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Parallel Sensing in Metaverses: Virtual-Real
Interactive Smart Systems for “6S” Sensing

Yu Shen, Yuhang Liu, Yonglin Tian, Member, IEEE and Xiaoxiang Na, Member, IEEE

Briefing: In the construction of Metaverses, sensors that
are referred to as the “bridge of information transmission”,
play a key role. The functionality and efficiency of today’s
sensors, which operate in a manner similar to physical sensing,
are frequently constrained by their hardware and software. In
this research, we proposed the Parallel Sensing framework,
which includes background, concept, basic methods and typi-
cal application of parallel sensing. In our formulation, sensors
are redefined as the integration of real physical sensors and
virtual software-defined sensors based on parallel intelligence,
in order to boost the performance of the sensors. Each sensor
will have a parallel counterpart in the virtual world within
the framework of parallel sensing. Digital sensors serve as
the brain of sensors and maintain the same properties as
physical sensors. Parallel sensing allows physical sensors to
operate in discrete time periods to conserve energy, while
cloud-based descriptive, predictive, and prescriptive sensors
operate continuously to offer compensation data and serve
as guardians. To better illustrate parallel sensing concept, we
show some example applications of parallel sensing such as
parallel vision, parallel point cloud and parallel light fields,
both of which are designed by construct virtual sensors to
extend small real data to virtual big data and then boost
the performance of perception models. Experimental results
demonstrate the effective of parallel sensing framework. The
interaction between the real and virtual worlds enables sensors
to operate actively, allowing them to intelligently adapt to
various scenarios and ultimately attain the goal of “Cognitive,
Parallel, Crypto, Federated, Social and Ecologic” 6S sensing.
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NEAL Stephenson’s science fiction novel “Snow Crash”
from 1992 made the idea of the Metaverses, which

emerged from Cyberspace and has received a lot of attention
recently. “Metaverses” is made out of the two terms transcend
and universe, respectively. The goal of Metaverses is to create
virtual worlds that are parallel to the real world, conduct
massive computational experiments, and interact with the real
world for verification. Metaverses are built on the foundation
of technologies like virtual reality [1], blockchain [2], cloud
computing [3], and digital twins [4].

The idea of digital twins occupies a prominent position
in the early stages. However, Metaverses and digital twins
fall within the framework of parallel intelligence [5]. Digital
twins are essentially the most basic parallel systems and their
equivalents with a more systematic and scalable volume from
Metaverses. Metaverses finally achieve parallel intelligence
from a scientific and technological standpoint with the attain-
ment of knowledge automation and intelligence. For example,
when developing digital twins, we simulate physical systems
are simulated, Moreover, researches mainly focus on cyber-
physical systems (CPS), which are intelligent systems that
tightly integrate computing, communication, and control in
how they operate and interact with their task contexts. The
digital twins are more likely an automated mirror system in the
virtual world and rely on prior knowledge that input the sys-
tems, as a result, they are not so smart as wish, they typically
operate in scenarios that follow particular rules. By including
the human factors and adhering to the Cyber-Physical-Social
Systems (CPSS) rule, Metaverses advance further since CPS
is no longer suitable in expression against the background of
intelligence [6]. The consideration of humans should not be
neglected when describing intelligence, and the potential of an
intelligent system to evolve continuously in order to expand
and diversify its knowledge base is one of the characteristics
of intelligence.

Sensors are essential infrastructures that serve as commu-
nication links between various worlds in order to build Meta-
verses and advance toward parallel intelligence. For instance,
VR devices immerse us in the visual experience, while light
field cameras enable us to collect 3D structural details for
further 3D reconstructions. The majority of the sensors we
utilize on a daily life, however, operate in a predetermined
fashion and by predetermined criteria, making it hard for
them to determine when to collect specific types of task-
oriented data. The perception and decision-making processes
of intelligent systems depend heavily on the quantity and
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quality of the data, so it is essential to develop solutions for
the design of smart sensors that will allow them to perform
efficiently and intelligently.

Currently, simulation and popular simulators like Carla,
Carsim, Apollo, Omniverse, Sumo, Prescan, Blender, and
others are common methods to construct artificial systems. The
simulation platform supports variable specifications of sensor
suites, climatic conditions, and diverse scenes. Carla [7] is
an open-source simulator that has been developed from the
ground up to support the development, training, and validation
of autonomous driving systems. A real-time cooperative design
and simulation platform called Omniverse [8] was designed for
Metaverses with the support of Nvidia’s powerful graphic pro-
cessing capabilities. Blender [9] is free open-source software
that provides solutions for modeling, animation, rendering,
and video creation. Blender’s lightweight ray tracing function
makes it suitable for light field research, and it is also one of
its main advantages.
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Fig. 1: Framework from Parallel Sensing to “6S” Sensing.

Based on the principle of parallel intelligence, we present
a paradigm for parallel sensing in Metaverses in this paper.
ACP, where A is for “Artificial Systems” in modeling, C is
for “Computational Experiments” in analyzing, and P is for
“Parallel Executions” in regulating, is the methodology that we
employ in parallel sensing, which was originally introduced
in 2017 [10]. The fundamental goal of ACP is to combine
the “virtual” and “soft” elements of complex systems and
turn them “hard” by using computational experiments that
can be quantified and executed to address complicated issues
in the real world. Artificial systems are virtual worlds that
function similarly to real-world items in that they share the
same physical, chemical, and other attributes, allowing them to
operate under the same circumstances, the autonomous driving
platform Carla can act as artificial systems with a diverse
and vivid scenario and multiple virtual sensors with more
flexibility than real sensors are used to collect large amount
multi-modal data. Afterwards, numerous computational exper-
iments can be carried out in the virtual environment once the
artificial systems have been built. We are aware that in the
age of deep learning, data quantity and quality play a crucial
role in improving model performance. While real-world large-
scale annotated data collection will necessitate a significant

investment of time and resources, performing it in virtual
worlds may be much cheaper. With the aid of artificial systems,
we could generate enormous amounts of virtual data from
small amounts of real-world data, train task-oriented models
on the generated big data continually, and perform this in
an iterative manner. In our parallel light field research, we
build virtual camera arrays with adjustable baseline distances
to adapt to different depth, in order to capture lights in different
directions, the radius of the sphere for positioning the cameras
is also tunable. Massive virtual efforts drive the meager real-
world advancements and enormous computational experiments
promote the transition from big data to deep intelligence.

This paper is organized as the following: Section II intro-
duces the framework of “6S” sensing which is major feature
of parallel sensing, Section III present brief description of
parallel sensing which includes descriptive sensing systems,
descriptive sensing systems, and prescriptive sensing systems
and combined with the real system to constitute the whole
parallel sensing systems. Section IV illustrated concrete imple-
mentation and applications of parallel sensing in vision, point
cloud and light field researches that our team have conducted
based on the methodology of parallel sensing.

II. FRAMEWORK OF “6S” SENSING
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Fig. 2: Detail Illustration of “6S” Sensing.

Research on complex cyberspace systems, such as digital
twins and Metaverses, has become increasingly important
with the rapid development of XR and artificial intelligence
technology. In the near future, Metaverses, which are the
methodical evolution of digital twin systems, are promised to
be extensively used in smart cities, intelligent industries, and
entertainment. Nearly all applications share the fundamental
characteristic of being tightly tied to sensing systems in both
physical and virtual space. Sensing systems are crucial to
the operation of complex systems because they serve as a
connection between physical space and cyberspace as well
as a means of bringing humans together in the actual world.
While genuine sensing systems are intricately intertwined with
human interaction and disclose prediction uncertainty, the
current sensing systems are thought of as Newton systems
that merely follow physical principles. Sensing systems in
Metaverses should be regarded as Merton systems with the
characteristic of self-actualization as long as taking into ac-
count human factors in social space. The ownership of a sensor



SHEN et al.: PARALLEL SENSING IN METAVERSES: VIRTUAL-REAL INTERACTIVE SMART SYSTEMS FOR “6S” SENSING 2049

in cyberspace is determined by the data acquired rather than
the actual object, which is another key distinction between
physical and digital sensing systems.

The security of sensing systems is very critical. Constructing
a novel framework for 6S sensing that comprises safety
index, security index, sustainability index, sensitivity index,
service index, and smartness index is important due to the
aforementioned flaw in modern sensing systems [11]. In this
research, a brand-new intelligent sensing framework with “6S”
sensing at three levels is proposed. At the technological level,
it consists of cognitive sensing and parallel sensing, while on
the operational level, crypto sensing and federated sensing
should be considered and finally at the organizational level,
social sensing and ecological sensing are critical components.

A. Cognitive Sensing
The goal of cognitive sensing is to imbue conventional

physical sensors with human-like intelligence. Sensors are
able to learn from the data they have already collected and
generate predictions about incoming data in real time with
the aid of neural networks, which are modeled upon human
cognition [12]. In addition to accomplishing perception tasks,
cognitive sensing focuses on grasping in-depth knowledge
of perceptual outcomes and use them to make decisions
for subsequent procedures, eventually endowing sensors with
human cognition.

B. Parallel Sensing
A smart sensing system that takes into account social,

virtual, and physical spaces is known as parallel sensing. It
comprises of three types of sensing: descriptive sensing for
modeling sensors in artificial systems, predictive sensing for
conducting computational experiments with those systems, and
prescriptive sensing for interacting with virtual and physical
worlds. Parallel Sensing adheres to the “Small Data to Big
Data to Deep Intelligence” [13] premise, which is explained
in more detail in the following section.

C. Crypto Sensing
With a focus on data security in an uncertain and untrusted

environment, blockchain-based crypto sensing provides a re-
liable assurance for the exchange of sensing data. Smart con-
tracts in blockchain technologies are the specialized method
for achieving crypto sensing, and decentralized autonomous
organization (DAO) [14], [15] is the organizational structure
of crypto sensing.

D. Federated Sensing
On the basis of federated learning, federated sensing re-

alizes the transition from individual intelligence to swarm
intelligence [16]. The current centralized training paradigm
necessitates the aggregation of raw data, which raises concerns
about security and privacy. The raw data from each sensor
cannot be directly uploaded to the cloud for training due to
concerns over data privacy. Each sensor in federated sensing
merely needs to upload certain parameters of the locally
trained model capable of swarm intelligence while maintaining
data privacy.

E. Social Sensing

In cyber-physical-social systems (CPSS), social sensing
focuses on how people behave in social settings. Human
factors and social context are highlighted by CPSS in complex
systems. Real-time social dynamic change can be observed
through social sensing, which can also analyze for the best
social decision and finally generate social knowledge. The
abstract concepts used in social sensing for the interchange
of social information, such as the cell phone, are intimately
related to our daily lives.

F. Ecological Sensing

The observation and management issues with ecological
systems are addressed through ecological sensing. At the
organizational level, ecological sensing acknowledges the in-
terdependence of social and natural sensing systems. Real-
time environmental sensing, analysis, decision-making, and
intelligent management capabilities enable it to realize the
transition from the moral restraints of ecological systems to
the legal constraints of social systems [17].

III. PARALLEL SENSING

Traditional physical sensing systems are insufficient to im-
plement intelligent sensing at the technological level because
of ignorance of cyberspace and social space. It is critical to
develop a novel sensing framework that takes into account
both physical and virtual sensing. A technical framework
for intelligent sensing in Metaverses is proposed leveraging
parallel sensing, which is based on parallel theory and the ACP
methodology [18], [19]. Future sensing systems for the 6S
index will utilize a special technology called parallel sensing.
It includes advanced computing and communication technolo-
gies as well as rapidly developing artificial intelligence, such
as XR and multi-modal perception, in addition to physical
sensing technologies.

Data-driven descriptive sensing, experiment-driven predic-
tive sensing, and interaction-driven prescriptive sensing make
up parallel sensing. A closed-loop system that made up of
these three components can operate continuously. Building
artificial sensing systems in Metaverses is the objective of de-
scriptive sensing, along with maintaining consistency between
real-world and virtual sensor models. With the assistance
of artificial systems, a quantity of synthetic data may be
generated, which, along with smaller real data, makes up big
data. Predictive sensing conducts computational experiments
for various downstream tasks after building artificial sensing
systems in cyberspace. Through computational experiments, it
is able to accomplish the transition from small data to big data
and then to deep intelligence and achieve the optimal strategy
as expected.

A. Descriptive Sensing Systems

Traditional physical sensors lack the capability to process
data locally and can merely collect data. Although embedded
computing and distributed sensing are both developing rapidly,
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local computing power remains a significant barrier to the real-
time implementation of intelligent sensing. With the support
of virtual sensing, descriptive sensing is proposed for better
management of sensing systems. It attempts to build digital
sensing systems in the cloud that integrate both high-fidelity
sensor models and the surrounding environment. In addition
to the physical environment, social environments and human
behaviors also have a significant impact on how well sensing
systems operate [20]. Descriptive sensing is the pioneering
work that takes into account of social environment with human
factors and can be used to generate more realistic virtual data
compared with simple digital twins’ sensor models.

The fundamental application of descriptive sensing in cy-
berspace [21] is the generation of virtual data utilizing arti-
ficial systems. Before practical deployment, artificial sensing
systems will be constructed, and each physical sensor will have
an online digital counterpart. Unreal Engine and Omniverse,
mature gaming and industrial engines, have already provided
a number of sensor models and a framework for further
development. Different digitization techniques are used for
different sensor models, for example, ray tracing technology
[22] is primarily employed for LiDARs whereas the scattering
points method [23] is applied for mm-wave radars. These
models can provide accurate synthetic data that is comparable
to real data at a minimal expense, however, they disregard the
internal structure of physical sensors, which has a significant
impact on the fidelity of virtual data in complex scenes.
Future sensor models will concentrate more on optimizing
internal physical structures and principles. Additionally, due to
their dependence on training scenarios, black-box-based sensor
models [24], [25]inspired by end-to-end deep learning have
only been utilized in academic research.
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Fig. 3: Real to Virtual Descrptive Sensing.

NeRF [26], a novel 3D reconstruction technique, has the
potential to be widely used to construct the physical environ-
ment in artificial systems and digital persons [27] to build the
social environment. Future research should concentrate on the
major issue of these technologies’ high computing resource
requirements. Descriptive sensing maintains consistency with
physical sensing systems in practical application after the
construction of artificial systems is complete and is solely
in charge of the interaction of incremental data that can
effectively reduce the burden on communication networks.
The performance of trained models is now greatly influenced
by data due to the development of data-driven deep neural
networks. However, collecting data from actual scenarios is
costly, and it is impossible to cover all the corner cases.

Applying artificial sensing systems to provide synthetic data
is an efficient method for addressing these issues. A massive
amount of virtual data, critical for data-driven downstream
tasks such object detection [28], [29], semantic segmentation
[30], and self-localization [31], can be collected through
descriptive sensing. Taking the widely used LiDAR sensor as
an example, it has already been demonstrated that synthetic
point cloud data can significantly improve model performance.
Additionally, descriptive sensing can support the development
of foundation models with improved generalization and the
research of domain adaption in various scenarios.

B. Predictive Sensing Systems
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Fig. 4: Predictive Sensing in Virtual Worlds.

Descriptive sensing overlooks the dynamics of actual sens-
ing systems even if it has already finished building artificial
sensing systems on the cloud. Sensing systems should be
regarded as Merton systems with the uncertainty of prediction
since social space as well as human factors are involved. In
order to conduct various computational experiments with arti-
ficial systems and also to make the transition from small data
to big data and then to deep knowledge, predictive sensing is
proposed in this context. The proposed algorithms’ robustness
may be enhanced through computational experiments, which
can also provide the predicted optimal course of action.

In tasks requiring time and space dimensional predictions,
predictive sensing exhibits significant advantages [32]. Predic-
tive sensing may, in general, forecast how physical sensors will
operate, identify potential issues before they occur, estimate
crucial sensing regions, and produce non-critical data forecasts
that can drastically cut on data transfer between the real and
virtual world. To demonstrate the advantages of predictive
sensing, examples of radars and light field cameras will be
given since radars are essential for autonomous driving.

In addition to performing feature aggregation in time series
for trajectory planning [33] and obstacle prediction tasks,
predictive radars may also become aware of their surroundings
through cooperative perception [34]. A distinctive type of
camera with numerous tiny aperture lenses is light fields
camera. It collects information of lights in the scene from
every direction and completes post-processing afterwards.
Predictive light field cameras can make predictions about the
light field distributions in various positions by computational
experiments in artificial systems, which can minimize the
deployment of lenses in physical space.
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C. Prescriptive Sensing Systems

The information transmission between physical and virtual
systems is often disregarded in current research on virtual
sensing systems, which focuses mostly on artificial systems
and computational experiments by using ACP methodology.
There will be a clear distinction between the way these
two sensor systems operate, separate virtual sensing systems
are not suitable for implementing smart sensing due to the
environment’s dynamics and complexity. Predictive sensing
is proposed to establish a closed loop combining descriptive
sensing and predictive sensing, which corresponds to parallel
execution in the ACP methodology. Predictive sensing is an
interactive intelligent software sensing system that employs
deep knowledge obtained from computational experiments to
take prescriptive control of sensing systems.

Traditional sensors mostly use analog circuits for signal
generation and processing, however, due to the high noise and
weak anti-interference ability of analog circuits, it is challeng-
ing to take precise control of sensors in real time. As digital
technologies advances, prescriptive sensing has the potential
to control physical sensing systems intelligently, enabling
sensors to adapt to more complex environments. Different
waveform types provide advantages for the commonly used
LiDAR sensors. For instance, pulse waveforms can achieve
high precision at a low cost whereas frequency-modulated
continuous waveforms can offer additional information on
Doppler velocity. Prescriptive sensing may effectively increase
the performance of sensors through dynamically adjusting
the waveform mode in accordance with the environment
through the use of digital waveform generation. To collect data
from light field cameras, which contains a lot of redundant
information, numerous lenses must operate simultaneously.
Prescriptive sensing can assist in maintaining the same effect
with the deployment of only a portion of lenses in crucial
areas, reducing the waste of hardware resources.
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IV. IMPLEMENTATION OF PARALLEL SENSING

Parallel intelligence theory has been applied in a variety
of areas since Prof. Fei-Yue Wang first outlined it in 2004.
These various applications ranging from sensors to intelligent
transportation, computer vision, agriculture, and education.
We will give a thorough introduction to our teams’ parallel
sensing applications in parallel vision, parallel point clouds,
and parallel light fields in this section.

A. Parallel Vision

Parallel vision is a computing paradigm that integrates com-
puter graphics, virtual reality, machine learning, and knowl-
edge automation. It was first proposed by Wang in 2017 and
is based on the ACP approach. One of the objectives of parallel
vision is to evaluate the performance of algorithms in various
complex environments. For instance, some vision algorithms
are trained on sunny bright highway scenarios; it is obviously
impossible to deploy them directly in rainy, snowy, or foggy
weathers with lower illumination and occlusions that may lead
to perception failures. As big data technology has advanced,
numerous researchers have contributed to the dataset creation
process, such as KITTI for autonomous driving, CoCo for
object detection, and large scale ImageNet for pretraining.
Perception algorithms are currently trained for specific tasks
on a single or small collection of datasets; however, the
obtained models are difficult to directly transfer due to do-
main differences. Parallel vision emerged in these conditions,
attempting to address these issues of different data collection
and calibration.

Fig. 6: Pipline of Generating and Utilizing ParallelEye-CS for Vehicle
Intelligence Testing [35].

Photo-realistic artificial scenes are used to represent and
simulate complex scenes in parallel vision [36], where sensors
are generalized software defined devices that can perceive
their environments and output data in the form of images.
Computational experiments are then conducted to train and
verify various vision models, and finally vision systems are
optimized online with the operation of parallel executions.
ParallelEye-CS [35], a system designed for visual simulation
testing in autonomous driving, is an implementation of a
parallel vision application. In Changshu, China, where the
2013-2018 Intelligent Vehicle Future Challenge (IVFC) was
held, Paralleleye was built in accordance with the prototype.
As shown in Fig. 6, the real-world testing field roadmap and
a variety of foreground and background scenes were created
in the simulation engine Unity. They use OpenStreetMap
(OSM) open-source geographic data to construct the basic
road network in virtual worlds. Scenes like tunnels, bridges,
interstate highways, and country roads with different weather
conditions can be tailored using the CityEngine software. They
developed realistic traffic signs, street lights, doorplates, and
buildings using 3ds Max. The Unity3d engine also simulates
scene dynamics, and virtual cameras capture the entire scenes.
The ParallelEye-CS dataset has a total of 17450 frames (virtual
training data with 3650 frames, normal tasks with 5520 frames,
environmental tasks with 4140 frames, and difficult tasks with
4140 frames). The main benefit is its flexibility in weather
and scene customization, small data in the real world can be
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expanded to big data in the virtual world, and the generated
virtual big data are then used to train different vision models
for different perceptions.

B. Parallel Point Clouds

As autonomous driving technology has advanced, LiDAR
has taken over as the standard range detecting sensor. A
LiDAR device can measure the precise distances between
itself and its surroundings. LiDAR can be categorized into
mechanical and solid types depending on whether a moving
rig is available. The vertical emission unit, also known as the
harness, ranges from 1 to 128 and determines the accuracy
of LiDAR, more harness implies denser points. Compared to
camera devices, LiDAR can accurately record 3D structural in-
formation, particularly the depth, nevertheless, deployment and
calculation are challenging due to the high value and disorder
of the point clouds. Previous to object detection in autonomous
driving, LiDAR point clouds should be preprocessed with
denoising, inpainting, and other procedures, however, these
operations severely hamper real-time requirements. On the
other hand, point cloud annotation presents another challenge
since a single point has no meaning. Tian [37] proposed the
Parallel Point Clouds framework trying to find a solution to
these issues.

Fig. 7: The Illustration of Virtual Point Cloud Generation Pipeline [37].

A 360-degree scanning virtual LiDAR was first designed as
the virtual sensor in parallel point clouds. A virtual LiDAR
can provide the same horizontal and vertical resolution as a
real LiDAR by replicating its mechanism. LiDAR beams are
encoded by a two-dimensional index [i, j] as shown in Fig.
7, where i is the beam’s id in the vertical dimension and j
is the beam’s id in the horizontal dimension. Virtual LiDAR
Field of View can be acquired by substituting virtual LiDAR
resolutions rv and rh in the vertical and horizontal directions,
respectively. The minimum angle in the vertical and horizontal
directions is denoted as α0 and β0 accordingly. virtual LiDAR
Field of View can be acquired as:

αi,j = α0 + i× rv (1)
βi,j = β0 + j × rh (2)

with the spherical projective methods, homogeneous coordi-
nates of points with a distance of l0 to the sensor can be
obtained as Pi,j = [xi,j , yi,j , zi,j , 1], then following the rule
of perspective projection, 3D points Pi,j are projected to image
planes as:

P̂i,j = KCwP
T
i,j (3)

Up until now, data collection has been achievable using
a simulated LiDAR sensor. Since object distribution varies
across scenes and frames, another characteristic of parallel
point clouds is data customization. To fully boost the accuracy
of perception algorithms, we can augment point cloud data
through adding automobiles or pedestrians in frames using
enormous free 3D models. The iPad Pro is a very useful mobile
device for scanning and obtaining object models, for instance,
surface points can be acquired for CAD models using surface
points sampling methods. Subsequently, the clean backgrounds
are then supplemented with a variety of foreground objects to
produce rich and diverse traffic scenarios.

A hybrid point cloud dataset called ShapeKitti was proposed
employing Kitti and ShapeNet as sources of actual and virtual
point clouds, respectively. The configurations of the virtual
LiDAR are listed in Table I. A total of 3712 samples from the
Kitti dataset and 200 car models from ShapeNet are used as
clean backgrounds and foregrounds, respectively. According
to results showing 78.6% and 86.8% of the performance of
the models trained with real Kitti for 3D and BEV precision,
respectively, the PointPillars and SECOND object detection
models were trained on ShapeKitti for 20 epochs to evaluate
the performance of the ShapeKitti dataset on real-time 3D
detectors. For a dataset that requires almost minimal human
annotations, this is a very encouraging outcome.

C. Parallel Light Fields
Light field cameras are less widely recognized than regular

cameras as vision sensors. Unlike regular cameras, which can
only capture light intensity and object appearance, light field
cameras can additionally implicitly record the scene’s depth
and the rays’ directions. Light field cameras capture scenes as
5D image sets of the pattern A × A × H × W × C, where
A, H, W and C are angular resolution, image height, image
width, and image channels respectively, and angular resolution
corresponds to sub camera in camera arrays. By disentangling
light field images from angular and spatial domains, we can
obtain angular and spatial features with feature extractors and
fuse them to recover 3D structures finally. Light field cameras
are still less common than LiDARs despite the benefits of 3D
structural information, perhaps this is due to the high cost
and difficulties in calibrations. Without any mechanical tuning
modules, it is impossible to adjust light field cameras and make
them task-oriented once they have been manufactured. The
current technical framework of light field cameras primarily
consists of three types: microlens arrays, camera arrays, and
encoded masks. For instance, in order to perceive scenarios
with different depths, we must adjust the baseline distances
between adjacent cameras in the form of a linear or exponen-
tial function. We can also change the radiance of the camera
sphere to capture lights from different angles, however, these
situations are impossible to achieve in real light fields. On the
other hand, light field images are challenging to obtain and
the small volume of the available datasets greatly limit their
potential to completely boost the performance of the existing
perception models.

Our team proposed the Parallel Light Fields framework to
address the aforementioned issues [38]–[40]. In parallel light
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TABLE I: The configurations of the virtual scanning grids.

Attribute H-Resolution (Channels) V-Resolution H-FoV V-FoV Detection Range
Value 0.4(64) 0.2 [-45,45] [-24.8,2] 120m

TABLE II: The configurations of the virtual light fields.

Focal Length Baseline Distances Sensor Size Image Size Angular Resolution
39mm 0.125 36mm 1024× 1024 9× 9

fields, we continue to employ the ACP approach pipeline
and the opensource Blender platform to construct our virtual
environment. Since there are so many free 3D models available
online, we can quickly and easily generate our photo-realistic
artificial systems. We could freely define our virtual light
field camera in Blender thanks to the python API. In our
settings, we adopt the scheme of camera arrays and the tunable
parameters are listed as in table II.

View_01_01 View_09_01

View_01_09 View_09_09 Normals

Disparity

Fig. 8: The Rendered Light Field Images Based on Parallel Light Fields.

After the creation of virtual light field cameras and virtual
scenes, light sources are a critical element. Blender provides
four different types of light sources, including dot, spot,
sunlight, and area, from which we may select the one that
best suits our needs. As till right now, the environment for
capturing light field images is complete. We can switch to
light field cameras to collect 5D images, and we can achieve
ground truth measurements like segmentation, normals, depth,
and disparities. We can also record optical flow as a gauge
for dynamic situations. As far as we known, this is the first
dataset in light field research that can be used for so many
different objectives. However, with more angular views, there
is an additional problem of data redundancy; specifically,
diverse views serve as compensation information and also
result in view overlap, which is the source of redundancy.
We discover that baseline distances between adjacent cameras
have a relationship with data redundancy, an adaptive baseline
distance may achieve a balance between data redundancy
and computational efficiency. We can perform a great deal
of computational experiments in the context of parallel light
fields, small data can be expanded into big data to train
perception models, and the abstracted knowledge may help
guide the placement of actual light field cameras and create
an interactive, iterative optimization closed-loop.

V. CONCLUSION

Based on the theory of parallel intelligence, we introduce
the concept of parallel sensing in this paper. Virtual descriptive
sensors in the virtual worlds are digital twins of the real-world
sensors with the same features and are utilized to interact with
the virtual environment to expand real small data to virtual big
data. Artificial systems will be built as the testbed for parallel
sensing. After that, different perception models and deductive
reasoning are learned using the generated big data and applied
to real-world sensors. Physical sensors are guarded by three
counterparts known as descriptive, predictive, and prescriptive
sensors. We expand the capabilities of sensors beyond their
function as a tool for data acquisition by regarding them from
three perspectives: cognitive and parallel sensing in terms of
intelligence, crypto and federated sensing in views of safety,
and social and ecologic sensing from the perspective of society
to pace towards the “6S” sensing.
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