
 

Letter

Distributed Nash Equilibrium Seeking Over
Random Graphs

Ji Ma, Jiayu Qiu, Xiao Yu, Member, IEEE, and
Weiyao Lan, Senior Member, IEEE

   Dear Editor,

This letter is concerned with the distributed Nash equilibrium (NE)
seeking in an N-player game over random graphs. We develop a dis-
tributed  stochastic  forward-backward  (DSFB)  algorithm  based  on
local information exchange between agents. We prove that the DSFB
algorithm can converge to an NE almost surely, and analyze the con-
vergence rate of the proposed algorithm. Compared with the existing
works  on  distributed  NE  seeking,  the  communication  graph  in  this
letter is supposed to be time-varying and stochastic, which makes the
NE  seeking  algorithm  more  suitable  for  practical  scenarios,  but
brings a great challenge in both the design and convergence analysis
of the algorithm. Besides, by establishing a variational inequality on
NE, we relax the co-coercivity or strong monotonicity assumption on
the extended pseudo-gradient.

NE seeking is an essential topic in game theory and several classi-
cal  NE  seeking  algorithms  have  developed.  Recently,  benefit  from
the technique of consensus, distributed NE seeking approaches have
been  proposed.  Different  from  the  classical  NE  seeking  algorithms
where all  the players  are available to the strategy information of  all
other players, in the setting of the distributed NE seeking algorithms,
each player may only access to the strategy information of its neigh-
bors. The distributed NE seeking problems has attracted much atten-
tion,  due  to  its  widely  application  on  vehicle  networks  [1],  dis-
tributed power control [2], wireless communication networks [3], [4]
and other fields.

The  early  works  on  distributed  NE  seeking  focused  on  the  case
with balanced communication graphs. In [5], the distributed NE seek-
ing problem over a connected undirected communication graphs was
considered,  and  the  consensus  protocol  and  gradient  method  were
combined to design a continuous-time NE seeking algorithm. In [6],
the  authors  considered  the  distributed  NE  seeking  problem  with
bounded control input. In [7], the distributed NE seeking problem for
aggregative  games  was  further  studied.  In  [8],  a  distributed  method
based  on  the  forward-backward  splitting  method  was  presented  to
solve generalized NE in non-cooperative games. Recently, in [9]–[11],
the distributed NE seeking problem over unbalanced communication
graphs was investigated, while in [12], [13] the distributed NE seek-
ing  problem  over  switching  communication  graphs  was  studied.
In [14], an asynchronous Gossip based algorithm was proposed and it

was  shown  that  if  the  the  pseudo-gradient  of  the  cost  functions  is
bounded, the proposed algorithm converges to an NE in probability.

In  summary,  the  communication  graph  is  required  to  be  determi-
nistic  in  most  existing  works  on  distributed  NE  seeking.  In  fact,
according  to  [15],  to  deal  with  the  uncertainties  of  communication
process in practice, one effective approach is to model the communi-
cation networks as random graphs. Though a number of works focu-
sed  on  distributed  optimization  over  random  graphs  [15]–[17],  yet
there are rare existing results on distributed NE seeking over random
graphs, which motivates this work. To solve the distributed NE seek-
ing  problem  over  random  graphs,  we  design  a  DSFB  algorithm
which is able to converge to an NE in probability 1.

The main contributions of this letter are stated as follows. First, in
contrast  to  the  existing  works  on  distributed  NE seeking  over  fixed
communication  graphs,  the  communication  graph considered  in  this
letter is time-varying and stochastic, which is more general and more
practical.  Besides,  our  work provides a  new approach for  the distri-
buted NE seeking problem with random packet-loss and gossip com-
munication.  Second,  compared  with  the  cocoercivity  assumption  in
[18] and strong monotonicity assumption in [1],  [5],  a more relaxed
assumption on the extended pseudo-gradient is used. Third, the pro-
posed algorithm is able to deal with the games where a Nash equilib-
rium exists but the strategy set is not bounded, for instance, coercive
games  [19]  and  non-compact  qualitative  games  [20].  While  the
boundness of pseudo-gradient and strategy set is required in [14].

V = {1, . . . ,N} xi ∈ Xi
Xi ⊂ Rni

X =∏i∈VXi ⊂ RnN∏
n =
∑N

i=1 ni.

x−i ∈ X−i :=
∏

j∈{1,...,N}\{i}X j

x = col(xi, i ∈ V) ∈ Rn Ji(xi, x−i)
(xi, x−i)

G(V,Xi, Ji)

Problem formulation: Consider  a  game with N  players  of  which
the set can be described as . For player i,  repres-
ents its strategy, and  represents the private local strategy set
of  player i .  Then,  represents  the  strategy  set  of
all  players,  where  denotes  the  Cartesian  product  and 
For  simplicity,  denote  as  the  strate-
gies of all players except i-th player. Denote the stacked vector of all
the  players’ stra tegies  as .  repre-
sents the cost function of player i under the strategy . In sum-
mary,  an N-players  game can be denoted as .  In context
of  a  networked  game,  each  player  aims  to  minimize  its  own  cost
function, that is
 

min
xi

Ji(xi, x−i)

s.t. xi ∈ Xi, ∀i ∈ V. (1)
Next, we give the formal definition of the NE.

G(V,Xi, Ji) (x∗i ,
x∗−i) ∈ X Ji(x∗i , x

∗
−i) ≤ Ji(xi, x∗−i),∀i ∈ V, xi ∈ Xi.

Definition  1:  Given  a  game ,  a  strategy  profile 
 is said to be a NE if 

To proceed further, the following assumptions are needed.
Assumption 1: For each player i,

Xi , ∅1) The strategy set , and is compact and convex;
x−i Ji xi

x, y ∈ Rni , x−i ∈ Rn−ni , Ji(y, x−i) ≥ Ji(x, x−i)+
⟨y− x,∇iJi(x, x−i)⟩, ∇iJi(x, x−i) =

∂Ji
∂x (x, x−i)

2) For any ,  is  continuously differentiable and convex in ,
that  is,  for  any  and   

 where .
F : Rn→ Rn

F(x) = [∇xi Ji(xi, x−i)], i ∈ V.
θ0
θ0 ⟨x− x̃,F(x)−F(x̃)⟩ ≥ µ∥x− x̃∥2,

∥F(x)−F(x̃)∥ ≤ θ0∥x− x̃∥, ∀ x, x̃ ∈ Rn

Assumption  2:  Let  be  the  pseudo-gradient  of  the
game  (1)  defined  as  The  pseudo-gradi-
ent F is μ-coercive and -Lipschitz continuous, that is, there are two
positive constants μ  and  such that 

.
Remark 1:  Assumption 1 is  the convexity assumption and is  used

to  guarantee  the  existence  of  an  pure  NE.  While  Assumption  2  is
used  to  guarantee  the  uniqueness  of  the  NE.  Both  assumptions  are
standard and widely used in the existing works on NE seeking prob-
lem, for instance [7], [10], [18]. As a matter of fact, a range of practi-
cal  problem  settings  satisfy  Assumptions  1  and  2,  such  as  Nash-
Cournot games, rate allocation problems and so on.

Due to external interference, communication links may be interru-
pted during the wireless transmission. It is assumed in this letter that
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Gk = {V,Ek},
k = 0,1, . . . , V = {1, ...,N}

Ek (i, j)
( j, i) ∈ Ek ( j, i)

wk
i j ( j, i) < Ek

wk
i j = 0 Wk = [wk

i j]N×N

players interact with each other through a random graph 
 containing  no  self-edges,  where  is  the  set

of  players  and  is  the  set  of  bidirectional  edges  at  time k.
Specifically,  and  the  edge  is  associated  with  positive
weight  if player i can get information from player j;  and

, otherwise. Denote the weight matrix as . The
following  assumption  on  the  weight  matrix  of  random  communi-
cation graphs is required.

WkAssumption 3: The weight matrix  is required to satisfy that
W1,W2, . . . ,1)  are independent and identically distributed;
Wk Wk1N = 1N 1T

NWk = 1T
N ;2)  is weight balance, that is,  and 

E{WT
k Wk}

ρ(E{WT
k Wk}−1N1T

N/N) < 1, ρ(·)
E{WT

k Wk}
WT

k Wk

3) The second largest  eigenvalue of  is  less  than 1,  i.e.,
 where  represents the spectral radius,

and  represents  the  expectation  of  the  stochastic  matrix
.

Gk Lk = IN −Wk
L = E{Lk}, L
0 = λ1(L) < λ2(L) · · · ≤ λN (L) λN (Lk) ≤ 2

P(A) = 1
G(V,E)

E W = E{Wk}

Next, define the Laplacian matrix of  as . Letting
 we  obtain  that  the  eigenvalue  of  can  be  sorted  as

. Besides, by disk theorem, 
almost  surely.  For  an  event A ,  if ,  we  say A  holds  almost
surely.  Define  the  expectation  of  the  random  graphs  as ,
where the edges set  is associated by the weight matrix .

W

G

Gk

Remark 2:  Assumption 3  is  a  mild  assumption on random graphs
and is widely used in the existing works on distributed optimization
over random graphs [15]–[17], [21]. By item 1) of Assumption 3, the
expectation  of  weight  matrix  exists,  and  is  also  weight  balance.
The item 3) of Assumption 3 is equivalent to the fact that the expec-
tation  is connected, and is thus necessary. Although Assumption 3
requires  the  graphs  to  be  weight  balanced,  yet  it  indeed  relaxes
requirement on the connectivity of graphs. Under Assumption 3, the
graph  is allowed to be always disconnected at any time. While for
the case with deterministic graphs, the graph needs to be always con-
nected, e.g., [1], [12].

Next, we present the problem statement of this letter.

Gk

x = col(x1, . . . , xN )

Problem 1 (Distributed NE seeking problem over random graphs):
Given N  players  and  a  random  communication  graph ,  design  a
distributed NE seeking algorithm such that the strategy of all players

 converges to an NE almost surely.
To solve Problem 1, the following technical lemma is required.

(Ω,F ,P) {Fk, k ∈ N}
σ− F0 ⊆ F1 ⊆ · · · ⊆ Fk ⊆ · · · ⊆ F

V(k) S (k) U(k) Fk−
k ∈ N. V(k) S (k)

U(k) E{V(k+1)|Fk} ≤
(1+γk)V(k)−S (k)+U(k),

∑∞
i=0 U(i) <∞,

γk, k ∈ N∑∞
k=0 γk <∞, V(∞)

∑∞
k=0 S (k) <

∞

Lemma  1  (Robbins-Siegmund  quasi-martingale  [22]):  Given  a
probability space , assume that the filtration  is a
collection  of  sub- fields  satisfying .
The  stochastic  processes , ,  and  are   measurable
random variables for any  The stochastic processes , 
and  are assumed to be positive almost surely. If 

 hold  almost  surely,  where
 is  a  positive  and  decaying  real  sequence  and  satisfies

 then the limit  exists almost surely, and 
 almost surely.

xi = (xi
i, x

i
−i)

xi
i

xi
i

xi. xi
−i

Main  results: To  solve  the  distributed  NE  seeking  problem  over
random graphs, a DSFB algorithm is presented. In context of the dis-
tributed  NE  seeking  problem,  the  information  of  all  other  players
may not be available to each player i .  Hence,  in most of distributed
NE seeking algorithm, for each player i, an estimator  is
implemented to estimate the strategies of all players. Specifically, 
is the strategy of player i .  For notation consistent, we use  instead
of  While  is the estimation of the strategies of all other players
by player i. In this case, the NE seeking problem (1) can be reformu-
lated as in the following distributed manner:
 

min
xi

i∈Xi

Ji(xi
i, x

i
−i)

s.t. xi = x j, ∀i, j ∈ V. (2)
To  solve  the  distributed  NE  seeking  problem  (2),  the  following

DSFB algorithm (Algorithm 1) over random graphs is proposed.
The parameters of DSFB algorithm are designed as follows：

c > 01)  is a constant and will be given in (6);

αk
· · · ≤ α1 ≤ α0,

∑∞
k=0αk =∞,

∑∞
k=0 (αk)2 <∞.

2)  The  step-size  is  a  decaying  positive  sequence,  and  satisfies

αkTo satisfy 2), the step-size  can be chosen as
 

αk =
C

(k+1)p , k = 0,1, . . . (3)

1/2 < p < 1 C > 0where , and .

Algorithm 1 DSFB With Random Graphs

xi
i(0) ∈ Xi xi

−i(0) ∈ R(n−ni)1: Initialization , 
k = 1,2, ...2: for  do

i ∈ V3:　　for each agent  do
Iteration

xi
i(k+1) = PXi

[
xi

i(k)−αk
(∇xi Ji(xi

i(k), xi
−i(k))4:  

+c
∑N

j=1 wi j(k)(xi
i(k)− x j

i (k))
)]

                      
xi
−i(k+1) = xi

−i(k)−αkc
∑N

j=1 wi j(k)(xi
−i(k)− x j

−i(k))5:  
6:　　end for
7: end for

c
∑

j∈Ni wi j(k)(xi
i(k)−

x j
i (k)) xi(k)− x j(k)→ 0.

αk

1/2

Remark 3: The parameter c is required to be sufficiently large sat-
isfying  (6).  In  this  case,  the  consensus  term 

 can  guarantee  that  That  is,  each  player  can
accurately estimate the strategies of all other players, which is signif-
icant  for  the  convergence  analysis  of  Algorithm  1.  According  to
Theorem 1,  the  step-size  determines  the  convergence  rate.  For  a
faster  converge  speed  of  Algorithm 1, p  is  chosen  smaller  and  thus
is close to .

x = col(x1, . . . , xN ) ∈ RnN x = col(x1
1, . . . , x

N
N )

Ak := RF(x)+ cLkx,B := RNX(x) R :=
diag(R1, . . . ,RN ) Ri = col(0n1×n1 , . . . , 0ni−1×ni−1 , Ini×ni ,0ni+1×ni+1 ,
. . . ,0nN×nN ) Lk =Lk ⊗ IN F(x) =
col(∇1J1(x1), . . . , ∇N JN (xN )) NX(x) =

∏n
i=1 NXi (xi),

NXi (xi) = {y ∈ Rni |yT (x− z) ≤ 0, ∀ z ∈ Xi}

Ak B

Let ,  and .  Define  the
following two operators  where 

 with   
, ,  the  extended  pseudo-gradient 

  and   with
.  It  is  worth  pointing  out

that Algorithm 1 is a typical stochastic forward-backward algorithm
corresponding to the operators  and .

x∗ = 1N ⊗ x∗ x∗
Lemma 2: Under Assumptions 1 and 2, Algorithm 1 has a unique

fixed point , where  is an NE of game (1).
x∗

0ni ∈ ∇xi Ji(x∗i , x
∗
−i)+NXi (x∗i ), i ∈ V.

x∗ = 1N ⊗ x∗ x∗ =
col((x1

1)∗, (x1
−1)∗, . . . ,(x1

N )∗, (x1
−N )∗)
(xi

i)
∗ = (x j

−i)
∗, x∗ =

x⊗ IN x ∈ Rn.

0ni ∈ ∇xi Ji((xi
i)
∗,(xi
−i)
∗)+NXi ((xi

i)
∗), i ∈ V.

x = x∗ x∗ =1N ⊗ x∗

Proof: By Karush-Kuhn-Tucker (KKT) condition, if  is an NE of
game  (1),  then  It  implies  that

 is  a  fixed  point  of  Algorithm  1.  Assume  that 
 is  a  fixed  point  of  Algorithm  1.

By  Step  5  in  Algorithm  1,  which  implies  that 
 holds  for  some  By  Step  4  in  Algorithm  1,  we  can

obtain  that  By  KKT  con-
dition, , and thus . That is, the fixed point of Algo-
rithm 1 is unique. ■

x(k) = col(x1(k), . . . , xN (k)) ∈ RnN G(x(k)) =
col(G1(x1(k)), . . . ,GN (xN (k))) ∈ RnN Gi(xi(k)) = col(0n1 , . . . ,

0ni−1 ,∂IXi (xi
i(k)),0ni+1 . . . ,0nN ) ∈ Rn

Lemma  3:  Let  and  
,  where 

. Then, the updates in Algorithm 1
can be rewritten as
 

x(k+1) = x(k)−αk(F(x(k))+ cRLkx(k)−G(x(k+1)) (4)

Lk :=Lk ⊗ INwhere .
g(xi

i(k), xi
−i(k)) = xi(k) − αki(∇xi Ji(xi(k), xi

−i(k))+
c
∑

j∈Ni wi j(k)(xi(k)−x j
i (k)

Proof:  Let  
. Then,

 

xi
i(k+1) = argmin

xi
i

{
1
2
∥x−g(xi

i(k), xi
−i(k))∥2 +∂IXi (x)

}
∈ g(xi

i(k), xi
−i(k))−∂IXi (xi

−i(k+1)) (5)

which implies that (4) holds. ■
RNn

The  following  assumption  is  required  to  establish  a  monotonicity
property  for  the  augmented  space  in  Lemma  4,  and  is  signifi-
cant in the convergence analysis of DSFB algorithm.

Assumption 4: The extended pseudo-gradient F is θ-Lipschitz con-
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∥F(x)−F(y)∥ ≤ θ∥x− y∥, ∀ x, y.tinuous, that is, 

∇Ji

It is worth pointing out that Assumption 4 holds when the gradient
 is Lipschitz continuous and is weaker than co-coercivity in [18]

and strong monotonicity in [1], [5].
The  following  lemma  is  required  for  the  convergence  analysis  of

DSFB Algorithm.
L =

E{Lk} λ2(L) > 0.
Lemma  4:  Under  Assumptions  2–4,  the  expectation  matrix 

 satisfies  Choose c as any constant satisfying 

c > c0 =

(
(θ+θ0)2

4µ + θ
)

λ2(L)
(6)

where μ  is  any  positive  constant.Then,  the  following  variational
inequality holds:
 

⟨RF(x)+ cL̃x+G(x),x−x∗⟩ > 0, ∀ x , x∗. (7)
λ2(L) > 0.

Ψ =

[
µ/n −(θ+ θ0)/2

√
n

−(θ+ θ0)/2
√

n cλ2(L)− θ

]
x̃ ∈ Ker(L)

Proof:  According  to  the  third  item  In  Assumption  3, 
According to [23, Lemma 2], when c satisfies (7), we have the matrix

 is  positive  defined.  Then,  for

any x and ,
 

(x− x̃)T (RF(x)−RF(x̃)+ cLk(x− x̃)) ≥ µ̄∥x− x̃∥2 (8)
µ̄ := λmin(Ψ) > 0where .

G(x)According to the definition of , we have
 

⟨G(x)−G(x∗),x−x∗⟩

=

N∑
i=1

⟨∂IXi (xi
i)−∂IXi ((xi

i)
∗), xi

i − (xi
i)
∗⟩. (9)

Then, we obtain
 

⟨G(x)−G(x∗),x−x∗⟩
= ⟨NXi (xi

i)−NXi ((xi
i)
∗), xi

i − (xi
i)
∗⟩ ≥ 0. (10)

RF(x∗)+ cL̃x∗ +G(x∗) = 0Since , then we have
 

⟨RF(x)+ cL̃x+G(x),x−x∗⟩
= ⟨RF(x)−RF(x∗)+ cL̃x− cL̃x∗,x−x∗⟩
+ ⟨G(x)−G(x∗),x−x∗⟩ ≥ µ̄∥x−x∗∥2 > 0. (11)

■
Next, we present the main result of this letter.

xi(k), i ∈ V x∗ O(1/kα)
x∗ 0 < α < 1/2

Theorem  1:  Under  Assumptions  1–4,  with  the  DSFB  Algorithm,
each , converges to  with the convergence rate ,
where  is an NE of game (1) and .

0nN ∈ RF(x∗)+
cL̃x∗ +G(x∗).

Proof:  According  to  KKT  condition,  we  have 
 Then, it follows from (4) that:

 

x(k+1)−x∗ −αkGx(k+1))+αkG(x∗)
= x(k)−x∗ −αk(RF(x(k))+ cLkx(k)−RF(x∗)− cL̃x∗) (12)

which implies that
 ∥∥∥x(k+1)−x∗

∥∥∥2 ≤ α2
k∥RF(x(k))+ cLkx(k)

− (RF(x∗)+ cL̃x∗)∥2 + ∥x(k)−x∗∥2

−α2
k∥G(x(k+1))−G(x∗)∥2 −2αk⟨RF(x(k))+ cLkx(k)−RF(x∗)

+ cL̃x∗,x(k)−x∗⟩−2αk⟨G(x(k+1))−G(x∗),x(k+1)−x∗⟩.
(13)

Then, the first term of the right-hand side of (13) satisfies
 

∥RF(x(k))+ cLkx(k)− (RF(x∗)+ cL̃x∗)∥2

≤ 2∥R∥2∥F(x(k))−F(x∗)∥2

+4c2∥Lk∥2∥x(k)−x∗∥2 +4c2∥Lk − L̃∥2∥x∗∥2

= (2θ02 +16c2)∥x(k)−x∗∥2 +32c2∥x∗∥2 (14)
(a+b+ c)2 ≤ 2a2 +4b2 +4c2,

∀a,b,c ∈ RN ∥Lk∥ ∥L̃∥

0.

where  the  first  inequality  holds  since 
, and the second inequality holds since both of , 

are smaller than 2. It follows from (10) that the last term of the right-
hand side of (13) is larger than 

Based on the above analysis, we can obtain

 ∥∥∥x(k+1)−x∗
∥∥∥2

≤ (1+ (αk)2(2θ02 +16c2))∥x(k)−x∗∥2 +32(αk)2c2∥x∗∥2

−2αk⟨RF(x(k))+ cLkx(k)−RF(x∗)+ cL̃x∗,x(k)−x∗⟩
−2αk⟨G(x(k+1))−G(x∗),x(k+1)−x∗⟩. (15)

V(k) = ∥x(k)−x∗∥2 +2αk⟨G(x(k))−G(x∗),x(k)−x∗⟩,Let  and  we
have 

V(k+1)∥x(k+1)−x∗∥2
+2αk⟨G(x(k+1))−G(x∗),x(k+1)−x∗⟩
≤ (1+α2

k(2θ02 +16c2))V(k)+32α2
kc2∥x∗∥2

−2αk⟨RF(x(k))+ cLkx(k)+G(x(k)),x(k)−x∗⟩
−2αk⟨RF(x∗)+ cLkx∗ +G(x∗),x(k)−x∗⟩. (16)

Next, we calculate the following conditional expectation:
 

E {V(k+1)|Fk}
≤ (1+α2

k(2θ02 +16c2))E{V(k)}+32α2
kc2∥x∗∥2

−2αk⟨RF(x(k))+ cL̃x(k)+G(x(k)),x(k)−x∗⟩. (17)∑∞
k=0α

2
k < ∞

∑∞
k=0(αk)2(2θ20 + 16c2) < ∞,∑∞

k=0 32(αk)2c2∥x∗∥2 <∞
Since ,  we  obtain 

. ∑∞
k=0αk⟨RF(x(k))+ cL̃x(k)+

G(x(k)),x(k)−x∗⟩ <∞, limk→∞V(k) = V(k) <∞ almost surely.
Then,  it  follows  from  Lemma  1  that 

x(k) , x∗ ⟨RF(x(k))+ cL̃x(k)+
G(x(k)),x(k)−x∗⟩ > 0

∑∞
k=0αk =∞, limk→∞⟨RF(x(k))+

cL̃x(k)+G(x(k)),x(k)−x∗⟩ = 0

According  to  Lemma  4,  if ,  then 
. Since  we have 

.
limk→∞ x(k) = x∗ 1/2 < p <

1−α αk =C/(k+1)1−α−ϵ , 0 < ϵ < 1−α− p∑∞
k=0 Cµ̄/(k+1)1−α−ϵ∥x(k)−x∗∥2 <∞.

∥x(k)−x∗∥2≤C0/(k+1)α, C0

It  follows  from  (11)  that .  Choosing 
 in (3), we have  where . It

follows  from  ()  that  Hence,
 holds for some positive constant . ■

Remark  4:  As  shown  in  the  proof  of  [23,  Lemma  2],  the  bound-
ness of pseudo-gradient and strategy set is not used for establishing [23,
Lemma 2]  which is  employed to  prove Lemma 4.  This  implies  that
the compactness assumption on the strategy set in Assumption 1 can
be replaced with some relaxed assumptions which guarantee the exis-
tence of a Nash equilibrium, for instance, the coercive game assump-
tion [19]. Thus, Algorithm 1 can still be applied to the games under
those  relaxed  assumptions,  such  as  coercive  games  [19]  and  non-
compact qualitative games [20]. While the boundness of pseudo-gra-
dient  and  strategy  set  is  necessary  in  convergence  analysis  of  [14],
which makes the algorithm in [14] not applicable to these games.

Remark 5: The convergence analysis in this paper is different from
that in the existing works on fixed communication graphs [5], [8], [13].
On the one hand, the convergence analysis in these existing works is
established  based  on  Lyapunov  theory,  and  requires  the  second
smallest eigenvalue of the Laplacian matrix of the graph to be posi-
tive,  which  implies  that  the  communication  graph  has  to  be  con-
nected all the time. This condition does not hold under Assumption 3,
and thus the approaches on convergence analysis in [5], [8], [13] can-
not be applicable any longer. On the other hand, the update system in
Algorithm 1 is stochastic, which brings a great challenge for conver-
gence analysis of Algorithm 1. To handle this issue, we establish the
stochastic convergence analysis by the aid of the Robbins-Siegmund
quasi-martingale.

Remark 6: This paper provides a new approach for distributed NE
seeking problem with packet-loss or gossip communication. The pro-
posed  approach  can  deal  with  the  uncertainties  of  communication
process  effected  by  external  random  disturbances,  and  the  con-
straints of communication capacity of each player.

Gk P(Gk = Gi) = pm,
m = 1,2,3 p1 = 0.5, p2 = p3 = 0.25 Gm

w1
12 = w1

14 = w1
54 = 1/2, w1

21 = w1
54 = 1, w1

i j = 0,
w2

42 = w1
43 = 1/2, w2

34 = w2
24 = 1, w2

i j = 0, w3
23 = w3

25 = 1/2,
w3

32 = w3
52 = 1, w3

i j = 0,
xi = col(xi1, xi2) x = col(x1, . . . , x5)

Numerical example: Consider a game with five players and a ran-
dom  graph  shown  in Fig. 1  which  satisfies 

 with  .  The  weight  in  is  cho-
sen  as:    otherwise;

   otherwise; 
  otherwise. Denote the strategy of the player i

as  and  .  The  cost  functions  of  the
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J1(x) = x2
11 −2x11 + x2

12 − x12 + ∥x1 − x4∥2, J2(x) =
2x2

21 +4x21 +2x2
22 −2x22 + ∥x2 − x4∥2, J3(x) = 3x2

31 +2x31 +3x2
32+

x32 + ∥x3 − x1∥2, J4(x) = 2x2
41 − x41 +2x2

42 + x42 + ∥x4 − x2∥2, J5(x) =
x2

51 +2x51 + x2
52 −2x52 + ∥x5 − x4∥2

five  players  are  
 

  
.

Xi = [−1,1]2 c = 1 αk = 0.05/
(k+1)0.6

The strategy set is set to . Select  and 
.  The  strategy  simulation  of  all  players  is  shown  in Fig. 2,

which shows that Algorithm 1 achieves the NE.
Conclusion: In this letter, we investigate the distributed NE seek-

ing problem in an N-player game over random graphs. We develop a
DSFB algorithm based on local information exchange between play-
ers.  We prove  that  the  DSFB algorithm converges  to  an  NE almost
surely. Compared with the existing works on distributed NE seeking,
the communication graph in this letter is time-varying and stochastic.
Future  work  includes  extension  to  non-weight  balance  communica-
tion  graphs,  and  algorithms  with  a  fixed  step-size  to  ensure  linear
convergence.
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Fig. 1. The random graphs with five players.
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Fig. 2. Strategies of all players.
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