVO [271], and, RETURNN13 [272]
also support the vectorized beam search algorithm.

Relationship to Classical ASR

One of the most prominent properties shared between E2E and
classical statistical ASR systems is the use of a single-pass de-
coding strategy, which integrates all knowledge sources involved
(models, components), before coming to a final decision [123].
This includes the use of full label context dependency both
for E2E systems [51], [77], [174], [229], [262], [273], [274],
[275], as well as classical systems via full-context language
models [244], [245], [276], [277]. In classical ASR systems,
even HMM alignment path summation may be retained in
search [278]. Both E2E as well as classical ASR systems employ
beam search in decoding. However, compared to classical search
approaches, E2E beam search usually is highly simplified with
very small beam sizes around 1 to 100 [15], [16], [77], [147].
Very small beam sizes also partly mask a length bias exhibited by
E2E attention-based encoder-decoder models [279], [280], thus
trading model errors against search errors [281]. An overview of
approaches to handle the length bias beyond using small beam
sizes in ASR is presented in [236].

9[Online]. Available: https://www.tensorflow.org/api_docs/python/tf/
contrib/seq2seq/BeamSearchDecoder

10[Online]. Available: https://github.com/pytorch/fairseq/blob/master/
fairseq/sequence_generator.py

11[Online]. Available: https://github.com/espnet/espnet
12[Online]. Available: https://github.com/freewym/espresso
13[Online]. Available: https://github.com/rwth-i6/returnn

https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/BeamSearchDecoder
https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/BeamSearchDecoder
https://github.com/pytorch/fairseq/blob/master/fairseq/sequence_generator.py
https://github.com/pytorch/fairseq/blob/master/fairseq/sequence_generator.py
https://github.com/espnet/espnet
https://github.com/freewym/espresso
https://github.com/rwth-i6/returnn
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Many classical ASR search paradigms are based on multipass
approaches that successively generate search space representa-
tions applying increasingly complex acoustic and/or language
models [243], [282], [283]. However, multipass strategies also
are employed using E2E models, which however softens the
E2E concept. Decoder model combination is pursued in a
two-pass approach, while even retaining latency constraints as
in [87]. Further multipass approaches include E2E adaptation
approaches [284], [285], [286], [287].

VII. LM INTEGRATION

This section discusses language models (LMs) used for E2E
ASR. Hybrid ASR systems have long been using a pretrained
LM [2], whereas most end-to-end (E2E) ASR systems employ
a single E2E model that includes a network component acting
as an LM.14 For example, the prediction network of RNN-T
and the decoder network of AED models take on the role of a
LM covering label back-histories. Therefore, E2E ASR does not
seem to require external LMs. Nevertheless, many studies have
demonstrated that external LMs help improve the recognition
accuracy in E2E ASR.

There are presumably three reasons that E2E ASR still re-
quires an external LM:

a) Compensation for poor generalization: E2E models need
to learn a more complicated mapping function than classical
modular-based models such as acoustic models. Consequently,
E2E models tend to face overfitting problems if the amount
of training data is not sufficient. Pretrained LMs potentially
compensate for the less generalized predictions made by E2E
models.

b) Use of external text data: E2E models need to be trained
using paired speech and text data, while LMs can be trained
with only text data. Generally, text data can be collected more
easily than the paired data. The training speed of an LM is also
faster than that of E2E models for the same number of sentences.
Accordingly, the LM can be improved more effectively with
external text data, providing additional performance gain to the
ASR system.

c) Domain adaptation: Domain adaptation helps improve
recognition accuracy when the E2E model is applied to a specific
domain. However, domain adaptation of the E2E model requires
a certain amount of paired data in the target domain. Also, when
multiple domains are assumed, it may be costly to maintain
multiple E2E models for the domains the system supports. If a
pretrained LM for the target domain is available, it may more
easily improve recognition accuracy for domain-specific words
and speaking styles without updating the E2E model.

This section reviews various types of LMs used for E2E ASR
and fusion techniques to integrate LMs into E2E models.

A. Language Models

The LMs provide a prior probability distribution, P (C). If
the sentence, C, can be decomposed into a sequence of tokens

14In the simplest case of a CTC model as in Fig. 2, the included LM component
however is limited to a label prior without label context.

such as characters, subwords, and single words, the probability
distribution can be computed based on the chain rule as:

P (C) =

L+1∏
i=1

P (ci|c0:i−1)

where ci denotes the i-th token of C, and c0:i−1 represents to-
ken sequence c0, c1, . . . , ci−1, assuming c0 = 〈sos〉 and cL+1 =
〈eos〉.

Most LMs are designed to provide the conditional probability
P (ci|c0:i−1), i.e., they are modeled to predict the next token
given a sequence of the preceding tokens. We briefly review
such LMs focusing on the different techniques to represent each
token, ci, and back-history, c0:i−1.

1) N-Gram LM: N -gram LMs have long been used for
ASR [2]. Early E2E systems in [53], [74], [77] also employed
an N -gram LM. The N -gram models rely on the Markov
assumption that the probability distribution of the next token
depends only on the previous N − 1 tokens, i.e., P (ci|c0:i−1) ≈
P (ci|ci−N+1:i−1), where N is typically 3 to 5 for word-based
models and higher for sub-word and character-based models.
The maximum likelihood estimates of N -gram probabilities are
determined based on the counts of N sequential tokens in the
training data set as:

P (ci|ci−N+1:i−1) =
K(ci−N+1, . . . , ci)∑
ci
K(ci−N+1, . . . , ci)

where, K(·) denotes the count of each token sequence. Since the
data size is finite, it is important to apply a smoothing technique
to avoid estimating the probabilities based on zero or very small
counts for rare token sequences. Those techniques compensate
the N -gram probabilities with lower order models, e.g., (N −
1)-gram models, according to the magnitude of the count [288].
However, since theN -gram probabilities still rely on the discrete
representation of each token and the history, they suffer from
data sparsity problems, leading to poor generalization.

The advantage of the N -gram models is their simplicity,
although they underperform state-of-the-art neural LMs. In the
training, the main step is to just count the N tuples in the data
set, which is required only once. During decoding, the LM
probabilities can be obtained very quickly by table lookup or
can be attached to a decoding graph, e.g., WFST, in advance.

2) FNN-LM: The feed-forward neural network (FNN) LM
was proposed in [9], which estimates N -gram probabilities
using a neural network. The network accepts N − 1 tokens, and
predicts the next token as:

P (ci|ci−N+1:i−1) = softmax(Wohi + bo)

hi = tanh(Whei + bh)

ei = concat(E(ci−N+1), . . . , E(ci−1))

where Wo and Wh are weight matrices, and bo and bh are bias
vectors. E(y) provides an embedding vector of c, and concat(·)
operation concatenates given vectors.15 This model first maps
each input token to an embedding space, and then obtains
hidden vector, hi, as a context vector representing the previous

15We omit the optional direct connection from the embedding layer to the
softmax layer in [9] for simplicity.
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N − 1 tokens. Finally, it outputs the probability distribution of
the next token through the softmax layer. Although this LM
still relies on the Markov assumption, it outperforms classical
N -gram LMs described in the previous section. The superior
performance of FNN-LM is primarily due to the distributed
representation of each token and the history. The LM learns to
represent token/context vectors such that semantically similar
tokens/histories are placed close to each other in the embedding
space. Since this representation has a better smoothing effect
than the count-based one used for N -gram LMs, FNN-LM can
provide a better generalization than N -gram LMs for predicting
the next token. Neural network-based LMs basically utilize this
type of representation.

3) RNN-LM: A recurrent neural network (RNN) LM was
introduced to exploit longer contextual information over N − 1
previous tokens using recurrent connections [289]. Unlike FNN-
LM, the hidden vector is computed as:

hi = recurrence(ei, hi−1)

ei = E(ci−1)

where, recurrence(ei, hi−1) represents a recursive function,
which accepts previous hidden vector hi−1 with input ei, and
outputs next hidden vectorhi. In the case of simple (Elman-type)
RNN, the function can be computed as

recurrence(e, h) = tanh(Whe+Wrh+ bh)

where, Wr is a weight matrix for the recurrent connection,
which is applied to the previous hidden vector h. This recurrent
loop makes it possible to hold the history information in the
hidden vector without limiting the history to N − 1 tokens.
However, the history information decays exponentially as tokens
are processed with this recursion. Therefore, currently stacked
LSTM layers are more widely used for the recurrent network,
which have separate internal memory cells and gating mecha-
nisms to keep long-range history information [290]. With this
mechanism, RNN-LMs outperform otherN -gram-based models
in many tasks.

4) ConvLM: Convolutional neural networks (ConvLM) have
also been applied to LMs [291], [292], [293]. ConvLM [292]
replace the recurrent connections used in RNN-LMs with gated
temporal convolutions. The hidden vector is computed as

hi = h′
i ⊗ σ(gi)

h′
i = ei−k+1:i ∗W + b

gi = ei−k+1:i ∗ V + c

where ⊗ is element-wise multiplication, ∗ is a temporal convo-
lution operation, and k is the patch size.σ(gi) represents a gating
function of convoluted activationh′

i, and is modeled as a sigmoid
function. W and V are matrices for convolution and b and c are
bias vectors. The convolution and gating blocks are typically
stacked multiple times with residual connections. In [293], a
ConvLM with 14 blocks has been applied for E2E ASR. Similar
to FNN-LM, ConvLM allow us to use only a fixed history size,
but they are more parameter efficient and easier to utilize longer
histories than the FNN-LM by stacking the layers. Thus, they
achieve competitive performance to that of RNN-LMs [292],
even with the finite history consisting of short tokens such as

characters [294]. Moreover, they are highly parallelizable and
thus suitable for training the model with a large training data set.

5) Transformer LM: Transformer architecture [44] has been
applied to LMs [295] and used for ASR [102], [296], where
the LMs are designed as a Transformer decoder without any
inputs from other modules such as encoders. The hidden vector
is computed as:

hi = FFN(h′
i) + h′

i

h′
i = MHA(ei, e1:i, e1:i) + ei

where FFN(·) and MHA(·, ·, ·) denote a feed forward network
and a multi-head attention module, respectively. The multihead
attention and feed-forward blocks are typically stacked multiple
times, e.g., 6 times [102], to obtain the final hidden vector.
The advantage of Transformer LMs is that they can take all
tokens in the history into account through the self-attention
mechanism without summarizing them into a fixed-size memory
like RNN-LMs. Thus, the long history can be fully considered
with attention to predict the next token, achieving better per-
formance than RNN-LMs. However, the computational com-
plexity increases quadratically as the length of the sequence.
Therefore, the history length is typically limited to a fixed size
or within every single sentence. To overcome this limitation,
Transformer-XL [297] reuses already computed activations,
which includes information on farther previous tokens, and the
model is trained with a truncated back-propagation through time
(BPTT) algorithm [298]. Compressive Transformer [299] ex-
tends this approach to utilize even longer contextual information
by incorporating a compression step to keep older, but important,
information in a fixed-size memory network.

B. Fusion Approaches

There are several ways to incorporate an external LM into
E2E ASR, called LM fusion. Their purpose is to improve the
recognition accuracy of E2E ASR by leveraging the benefits
of the external LM described in the first part of this section.
However, there can be a mismatch in the prediction between the
E2E model and the LM when trained on different data sets, and
therefore the LM may not collaborate well with the E2E model.
Researchers have investigated various LM fusion approaches to
reduce the mismatch between models in different situations.

1) Shallow Fusion: Shallow fusion is the most popular ap-
proach to combine the pretrained E2E model and LM in the
inference time. As we described in Section VI-F, shallow fu-
sion simply combines the E2E and LM scores by a log-linear
combination as

Score(C|X) = logP (C|X) + γ logP (C) (9)

where γ is a scaling factor for the LM [255], [256], [257]. The
advantage of this approach is that it is easy and effective when
there are no major mismatches between the source and target
domains.

2) Deep Fusion: Deep fusion [300] is an approach to com-
bine an LM with an E2E model using a joint network. Given a
pretrained E2E model and an LM, all the network parameters
are fine-tuned jointly so that the models collaborate better to im-
prove the recognition accuracy, where the joint network is used
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to combine the E2E and LM states through a gating mechanism
that controls the contribution of the LM according to the current
state.

3) Cold Fusion: Cold fusion [301] is another approach to
combine a pretrained LM like deep fusion, but the E2E model
is learned while freezing the LM parameters. Since the E2E
model is aware of the LM throughout training, it learns to use
the LM to reduce language specific information and capture
only the relevant information to map the source to the target
sequence. This mechanism reduces the role of LM in the E2E
model and alleviates the language bias of the training data.
Accordingly, the E2E model becomes more robust to domain
mismatches between the training data and the target domain.
Unlike deep fusion, cold fusion makes it possible to combine
the E2E model with a pretrained LM for the target domain,
improving the recognition accuracy. Component fusion [302]
extends cold fusion to use a pretrained LM with transcriptions of
the training data for the E2E model, more focusing on reducing
the bias of the training data.

4) Internal LM Estimation: There is another approach to
reduce language bias in training data through shallow fusion.
The language bias is a problem when a big domain mismatch
exists between the source domain (training data) and the target
domain (test data) because the E2E model scores are strongly
dependent on the language priors in the source domain. To
remove such a bias from the score, we can explicitly estimate
the LM that represents the language priors, called Internal LM,
and subtract the LM score from the ASR score of (9):

Score(C|X) = logPϕ(C|X)− γϕ logPϕ(C) + γτ logPτ (C)

where subscripts ϕ and τ indicate the source and target do-
mains, respectively. γϕ and γτ are their scaling factors. Sub-
tracting the internal LM score corresponds to approximating
acoustic probability density Pϕ(X|C) because Pϕ(X|C) ∝
Pϕ(C|X)/Pϕ(C) is satisfied for fixed X , where the ASR score
can be seen as a classical hybrid ASR system. Accordingly,
the subtracted E2E model score plays a role of acoustic model
and makes it more domain independent in terms of language,
achieving a higher recognition accuracy in combination with
the external LM Pτ (C).

The density ratio method [303] trains an internal LM using the
transcript of the training data. Hybrid autoregressive transducer
(HAT) [47] extends RNN-T so that the model becomes the
internal LM when the encoder output is eliminated, i.e., set to
zero. This approach simplifies the framework by utilizing the
prediction network as the internal LM, which avoids training an
additional LM and using it in the inference time. In the work
of [304], an approach similar to HAT has been proposed where
the internal LM is formulated on top of standard RNN-T and
attention-based encoder-decoder models, respectively. In [128],
several techniques to estimate internal LMs have been proposed
for AED models, where an estimated bias vector is fed to the
LM instead of a zero vector. The bias vector can be estimated
by averaging encoder states or context vectors, or by a small
LSTM predicting the context vector based on the decoder label
context, only. These techniques to estimate the internal LM were
also evaluated for RNN-T in [305].

Fig. 9. E2E ASR performance improvement in the switchboard task.

C. Use of Large-Scale Pretrained LMs

In recent years, LMs trained with large-scale text data are
available for different NLP tasks. BERT [306] and GPT-2 [307]
are representative models based on Transformer LMs. Such LMs
have also been applied to E2E ASR systems in different ways,
e.g., N-best rescoring [308] and dialog context embedding [309].

Relationship to Classical ASR

The architecture of classical ASR systems provides a separa-
tion between the acoustic model and the language model. In con-
trast to this, E2E models avoid this separation and define a joint
model. While this allows for training with a single objective, it
limits training of the (implicit) prior to the transcriptions of the
audio training data. To exploit further text-only training data,
usually a separate LM is combined with E2E models, nonethe-
less. However, due to the implicit prior of E2E models, i.e. the
internal language model, combination with separate language
models is not straightforward and requires corresponding inter-
nal language model estimation and compensation approaches,
e.g. [47], [128], [303], [304], [310]. At least from the recognition
accuracy perspective, it remains unclear, if the clear separation
of acoustic modeling and language modeling in the classical
ASR architecture is a disadvantage because of separate training
objectives, or rather an advantage, since text-only training data
may be used easily. Also, the language model training objective,
i.e. language model perplexity, is observed to correlate well
with word error rate [311], [312], [313], [314]. Furthermore,
discriminative approaches to language modeling [315] may be
viewed as a step towards joint modeling.

VIII. OVERALL PERFORMANCE TRENDS OF E2E APPROACHES

IN COMMON BENCHMARKS

This section summarizes various techniques with the common
ASR benchmarks based on switchboard (SWBD) [316] in Fig. 9
and Librispeech [317] in Fig. 10 to see the trajectory of the
techniques developed in end-to-end ASR. We choose these two
databases because they are widely used in speech and machine
learning communities and cover spontaneous (SWBD) and read
speech (Librispeech) speaking styles. Figs. 9 and 10 show that
the performance improvement relative to the initial works [79],
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Fig. 10. E2E ASR performance improvement in the Librispeech task.

[147] based on the E2E models is significant, and the error rates
of all tasks become less than half of the original error rates!16

Although the overall trends show that the ASR performance
has steadily improved over time, there are several remarkable
gains. One significant gain observed in both benchmarks in
the middle of 2019 comes from the data augmentation method
represented by SpecAugment [205], [206], as discussed in
Section V-G. The subsequent gains mostly come from the explo-
ration of the new neural network architectures, including trans-
former [102], [318], conformer [45], [103], and contextnet [97]
on top of SpecAugment, as discussed in Section IV-C. Such an
exploration is also performed in language modeling to improve
the ASR performance [102], [296]. The final gain observed in
the Librispeech benchmark in 2021 is based on self-supervised
learning [25], [319] and semi-supervised learning [320], [321].
These techniques utilize a considerable amount of unlabeled
in-domain speech data (e.g., Libri-light 60 K hours [322]).

Relationship to Classical ASR

Speech recognition research has always been pushed by inter-
national evaluation campaigns (e.g. as lead by NIST) and corre-
sponding benchmark tasks. The competition between classical
and E2E approaches is nicely reflected in the widely used Lib-
rispeech [317] and Switchboard [316] tasks, showing that E2E
models gain momentum. As shown in Fig. 10, on Librispeech,
the current best-published classical hybrid systems range around
2.3% (test-clean) and 4.9% (test-other) word error rate [222],
[323], while there already are a number of E2E systems pro-
viding similar performance [205], [206], [224], [320], with
some E2E systems clearly outperforming former state-of-the-art
results with word error rates down to 1.8% (test-clean) and 3.7%
(test-other) [324] with similar results reported in [45], [97].
Merging insights from classical HMM-based and monotonic
RNN-T provided similarly well results with a limited training
budget [124]. Finally, when trained on Switchboard 300 h, the
current best result, obtained with an E2E system [180] is 5.4%
compared to 6.6% word error rate for the best hybrid system
result [325] on the HUB5’00 Switchboard test set, in Fig. 9.

16For readers who want to know the latest update of these benchmarks can also
check https://github.com/syhw/wer_are_we and https://github.com/thu-spmi/
ASR-Benchmarks/blob/main/README.md.

IX. DEPLOYMENT OF E2E MODELS

Many of the ideas discussed in this paper have been explored
by various industry research labs [265], [326], [327], [328],
[329], [330], [331], inter alia. In this section, we review the
development of on-device production-level systems at Google
as a typical case study for deployment.

The first streaming E2E model, deployed to production,
was launched in 2019 for the Pixel 4 smartphone [22], [332].
This model used a streaming RNN-T first-pass system, while
re-scoring first-pass hypotheses with an AED system in the
second pass. In addition, FST-based contextual biasing [92] was
employed in the model, which was critical to obtain accurate
results for diverse queries. This model ran on CPU and was
much faster than real time.

In 2020, for the Pixel 5 smartphone [333], the system was
improved further to reduce user-perceived latency (i.e., the time
between when the user speaks, and when words appear on
the device). This included advancements such as end-to-end
endpointing [113] to encourage faster microphone closing; as
well as FastEmit [91] to encourage the model to emit tokens
earlier.

Finally, in 2021 the model was further improved for the Pixel
6 smartphone [334], to take advantage of the tensor processing
unit (TPU) [85] on the device. Improvements include the use
of conformer layers for the encoder [45]; a small embedding
prediction network for the decoder [104]; a 2-pass cascaded
encoder to run a 2nd-pass beam search [89]; and, a neural LM
re-scorer to help improve accuracy long-tail named entities. This
model is the best ASR system that Google has released to date,
both in terms of quality and latency.

X. AREAS FOR FUTURE WORK

Currently, E2E models dominate the academic debate on
ASR. However, at least partly, this is not (yet?) reflected in the
corresponding commercial deployment of E2E ASR architec-
tures. E2E models are not yet the perfect match for all ASR
conditions and further research is needed to take full advantage
of the benefits of E2E modeling.

E2E models seem to perform really well when training data
is abundant, while not scaling well to low-resource conditions.
Similarly, domain change requires a flexible exchange of lan-
guage models, which is natural for classical ASR models based
on a separation of acoustic and language models. Ongoing
research on the use of external language models in E2E models
and internal language model estimation already is promising,
but can be expected to see further improvements.

Top E2E ASR systems usually require orders of magnitude
more training epochs than comparable classical ASR systems,
and further research into efficient and robust optimization and
training schedules is needed.

The high level of integration of E2E models also involves a
loss in modularity, which might support the explainability and
reusability of models. Also, more efficient training schedules
might take advantage of modularity. One assumed advantage of
E2E models is that everything is trained from data and secondary
knowledge sources (e.g. pronunciation lexica and phoneme sets)

https://github.com/syhw/wer_are_we
https://github.com/thu-spmi/ASR-Benchmarks/blob/main/README.md
https://github.com/thu-spmi/ASR-Benchmarks/blob/main/README.md
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are avoided. However, rare events, like rare words in ASR still
provide a challenge, which needs further research.

With the missing separation of acoustic and language models,
the question arises of how to exploit text-only resources in
E2E model training - do we foresee solutions beyond training
data generation using TTS? We note that a number of recent
works have explored approaches to combine speech and text
modalities by attempting to implicitly or explicitly map them
into a shared space [159], [335], [336], [337], [338], [339], [340],
[341]. Furthermore, high-performance E2E solutions exist for
both discriminative problems like ASR, as well as generative
problems like TTS, how can both be exploited jointly to support
semi-supervised training based on text-only and/or audio-only
data on top of transcribed speech audio [28], [342]?

For AED architectures, we observe a length bias, which
complicates the decoding process. Although many heuristics
are known to tackle length bias in AED, we are still missing
a well-founded explanation for it, as well as a corresponding
remedy of the original model.

Other open research problems include speaker adaptation and
robustness to recording conditions, especially in mismatch sit-
uations. The E2E principle also provides a promising candidate
to solve multichannel ASR by providing an E2E solution jointly
tackling the source separation, speaker diarization and speech
recognition problem [26], [343].

Finally, we need to investigate, if E2E is a suitable guiding
principle, and how different E2E ASR models relate to each
other as well as to classical ASR approaches. The most important
guiding principle of ASR research and development has been
performance, and ASR has been boosted strongly by widely
used benchmark tasks and international evaluation campaigns.
With the current diversity of classical and E2E models, we also
need to resolve the question of what constitutes state-of-the-art
in ASR today, and can we expect a common state-of-the-art ASR
architecture in the future?

XI. CONCLUSION

In this work, we presented a detailed overview of end-to-end
approaches to ASR. Such models, which have grown in popular-
ity over the last few years, propose to use highly integrated neural
network components which allow input speech to be converted
directly into output text sequences through character-based out-
put units. Thus, such models eschew the classical modular ASR
architecture consisting of an acoustic model, a pronunciation
model, and a language model, in favor of a single compact
structure, and rely on the data to learn effectively. These design
choices enable the deployment of highly accurate on-device
speech recognition models (see Section IX), but also come with
a number of downsides which are still areas of active research
(see Section X).

Finally, we direct interested readers to Li’s excellent contem-
poraneous overview article on end-to-end ASR [344], which
offers a complementary perspective to our own. In particular,
readers of [344] may find a more detailed exposition on the
choice of encoder structure, and the applications of E2E ap-
proaches to allied ASR areas (e.g., multi-speaker recognition;

multilingual ASR; adaptation to new application domains, and
speakers; etc.), which we do not cover due to space limitations.
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