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   Dear editor,
Human-robot  collaboration  is  a  research  topic  that  has  numerous

potential  applications,  such  as  in  smart  cities.  An  important  safety
consideration  in  human-robot  collaboration  is  collision  avoidance
[1].  Many  studies  have  prioritized  collision  avoidance  of  the  robot
end-effector. However, multi-joint (whole-body) collision avoidance
is also very important in complex working scenarios. Several studies
have achieved multi-joint  collision avoidance by estimating the  dis-
tance between obstacles and control points placed on the robot body,
which  adds  computational  effort  to  the  collision-detection  process.
Therefore, we combine a robot skeleton with depth visual perception
to  achieve  a  fast  multi-joint  collision  avoidance  response.  This
method  can  be  divided  into  collision  detection  and  collision  avoid-
ance strategies, as illustrated in Fig. 1. In collision detection, we use
a statistical  filtering algorithm to denoise visual data,  and propose a
real-time  obstacle  distance-estimation  algorithm  based  on  a  robot
skeleton.  In  the  collision  avoidance  strategy,  a  multi-joint  repulsive
force model is established based on the artificial potential field, and a
motion control strategy is developed to obtain a collision-free trajec-
tory.  Real-time  collision  avoidance  experiments  with  a  7-DOF  col-
laborative  robot  are  conducted  to  verify  our  approach.  The  experi-
mental  results  show  that  our  method  enables  the  robot  to  have  the
capability of active collision avoidance for both the end-effector and
the whole body. The robot can avoid obstacles and complete desired
tasks with a smooth trajectory.
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Fig. 1. The system architecture of multi-joint active collision avoidance.
 

Related work: Collision  detection  is  typically  studied  as  a  three-
dimensional (3D) visual perception problem [2]. Distance estimation
between a robot and obstacles based on visual data is the key to colli-
sion detection. In [3]–[5], a 3D depth camera (Microsoft Kinect) was
used to  obtain  the  depth  data  of  obstacles  and estimate  the  distance

between the obstacles  and all  control  points  set  on the robot.  Based
on this  distance estimation method,  in  [6],  the mapping relationship
between  the  depth  space  and  Cartesian  space  was  further  analyzed,
and  the  data  processing  was  optimized.  In  [7],  the  point  cloud  was
used to generate convex hulls of the robot and obstacles; the distance
between  convex  hulls  was  then  estimated  to  realize  collision  detec-
tion.  However,  the  accuracy  of  collision  detection  is  affected  by
visual noise. In [7], the noise was eliminated based on changes in the
depth  values  between  two  frames.  In  [4],  Kalman  filtering  was
applied for data denoising of the nearest obstacle point.

The  Collision  avoidance  strategy  is  the  application  of  collision
detection results in motion control, which directly determines the col-
lision avoidance ability of the robot. These strategies can be divided
into robot  end-effector  collision avoidance,  and multi-joint  collision
avoidance.  Collision  avoidance  of  the  end-effector  equipped  with
operating tools was explored in [8], in which the distance from obsta-
cles to the robot was converted into a repulsive force through the arti-
ficial  potential  field,  and  a  collision-free  trajectory  was  generated.
Considering that the task priority of the end-effector was higher than
that of other joints,  the repulsive force was only applied to the end-
effector  [3].  To  achieve  multi-joint  collision  avoidance,  other  joints
were  constrained  by  joint  velocities  based  on  theory  [9].  In  [5],  a
similar  approach  was  adopted  in  which  Cartesian  constraints  were
applied to other joints.

However,  robots  have  various  structural  size  requirements  and
work environments in different task scenarios. When the robot struc-
ture is larger or the robot is mounted on a platform, the robot body is
more likely to collide with dynamic obstacles  than the end-effector.
Therefore, in the face of unknown dynamic obstacles, the robot body,
including  all  joints,  needs  to  have  more  active  collision  avoidance
capabilities, rather than applying joint constraints.

Collision detection based on depth visual perception: The accu-
racy  and  real-time  nature  of  collision  detection  are  the  key  factors
affecting  the  reliability  of  collision  avoidance  motion.  Therefore,
according to the noise characteristics of  the RGB-D camera (Kinect
V2),  a  statistical  filter  is  used  to  suppress  noise  to  improve  the
robustness of the point cloud. Distance estimation based on the robot
skeleton  can  obtain  the  nearest  distance  from  the  obstacles  to  the
robot through a rapid response.

1) Depth image acquisition: Depth images are collected by Kinect
V2, which can contain depth data in the range of 0.5−4.5 m in front
of  the  camera  [10].  The  mapping  relationship  between  the  depth
image coordinate system and camera coordinate system is given by
 

κ =


fx 0 cx

0 fy cy

0 0 1

 ,


xc =
(px − cx)dp

fx

yc =
(py− cy)dp

fy

zc = dp

(1)

where κ denotes the internal parameter matrix of the camera; fx, fy, cx,
and cy are the internal parameters accordingly. (xc, yc, zc) are the 3D
coordinates  of  a  point  in  the  camera  coordinate  system; (px,  py )  are
the corresponding pixel coordinates on the depth image; and dp is the
depth  value  of  this  point.  The  depth  image  is  then  used  to  generate
the point cloud by the above mapping relationship.

2)  Statistical  filtering: To  improve  the  computing  efficiency  of
the  point  cloud  data,  the  data  amount  of  the  point  cloud  is  reduced
through voxel grid downsampling, as shown in Fig. 2(b).

Through  practical  experiments,  it  is  found  that  the  depth  error
increases with a sudden change in the object distance. The noise dis-
tribution at the edges of the objects is shown in Fig. 2(b). Thus, a sta-
tistical  filtering algorithm is  used to eliminate  sparse noise and out-
liers in the global point cloud. Assuming that the point-cloud distri-
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bution conforms to a statistical model, the parameters of the statisti-
cal  model  can  be  obtained  by  calculating  the  distance  between  a
given  point  and  its  neighborhood  point  set.  Outliers  with  a  certain
sparsity  will  not  obey  the  distribution  law  of  the  statistical  model;
therefore, outliers and other noise can be separated. Suppose there is
a  point pi  (x,  y,  z )  in  the  point  cloud. d  is  defined  as  the  mean  dis-
tance from pi to the nearest points whose number is m, which obeys a
Gaussian distribution G(d) with mean μd and variance σd. When d ∉
(μd −  3σd, μd  +  3σd),  point pi  is  considered  as  an  outlier  and  is
removed  from  the  point  cloud.  The  distance d  and  the  distribution
G(d) can be calculated as follows:
 

d =
1
m

m∑
i=1

√
(x− x2

i )+ (y− y2
i )+ (z− z2

i )

G(d) =
1

σd
√

2π
e
− (d−µd )2

2σ2
d . (2)

The  statistical  filtering  algorithm  shows  an  obvious  denoising
effect in Fig. 2(c),  and avoids the loss of the key feature data of the
point cloud.

3)  Obstacle  space generation: For  fear  of  taking the  robot  as  an
obstacle,  it  is  essential  to  remove  robots  from  the  point  cloud  and
retain  only  the  pose  information  of  obstacles,  that  is,  to  form  an
obstacle  space.  To achieve this  goal,  we form envelopes around the
robot  according  to  the  robot’s  pose  state  and  then  remove  them.  In
this  study,  the  robot  is  a  TCR-7  collaborative  robot,  which  is  a  7-
DOF robot developed by our team [11]. As robot joints J2–4 and J4–7
have coaxiality in structure, a two-link skeleton can be formed based
on joints J2, J4, and J7, as shown in Fig. 3(a). Furthermore, collision
detection  between  the  robot  and  obstacles  is  achieved  based  on  a
two-link robot skeleton.
 

(a) (b)
 
Fig. 3. (a) TCR-7 robot skeleton (green) and envelopes (orange); (b) Distance
estimation experiment; the blue line is the closest distance between the robot
skeleton and obstacles.
 

4) Distance estimation: Consider  an obstacle  point O  in  obstacle
space,  whose Cartesian coordinates  are OC  = (xO, yO,  zO).  Owing to
the similarity of the robot skeleton structure, only the first link of the
robot skeleton in Fig. 3(a) is considered here, that is, the robot struc-
ture from joints 2 to 4. The Cartesian coordinates of joints 2 and 4 are
J2C = (xJ2, yJ2, zJ2) and J4C = (xJ4, yJ4, zJ4).

To  obtain  the  distance  ||OP||  from  the  obstacle  point  to  the  robot
skeleton,  the  first  step  is  to  ensure  the  nearest  position P .  Because
J2J4 has  a  finite  length,  we  also  need  to  determine  whether P  is  on
J2J4 using the following: 

σ =
J2O · J2J4
J2J4 · J2J4

=
||J2O||
||J2J4||

cos(θ)

||OP|| =


||J2O||, σ ≤ 0,

J2O× J2J4
||J2J4||

, 0 < σ < 1

||OJ4||, σ ≥ 1

(3)

where θ is the angle between vectors J2O and J2J4, andσ is the ratio
between  the  projection  of  ||J2O||  in  vectors J2J4  and  ||J2J4|| .  When
σ ≤ 0, θ > 90°, obstacle point O is to the left of J2J4, and point P is J2,
which is the leftmost point. When 0 < σ < 1, 0 < θ < 90°, the position
of O is as shown in Fig. 4; P is within J2J4, and the relationship satis-
fies the equation P = J2 + σJ2J4. When σ ≥ 1, O is to the right of J2J4,
and P  is  J4 ,  which  is  the  rightmost  point.  In  practice,  the  distance
between the robot and obstacle point should also consider the struc-
tural size of the robot. Therefore, the envelope shown in Fig. 3(a) is
used  to  replace  the  robot  structure.  The  actual  distance  between the
robot and the obstacle point can be obtained by
 

∥OPe∥ = ∥OP∥−R (4)
where Pe  is  the  corresponding position  of  point P  on  the  surface  of
the robot envelope, and R is the envelope radius.
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Fig. 4. Distance estimation. J2J4 is the first link of the robot skeleton.
 

The experiment  setup is  illustrated in Fig. 3(b).  The distance esti-
mation  method  can  obtain  the  nearest  obstacle  distance,  nearest
obstacle  point,  and  most  dangerous  position  on  the  robot  structure,
which  is  the  key  input  information  in  the  collision  avoidance  strat-
egy.

Multi-joint  active  collision  avoidance  strategy: The  repulsive
force based on the artificial potential  field causes the robot to move
away from the obstacles. To quickly avoid unknown dynamic obsta-
cles,  we  propose  a  novel  multi-joint  repulsive  force  model.  This
model  can  translate  this  tendency  into  active  collision-avoidance
ability.

1)  Multi-joint  repulsive  force  model: With  the  advantages  of
simple principles and high reliability, the artificial potential field has
been  applied  to  the  robot  control  [12].  The  field  is  composed  of
repulsive forces that keep the robot away from obstacles, and attrac-
tive forces that make the robot close to the target position. Compared
with the method of applying a repulsive force only at the end-effec-
tor  in  previous  studies  [3],  [5],  we  propose  a  method  of  applying
repulsive forces to multiple robot joints.

From (3) and (4), the repulsive force model is defined as follows:
 

F = v
OP
∥OP∥ (5)

where v is the amplitude of the repulsive force, defined as an inverted
sigmoid  function  [3]  of  the  distance  ||OPe||  between  the  robot  and
obstacles.
 

v =
Vmax

1+ e(∥OPe∥(2/ρ)−1)α
(6)

where Vmax  is  the  maximum value  of v,  ρ  is  the  dangerous  distance
threshold, and α is the shape factor.

In  general,  the  repulsive  force  acts  on  the  position  closest  to  the
obstacle, namely point P. As the obstacle move around the robot, the
position  of  point P  changes.  However,  it  is  found  through  experi-
ments  that  the  continuous  change of  repulsive  force  position  causes
incoherence of robot motion and affects the effect of robot collision
avoidance.  Therefore,  by  transforming  the  repulsive  force,  it  is

 

Noise

(a) Raw point cloud (b) Voxel grid filtering (c) Statistical filtering
 
Fig. 2. (a) Point cloud; (b) downsampling; (c) denoising.
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applied  only  at  the  positions  of  the  three  joints  (J2, J4 ,  and J7 ),  as
shown in Fig. 5.
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Fig. 5. Schematic of the multi-joint repulsive force model. (a) The obstacle
point affects only the J4J7 part of the robot skeleton; (b) The obstacle point
affects the whole robot skeleton; the blue arrow is the repulsion force finally
applied to the robot.
 

In Fig. 5 (a),  the  repulsive  force F  is  divided  into FJ7  and  FJ4,
which act on joints 7 and 4, respectively. The amplitude and relation
between FJ7 and FJ4 are as follows:
 FJ4 =

∥PJ7∥
∥J4J7∥

F, FJ7 =
∥J4P∥
∥J4J7∥

F

FJ4+FJ7 = F.
(7)

The  repulsive  force  is  inversely  proportional  to  the  distance  from
point P  to  the  joint  position.  As  shown  in Fig. 5(a),  P  is  closer  to
joint 7, indicating that the obstacle point is closer to joint 7. Thus, a
greater repulsive force must be applied at the joint location. Because
the  distance  from the  obstacle  to J2J4  is  greater  than  the  dangerous
distance threshold ρ, the repulsive force is not defined for J2J4.

In Fig. 5(b),  the  distances  from the  obstacles  to J2J4  and J4J7  are
both less than the threshold ρ .  Repulsive forces are defined on both
J2J4 and  J4J7 ,  namely, F1  and  F2 ,  respectively.  It  should  be  noted
that joint 4 is the joint in the middle of the robot skeleton; therefore,
two forces are applied to joint 4, namely, F1

J4 of F1, and F2
J4 of F2.

If  the  combined  force  of F1
J4  and  F2

J4  is  regarded  as  the  repulsive
force FJ4 directly, then the value of FJ4 will be affected by the F1

J4
and F2

J4 directions. For example, the approximate or opposite direc-
tions  of F1

J4  and  F2
J4  lead  to  a  sudden  increase  or  decrease  in  the

value  of FJ4 .  This  phenomenon  causes  the  robot  motion  speed  to
change rapidly, and may even make the robot unable to complete the
avoidance action.
 

FJ4 =
F1

J4+F2
J4∥∥∥F1 J4+F2 J4
∥∥∥max(

∥∥∥F1
J4
∥∥∥ ,∥∥∥F2

J4
∥∥∥). (8)

To offset this negative influence, the FJ4 direction is determined by
the F1

J4 and F2
J4 resultant force direction. Its value is the maximum

of ||F1
J4||  and ||F2

J4||. This solution causes the value and direction of
FJ4 to  change  continuously,  ensuring  the  smoothness  of  the  robot
motion to a certain extent.

2)  Repulsive  direction  optimization: According  to  the  obstacle
point  cloud  in Fig. 2 ,  an  actual  obstacle  is  composed  of  multiple
obstacle points. If only the obstacle point nearest to the robot is con-
sidered, then the nearest obstacle point is
 

Omin = argmin
O∈S
∥OPe∥ . (9)

The term S is the dangerous obstacle area, which is defined by the
robot’s  position  and  the  dangerous  distance  threshold ρ .  The  repul-
sive force can then be changed from that in (5) to
 

FOmin = v(OminPe)
OminP
∥OminP∥ (10)

In the process of multi-joint collision avoidance, considering only
the nearest obstacle point cannot make the robot deal with a situation
of being surrounded by obstacles. In Fig. 6(a), point P is assumed to
be the joint center of the robot (such as J2,  J4 ,  or J7). The two sides
are  obstacles  A  and  B,  respectively.  Considering  only  the  nearest
obstacle Omin, a repulsive force to the left is generated at point P. The
force is unable to move away from the obstacles, and may even col-

lide with obstacle A.
Therefore, all obstacle points in dangerous obstacle space S need to

be calculated, as shown in Fig. 6(b) and expressed by (11). It can be
seen  that  the  direction  of FOall  is  jointly  determined  by  all  obstacle
points in space S, and the correct collision avoidance direction is gen-
erated, as shown in Fig. 6(b). The terms FA and FB are the resultant
repulsion forces generated at the dangerous obstacle points in obsta-
cles  A and B,  respectively.  They satisfy  the  relationship FS  =  FA  +
FB.  The amplitude of FOall  is  determined only by the nearest  obsta-
cle  point.  If  all  dangerous  obstacle  points  are  used  to  calculate  the
amplitude,  then  the  magnitude  will  be  affected  by  the  number  of
obstacle  points,  which  may  cause  the  robot  to  perform an  incorrect
collision-avoidance action.
 

Fs =
∑
O∈S

F(O)

FOall = v(OminPe)
Fs

∥Fs∥
.

(11)

3)  Robot  motion  control: The  motion  control  framework  of  the
robot is illustrated in Fig. 7. Its motion states include the desired task
motion and collision-avoidance motion.  First,  the safety state  of  the
robot  is  determined  by  the  collision-detection  result.  If  the  robot  is
not safe, it enters the collision avoidance motion state and outputs the
repulsive  force FOall .  Otherwise,  the  robot  enters  the  desired  task
motion  state  and  outputs  attractive  force FAtt .  The  definition  of
attractive  force  is  similar  to  the  mathematical  model  of  repulsive
force  in  (5)  and  (6);  however,  the  difference  is  that  the  attractive
force is to estimate the distance of the robot to the target position.

The dynamic calculation then converts the repulsive and attractive
forces  into  joint  torques,  which  in  turn  translate  into  joint  accelera-
tion.  In  the  process  of  switching  between  two  motion  states,  the
change in forces is discontinuous, which may lead to abrupt changes
in  joint  acceleration.  Therefore,  the  Savitzky-Golay  filter  based  on
the least-squares fitting method [13] is used to smooth the joint accel-
eration.  Finally,  the  smooth-filtered  acceleration  is  converted  into
joint  velocity  through integration.  Robot  motion  is  controlled  based
on the joint velocity level.

Experiments: Collision-avoidance  experiments  and  their  results
are  used  to  analyze  and  evaluate  our  proposed  method.  The  experi-
mental setup includes a TCR-7 collaborative robot and its controller,
a  Kinect  V2  camera,  and  a  computer  for  real-time  data  processing
(Ubuntu  18.04  system).  The  repulsive  force  parameters  in  (6)  were
set as follows: Vmax = 60.0 N, ρ = 0.30 m, and α = 6.0.
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Fig. 6. Repulsive force (blue arrow) calculation method. (a) Only the nearest
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Collision
avoidance

Desired task
motion

Dynamic
calculation

Savitzky-Golay
filtering

RobotCollision
detection

Robot
safety

No

Yes FAtt

FOall

q··

q·

motion
 
Fig. 7. Robot motion control framework.
 

 2188 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 12, DECEMBER 2022



1)  Experiment  1  (End-effector  collision  avoidance): In  the
experimental scheme, the end-effector needs to avoid dynamic obsta-
cles, and quickly return to the target position after avoiding the colli-
sion. Fig. 8 shows the results of Experiment 1. In the face of the two
hands approaching from above and below, the end-effector generates
a  reasonable  repulsive  force  according  to  the  multi-obstacle  visual
data.
 

 
Fig. 8. Experiment 1: End-effector collision avoidance. The red arrows are
repulsive forces, which represent the motion trend of the robot.
 

The change in the closest  distance between the robot  end-effector
and the obstacles is shown in Fig. 9(a). When the closest distance is
less  than ρ ,  the  robot  avoids  dangerous  obstacles.  The  experimental
results  show that  the closest  distance is  always greater  than the dis-
tance  limit  of  150  mm  (red  dotted  line).  The  minimum  distance  is
0.192 m, which occurs at 0.73 s.
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Fig. 9. The closest distance between robot and obstacles. (a) and (b) corre-
spond to Experiments 1 and 2 respectively; the red dotted line is the distance
limit.
 

The position trajectory of the robot end-effector in Experiment 1 is
shown in Fig. 10(a).  The  gradual  change  in  the  trajectory  color  and
arrow represents the changing trend of the end-effector position over
time. After collision avoidance, the end-effector can accurately return
to the original target position; the position error is 1.603 mm.

2) Experiment 2 (Multi-joint collision avoidance): Experiment 2
demonstrates  the  collision avoidance effect  of  our  multi-joint  active
method on the robot’s whole body. When the obstacles approached,
the  robot  suspended  the  desired  task  motion  and  performed  a  colli-
sion  avoidance  motion.  When  the  robot  completed  collision  avoid-
ance, the end-effector returned to the pause position and continued to
perform  the  task  along  the  desired  trajectory. Fig. 10 (b)  shows  the
trajectory of the end-effector position in Fig. 11. The maximum posi-
tion  error  between  the  end-effector  and  the  desired  trajectory  when
performing the desired task is 2.589 mm. In Fig. 9(b), the minimum
distance  between the  robot’s  whole  body and the  obstacles  is  0.165
m, which occurs at 1.15 s.

Conclusions: We propose a multi-joint  active collision avoidance
method  based  on  depth  visual  perception,  that  makes  the  robot’s
whole  body  has  a  rapid  response  and  smooth  motion  in  unknown
dynamic obstacles environment. The core of this method is an inno-
vative model that combines depth vision and a robot skeleton to gen-
erate active repulsion forces for robot joints, whose reliability is veri-
fied by the  experiments.  But  now the  method does  not  consider  the
optimization of motion planning, which is the direction of our future
research.
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Fig. 10. The trajectory of robot end-effector. (a) Results of Experiment 1; the
end-effector task is to reach the desired position; (b) Results of Experiment 2;
the end-effector task is to draw a hexagonal trajectory.
 

 

 
Fig. 11. Experiment 2: Multi-joint collision avoidance.
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