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Perspective

DeCASA in AgriVerse: Parallel Agriculture for
Smart Villages in Metaverses

Xiujuan Wang, Mengzhen Kang, Hequan Sun, Philippe de Reffye, Fei-Yue Wang, Fellow, IEEE

Briefing: The demand for food is tremendously increasing
with the growth of the world population, which necessitates
the development of sustainable agriculture under the impact
of various factors, such as climate change. To fulfill this
challenge, we are developing Metaverses for agriculture, re-
ferred to as AgriVerse, under our Decentralized Complex
Adaptive Systems in Agriculture (DeCASA) project, which is
a digital world of smart villages created alongside the devel-
opment of Decentralized Sciences (DeSci) and Decentralized
Autonomous Organizations (DAO) for Cyber-Physical-Social
Systems (CPSSs). Additionally, we provide the architectures,
operating modes and major applications of DeCASA in Agri-
Verse. For achieving sustainable agriculture, a foundation
model based on ACP theory and federated intelligence is en-
visaged. Finally, we discuss the challenges and opportunities.

Keywords: Parallel Agriculture Management and Control,
AgriVerse, Agriculture CPSS, ACP, DAO-Based Platform,
Precision Agriculture.

I. INTRODUCTION

ACCORDING to the United Nations report, the global
human population will increase by approximately 25%

by 2050, reaching nearly 10 billion [1]. As a result, the
demand for food will increase massively. Food security, known
as availability, access, stability and use of food, is likely to
deteriorate along with the negative impact of other factors such
as climate change. For example, the global surface temperature
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will increase by 1.5 °C by 2050, which can dramatically
reduce crop yields [2]. This has caused severe problems for
human survival and development. To ensure food security, we
must make every effort to prevent climate change and develop
sustainable agriculture.

With the development of the fourth industrial revolution
(Industry 4.0), Agriculture 4.0 is coming up, which is more
autonomous and intelligent by integrating the emerging tech-
nologies such as the Internet of Things (IoT), robotics, big data
and artificial intelligence (AI) into agriculture [3]. However,
with the advancement of information and communications
technologies, the effects of human behavior have been pro-
gressively integrated into agricultural management and control.
Agriculture 4.0 is no longer adequate to address human and
social factors in systems [4], [5]. As a result, smart agriculture
has been converted from Cyber-Physical-System (CPS) to
Cyber-Physical-Social Systems (CPSSs), where society will
step toward to the fifth industrial revolution (or Industries
5.0). In Industries 5.0, biotechnology, information technology
(IT), artificial intelligence (AI) are deeply integrated with the
principles of human centrality, sustainability, and resiliency.
This lays the foundation for revolutionizing agriculture by
systematically linking the microworld, where gene expression,
regulation and interaction can be deciphered at the molecular
level, with the macroworld, where crop phenotyping, growth
modeling, natural/social plant-growth environment monitor-
ing, human intervention and management are carried out
systematically [6]. Specifically, crop phenotyping, i.e., the
process of measuring the quantity, quality, photosynthesis,
development, architecture, growth or biomass productivity of
crop plants, has become feasible in a high-throughput manner
with intelligent robotics that are developed with techniques in
computer vision, pattern recognition and AI. More generally,
comprehensive spatial and ground information in agricultural
production that influences the survival and development of
crops will cover agricultural stages, including preproduction
(scheduling, market and demand analysis, plant optimization,
etc.), interproduction (planting task management, environmen-
tal control, soil analysis, fertilization, spraying, irrigation,
usage of pesticide and herbicide, etc.) and postproduction
(harvest, storage, processing, transportation and sales, logistics
scheduling, etc.).

With the large agricultural data at the terabyte level, there
are great challenges for data storage, transfer and sharing.
Emerging technologies have shown the potential to address
these challenges, such as edge computing and Decentralized
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Autonomous Organizations (DAO) [7], which leverage tech-
nologies such as blockchains to allocate resources, coordinate
activities, and make decisions without centralized control or
third-party intervention [8]. Another challenge is to integrate
and analyse data on different dimensions and scales. Models
have been developed on a broad scale from the diagnosis of
crop disease to yield prediction [9]. However, as a biological
entity, crops and their diseases exhibit dynamic behaviors,
and continuous monitoring can be prohibitively expensive and
thus impossible to apply. Mechanistic models are able to
compensate for empty sites and create links among different
data. In this regard, extensive studies have been conducted
over the last century, including mathematical modeling of the
production and allocation of biomass in relation to the shape,
structure and ontogenesis of plants.

The origin of our agricultural related work can be traced
back to the PhD of de Reffye in 1970s [10], who draw the
first 2D plant of a coffee tree in Africa. In 1990s, Wang et al.
built “virtual or shadow plant” on a computer by monitoring
plants with a camera based on a project granted by the
University of Arizona, Tucson, Arizona and Biosphere 2, Oro
Valley, Arizona. Around the year 2000, the GreenLab model, a
mathematical model describing the development and growth of
plants, was developed through Sino-French cooperation [11].
In 2005, the work of Complex Adaptive Systems for Smart
Agriculture (CASA) characterized by the parallel intelligence
was initiated [12] as the integration of the above works.
Subsequently, at the system level, we proposed a framework,
called DiCASA for distributed CASA for parallel agriculture
[6] following the ACP theory [13] for CPSSs, where ‘A’ refers
to an artificial system, ‘C’ refers to computational experiments
and ‘P’ refers to parallel execution. In recent years, Metaverse
has emerged as a collective virtual space with decentralized
and collaborative features where people will conduct activities
associated with education, sales, entertainment, etc. Along the
lines of Metaverses and parallel intelligence, we are building
Metaverses for agriculture, referred to as DeCASA in Agri-
Verse since 2021 [14], designed along with the development
of DeSci [7] and DAO for CPSS. With social information
such as market demand and prices, DeCASA in AgriVerse
can provide decision support for agricultural systems in reality
via in-depth computational experiments in the corresponding
virtual system [4]. In short, the development of technologies
and theories in biology, computer science, control, communi-
cation, AI and DAO make it possible to improve agriculture
by harmoniously joining the biological, physical and digital
worlds. The challenges, opportunities and future direction of
AgriVerse are discussed.

II. DEFINITION OF AGRIVERSE

AgriVerse is composed of smart villages and farms that are
characterized by automation, digitalization, computerization
and intellectualization. The design of the AgriVerse platform
is based on the DAO principle [15] and the ACP methodology
[6], as defined in [14]. Similar to the Metaverse, the common
technologies used in the AgriVerse also embodies a conver-
gence of web technologies, the internet, virtual reality (VR),

augmented virtual (AR), mixed reality (MR), and extended
reality (XR), cloud computing, edge computing, blockchain,
AI and other technology [16]. The difference in technology
between AgriVerse and Metaverse lies in the use of various
agricultural models regarding the environment, crops and
farmers.

In AgriVerse, the real and virtual systems interactively run
in parallel, and any agriculture-relevant information can be
perceived, recorded and analyzed automatically, intelligently
and systematically to provide optimal solutions or decision-
making guidelines for the management and control of practical
agricultural production. Fig. 1 shows the conceptual frame-
work of DeCASA in AgriVerse based on CPSS. The basis
is the interaction between the real and artificial agricultural
systems (AASs) and their corresponding management centers.
AASs simulate and optimize the dynamic processes related
to agricultural production, the environment, and management
activities around the production chain.

Fig. 1. DeCASA in AgriVerse based on CPSS.

The agricultural operating system (AgOS) is an exten-
sive platform that addresses the management and control of
agricultural facilities and software for various tasks through
the interaction between the real agricultural system and its
corresponding AASs. Applications for various purposes, such
as climate monitoring and control [17], data analysis and sim-
ulation, scheme recommendation [4], performance evaluation,
and visualization of results, can be integrated into AgOS.
For example, information on topography and crop planting
distribution can be displayed with the platform (Fig. 2(a)),
the monitored data of the environment and crop growth status
during different growth stages can also be analyzed (Fig.
2(b)), and the 3D architectures of the plant can be displayed
using Qingyuan (Figs. 2(c) and 2(d)) [18]. In addition, IoT-
based hardware can be managed (e.g., add, remove, rename)
and controlled (e.g., switch on/off) remotely. Based on the
analysis of data and forecasts of agricultural commodity prices
[19], crop phenology [20] and yield [21], optimized crop
planting schemes [22] will be recommended. Plant growth
can be simulated under a variety of environmental conditions
and management operations. It also supports performance
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evaluation of both real and artificial systems. With the ACP
features, AgOS supports three operating modes for different
purposes, described below.

Fig. 2. System interface of agricultural management and control platform.
(a) A topography image of a farm. (b) An analysis display of environment
monitoring. (c) 3D visualization of tomato plant simulated in Qingyuan. (d)
Plant library based on the GreenLab model.

A. Experimentation and Evaluation

In this mode, the various agricultural models supporting
AASs are used for various simulations and predictions [23],
as described in Fig. 3. AgOS monitors and obtains various
data and stores all the information in data centers, including
climatic data and crop phenotyping information, social and
economic information, etc., and those from expert knowledge.
In the experimental design, computational experiments can be
set up to generate various agricultural scenarios using sup-
porting models, including climate models, agricultural price
models, crop growth models, and farmer behavior models.
As a CPSS, predicting agricultural commodity prices [19] can
help farmers adjust their harvest time and thus improve their
profits by integrating a profit model [22]. For example, crop
phenology and yield can be simulated and predicted under
various experimental conditions using statistical models or
process-based models such as ‘GreenLab’ [24]. In the per-
formance evaluation, the result of computational experiments
can be analyzed; emerging properties can appear and bring
new knowledge which is hard to find in the real world. The
results can be displayed in the graphs for numeric data or
in 3D for crop architectures that clearly show the results of
computational experiments. In the decision generation, the
planting scheme recommendation can be given according to
the simulation and prediction results, such as when to plant,
how many to plant and how to plant during the agricultural
production process. In addition, by interacting with actual
situations, AgOS could optimize and evaluate the performance
of recommended strategies. Evaluation results are stored in
data centers to help farmers and farm administrators make
decisions.

B. Management and Control

In this mode, three layers are involved, namely, the coor-
dination layer, the execution layer and the organization layer

(Fig. 4) [25]. The coordination layer organizes the interactions
and actions of the real system and AAAs. According to the
analysis results obtained through simulations and predictions,
the planting scheme can be given; for example, an environ-
ment control prescription can be set according to the current
environment and plant demand [17]. As a result, AgOS can
send a message to the control facilities in the execution layer
to adjust the installations and thus control the environmental
conditions. The organization layer manages all the resources in
the system, including all the agricultural planting technologies,
the stakeholder’s database, and the typical agricultural scene
tests. In the performance evaluation module, the strategies can
be tested in actual agricultural scenes; then, by interacting with
agricultural experts, the planting technologies stored in the
database can be optimized and updated. The same processes
can also be used in agricultural machinery management and
control. The tasks of machinery, including irrigation, fertiliza-
tion and harvesting, can be distributed in real-time.

C. Learning and Training

In this mode, with the help of virtual reality and human-
computer interaction technologies, users could interact with
different agricultural learning and training modules, which
enables farmers and administrators to quickly grasp planting
technologies and management and control methods during the
agricultural production process. Trained farmers would be able
to monitor and evaluate the performance of recommendation
systems, performing a “human-in-the-loop” control. In turn,
feedback from farmers and agricultural experts will help AgOS
improve and strengthen agricultural management and control
intelligence.

III. INTELLIGENT DECISION SUPPORT BY
AGRIVERSE

The core of AgriVerse is an accurate decision support for
agriculture-related planning, management and control, based
on the perception and analysis of various agricultural data.
Greenhouse management and control is a typical scenario for
applying AgOS. We have developed a parallel agricultural
system based on ACP theory, JJfarmer, which has been named
after “Awakening of Insects (Jing Zhe, one of the 24 solar
terms used in China for agricultural planning)” [4]. Fig. 5
shows the architecture of JJfarmer. Information perception
includes climate conditions (temperature, humidity and light,
etc.) and crop growth status during crop growth, the status of
greenhouse facilities (on/off), and social information includes
the product price (reflecting the balance of product supply and
demand), growers’ abilities, etc.

Intelligent decision support can provide services cover-
ing the entire pre-inter-post agricultural production process.
Firstly, suggestions are made according to prior knowledge.
Secondly, decisions need to be updated based on the actual
environment and management during actual agricultural pro-
duction. For such a complex farming system, ACP theory can
be applied to descriptive, predictive, and prescriptive learning
[6]. The objectives of decision support include crop planning,
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Fig. 3. Agricultural Operations System for Management and Control (AgOS) in Experimentation and Evaluation Mode.

Fig. 4. Agricultural Operations System for Management and Control (AgOS). AASs represents Artificial Agricultural Systems.

Fig. 5. JJfarmer system for environmental monitoring and control, as well
as production management during the entire process of the pre-inter-post
agricultural production.

environmental monitoring and control, facility control, harvest
management, contract matching, etc.

Decision support from this system for monitoring and
controlling the environment of a solar greenhouse has been
successfully implemented in Changping District, Beijing. In

general, JJfarmer achieves real-time control in three steps:
1) producing virtual greenhouse data using a greenhouse
climate model; 2) pretraining the greenhouse climate model
according to the produced virtual data and calibrating it using
the historical climate data collected from inside and outside
this greenhouse [17]; 3) transferring the model to the real
greenhouse, or learning the knowledge and experience of
the farmers from the real greenhouse system, and finally
giving the real-time control strategy recommendation. In this
greenhouse, the environmental monitoring facilities measure
air and soil temperature and humidity using low-cost sensors
for smallholders. Control facilities can adjust the size of the
vent opening according to the calculation results based on the
monitored data.

At the modeling stage, the greenhouse environment and crop
growth status can be modeled using the monitored data and
climate models. The real greenhouse and virtual systems could
operate and be adjusted simultaneously (Fig. 6). In the real
target greenhouse, the observed data are obtained for model
calibration. With greenhouse sensors gathering real-time data,
the climate model of the greenhouse could be refined. Finally,
the training model generates a unique solution for each specific
planting condition, which is stored in the recommendation
system. The modeling processes are demonstrated in Fig. 6,
which consists of two basic modules, the real greenhouse sys-
tem and the virtual greenhouse systems. In a real greenhouse
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system, farmers adjust the control system, taking into account
the actual situation and the historical experience of greenhouse
management systems. Farmer control strategies can be derived
from monitored data [26], which can be the starting point for
an standalone system.

Fig. 6. The facilities, system and application scenarios of greenhouse
environment control.

At the recommendation stage, an appropriate control strat-
egy can be recommended for an real greenhouse system
depending on the current climate and crop growth states.
In addition, the climate control model can also be used to
test the effect of a greenhouse climate control algorithm,
which provides feedback to the control system, forming a
closed loop. The algorithm sends the control strategy to the
greenhouse actuators and automatically triggers the execution.
The greenhouse climate model and control algorithm will be
updated regularly to maintain synchronization with the real
greenhouse. In parallel control, operations of actual control
strategies will be progressively enhanced by comparison, eval-
uation, and interaction with virtual control algorithms [27]–
[29]. With this framework, it is able to control the indoors
climate in an optimal way and minimize the need for human
intervention and specialized knowledge.

IV. FOUNDATION MODEL FOR AGRIVERSE

With the development of technologies in big data and IoT,
etc., a large amount of data has been obtained [30], where AI
technology can be used to perform data mining and combine
expert experience and more domain knowledge to provide
decision-making support for agriculture [31]. Although it
becomes possible to collect agricultural data at multiple scales,
dimensions and modalities even with the help of AI-powered
robots, intelligent computational methods for analyzing such
big data are still not sufficient. Given the heterogeneity of
the circumstances, it is difficult to obtain comprehensive,
accurate and up-to-date agricultural information or knowledge.
In addition, existing predictive models tend to be overflow and
cannot be used under different climatic conditions and fields
with regional, seasonal and cyclical characteristics during agri-
cultural production. These facts restrict the power of AgriVerse
to support decisions.

To empower AgriVerse and improve its function in agri-
cultural management and control in an intelligent and auto-
matic way, by integrating parallel learning theory [32], [33]
and federated intelligence [34], we propose an Agricultural
Foundation Model for it, as shown in Fig. 7. It should be noted
that this is very comparable to the Transportation Foundation
Model designed for the transportation system in ‘TransVerse’,
as described in [35].

In its data perception stage, the development of novel
technologies in sensors, remote sensing, cameras and UAVs
provides the efficient infrastructure in this framework for
collecting data [30], including agricultural domain knowledge
and rules, monitored environmental data, crop growth sta-
tus and market prices, etc., as well as data produced from
other production management platforms, from the microworld
where molecular interactions take place to the macroworld
where crop plants grow and enter human society. Data types
include text, imagery, audio and video. Recently, technolo-
gies developed in information and biology, in particular
genome/transcriptome sequencing, phenotyping, and knowl-
edge automation, have become indispensable in the production
and processing of data.

For a better description, agricultural simulation and pre-
dictive models should also take into account the relationship
between the environment, crops and farmers. Models can be
grouped into three categories: data-driven, knowledge-driven,
and data/knowledge-driven. The data-driven models can learn
from data without using any domain knowledge, such as
support vector machines, random forests, and artificial neural
networks, which can be used to predict the climate of crop
growth or the market price of crops, to identify the pest, and
to diagnose the disease of crops. The knowledge-driven models
are derived from domain knowledge, including crop phenology
and growth models, which can be used to simulate crop
growth and development. With the development of AI, IoT and
big data, studies on integrating these two types of modeling
approaches have been conducted to take advantage of both
knowledge and data-driven models to reduce the demand for
the mass of data and improve the training efficiency, leading
to so-called knowledge- and data-driven models, such as those
used in [21] to predict crop yield and in [36] to incorporate
human domain knowledge into the neural network model in
semantic segmentation.

All the monitored data, domain knowledge, rules and
models are crucial to building the Agricultural Foundation
Model underlying AgriVerse. First, the transformer archi-
tecture [37] is introduced to integrate deeper bidirectional
encoders and to evolve towards larger models and data sets, as
explained in [35]. To train the Agricultural Foundation Model
to achieve proper operating processes through the collected
data, in the multimodal feature extraction module, the self-
attention mechanism [38], [39] is used, which can capture
long-term dependencies with higher performance. Second,
federated intelligence is incorporated to ensure autonomous
management of the DAO-based agricultural system. Within
this system, agricultural data is securely stored, maintained,
updated, shared and exchanged among stakeholders, includ-
ing agricultural input suppliers, farmers, machinery suppliers,
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Fig. 7. Future AgriVerse with Agricultural Foundation Model.

financial service providers, consumers, and farm administra-
tors. In AgriVerse, all the processes related to agriculture
are to be virtually achieved, including planning, planting,
processing, packaging, storing, distribution, resale, preparation
and consumption along the agri-food chain until the food
arrives on our plates in reality [40]. Such an environment can
also be a useful sandbox for testing AI techniques to bring
about a responsible AI for agriculture [41]. Therefore, ideally,
through computational learning from substantial practical data,
AgriVerse would behave automatically and intelligently by
taking specific information as input and calculating optimal
solutions at any stage of the agricultural production process.
Therefore, we can assist farmers and agricultural sectors make
agricultural management and control decisions. In addition, the
AgriVerse platform can adjust previous solutions for real-time
situations as it is based on parallel learning theory and federal
intelligence. Thus, the AgriVerse platform can be applied to
education, farming training and government management, etc.
for example, it is possible to use the AgriVerse to train farmers
on farming skills or to remotely control robots conducting
harvesting tasks.

V. CHALLENGES AND PERSPECTIVES

Major technology developments in the past couple of
decades, particularly in the areas of telecommunications, com-
puting and AI, focused on the development of urban areas,
where the concept of smart cities evolved. The level of
computerization in rural areas is far behind, leading to what
is known as the “urban–rural divide”.

To alleviate this issue, it has been recommended to develop
smart villages to provide a bundle of services which are deliv-
ered to its residents and businesses in an efficient and effective
manner [42]. Smart villages are expected to bridge the ur-
ban–rural divide. The smart village can be implemented using
modern digital technologies, modern management techniques
and current social sensibilities [43]. As the economic engine

of most rural communities is agriculture, the development of
smart villages must include a roadmap to promote agricultural
methods, optimize agricultural human resources, and intro-
duce new technologies and processes. As a result, there is
an increasingly diverse and complex demand for intelligent
agricultural services that must be addressed. ‘Agricultural
Brain’ has been put forward in many provinces of China and
is regarded as a significant means for the management and
control of agricultural production as well as a new paradigm
for achieving sustainable rural development.

In fact, agriculture has faced many complex challenges, in-
cluding climate change, environmental pollution, food scarcity
and waste, natural resources constraints, and uncertainties in
agricultural productivity [44]. Although large-scale research
on intelligent agricultural techniques is underway and several
applications are available, the wide utilization is still insuffi-
cient, e.g., the identification of pests, disease detection, yield
prediction, and the planning of fertilizer and pesticide use [45].
When it comes to addressing real-world issues and solving
them through autonomous decisions and predictive solutions,
modern precision agriculture is still in its infancy.

DeCASA in AgriVerse offers a solution to this end; how-
ever, the construction of AgriVerse is also only in its infancy.
Firstly, since VR and AR information is primarily visual, the
foundations are not established in the provision of agricultural
production, which need the use of all five senses, including
touch [16]. Secondly, many agricultural management and
control systems are at the research stage, which is still difficult
to apply in real agricultural production and for different field
areas. Current agricultural models are mainly dedicated to
specific scenarios that cannot be dynamically adapted and
are difficult to implement in practice. There is a serious
information imbalance between supply and demand in prac-
tice; for example, farmers face a digital divide in agricultural
productivity and economic and social integration. Information
asymmetry (between supply and demand) and lack of knowl-
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edge have resulted in soil pollution, unmarketable products,
and economic losses [4]. Furthermore, collecting, processing
and using agricultural productivity data also face a broad range
of challenges. For example, farmers are facing data security
and privacy challenges in the information age. In addition,
data availability and quality issues are often encountered in
agricultural information systems [46].

To address these challenges, emerging technologies have
recently led to exciting innovations in agriculture, offering
unprecedented opportunities to build an intelligent agricul-
tural system. Research in intelligent agriculture is rapidly
developing with advances of deep learning techniques and
their various variants [45]. The advancement of blockchain,
smart contracts, DAOs and Web 3.0 creates a solid data and
trust foundation for future smart villages characterized by
human–machine integration [47] and virtual-real interaction
[48]. Going forward, it is expected that the above issues can
be addressed through the Agricultural Foundation Model for
AgriVerse.

The goal of AgriVerse is to achieve food security through
precision agriculture with accurate resource planning and
agricultural production in a safe, cost-effective and environ-
mentally friendly way. The development of agriculture is
inseparable from those involved in agriculture and village
conditions. The connotation of rural revitalization includes the
habitability of the village. It is expected that in the future,
on the basis of Web3 and DAO, AgriVerse will transform
smart villages into “6S” societies with “6I”, that is, Safe in
the physical world, Secure in the cyber world, Sustainable
in the ecological world, Sensitive to individual needs, Serves
for all, and Smart in all, with cognitive intelligence and
parallel intelligence for intelligent science and technology,
crypto intelligence and federated intelligence for intelligent
operations and management, and social intelligence and eco-
logical intelligence for smart development and sustainability
[49].

VI. CONCLUSION

In this paper, we present AgriVerse, a DAO-based smart
virtual digital world, as a specific implementation of the CPSS.
The construction of DeCASA in AgriVerse builds on our
research work on parallel agriculture since the beginning of the
21st century, from plant modeling to agricultural management
and control. The goal of DeCASA is to provide accurate
decision support for sustainable agriculture. We presented
the architectures, operating modes and major applications of
DeCASA in AgriVerse. An Agriculture Foundation Model
based on parallel learning and federated intelligence is given
as a potential solution to cope with challenging tasks of data
analysis and decision support, which paves the way to the
agricultural brain and smart village.
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