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   Dear Editor,

This work investigates the issue of facial cartoonlization under the
condition  of  lacking  training  data.  We  propose  a  domain-guided
model  (DGM) to realize  facial  cartoonlization for  different  kinds of
faces. It includes two parts: 1) a domain-guided model that contains
four  different  interface  networks  and  can  embed  an  image  from  a
facial  domain  to  a  cartoon  domain  independently;  and  2)  a  one-to-
one tutoring strategy that uses a sub-model as a teacher to train other
interface networks  and  can  yield  fine-grained  cartoon  faces.  Exten-
sive  qualitative  and  quantitative  experimental  results  validate  our
proposed  method,  and  show  that  DGM  can  yield  fine-translated
results  for  different  kinds  of  faces  and  outperforms  the  state  of  the
art.

Introduction: Facial cartoonlization is a promising and interesting
topic and can be used to image processing, secure computing, social
media, the internet of things, and finance. CycleGAN [1] uses a cycle
consistency  loss  to  realize  facial  cartoonlization  [2]–[7]  based  on
generative adversarial  networks [8],  [9].  U-GAT-IT [10]  proposes  a
module  named  class  activation  map  (CAM)  that  guides  a  model  to
focus on key regions to realize facial cartoonlization. Photo2cartoon
[11] is Minivision’s open-source mini-program, which is built on U-
GAT-IT  and  can  be  used  to  enhance  the  generative  ability.  These
mentioned methods can only work well based on sufficient data, and
can not realize a fine translation when lacking data. Besides, collect-
ing  different  kinds  of  faces  is  very  difficult  and  suffers  from  data
imbalance,  which  leads  to  mode  collapse  in  training  phase  and
impedes facial cartoonlization. Therefore, two issues must be solved:
1)  how  to  translate  different  kinds  of  faces  in  one  training  phase
without  affecting  each  other?  2)  how  to  obtain  fine-grained  facial
cartoonlization under insufficient  or  lack of data? This motivates us
to develop a novel model that can: 1) realize facial cartoonlization for
different  kinds  of  faces  with  one  model  and  without  affecting  each
other;  2)  yield  fine-grained  translated  results  under  insufficient  or
lack of data.

After a rigorous statistical analysis of the dataset used by the above
methods, we find that most of the existing data are for young women,
not  men,  kids,  and  the  elderly.  In  this  work,  we  regard  a  young
women dataset as a support set that is used to train a domain-guided
model. We treat the model as a teacher for translating men, kids, and
the  elderly.  It  is  reasonable  since  these  faces  are  all  in  the  facial
domain  despite  they  are  different  from  those  of  men,  kids,  and  the
elderly.  Therefore,  we  redesign  a  generative  framework  and  detach
four  different  interface  networks  for  1)  young  women,  2)  men,
3) kids, and 4) the elderly, respectively. The interface networks aim
to extract and translate different features in which their middle layers
are shared with young women networks. Furthermore, we propose a

one-to-one tutoring strategy to train these interface networks. Experi-
mental  results  show  that  the  proposed  domain-guided  model  and
strategy can well translate men, kids, and the elderly to cartoon faces
without affecting each other. The creative contributions are:

1) We propose a domain-guided model based on the design idea of
modularization,  which  consists  of  four  different  interface  networks
and  describes  the  independence  of  networks.  The  model  is  flexible
and can embed different kinds of faces into cartoons without affect-
ing each other. It solves the issue of using only one detached model
to realize facial cartoonlization for different kinds of faces.

2)  We  propose  a  one-to-one  tutoring  strategy,  which  uses  the
domain-guided  model  to  train  four  different  interface  networks  and
describes  the  similarity  of  these  networks.  A  well-trained  women
sub-model can guide the other sub-models to find an optimal initial-
ized  translation  domain.  It  yields  fine-grained  results  for  men,  kids,
and the elderly as achieved for young women. It  solves the issue of
realizing  fine-grained  facial  cartoonlization  under  the  conditions  of
lacking data.

Experimental  environment: The  models  involved  in  the  experi-
ments  are  trained  on  a  workstation  equipped  with  an  Intel(R)  Xeon
(R)  CPU  @2.20GHz  and  two  NVIDIA  Tesla  V100  dual-channel
GPUs. All experiments are performed under the Pytorch 1.7 environ-
ment, Cuda 10.0.44, and cuDNN 10.0.20.

Proposed framework: The whole framework is shown in Fig. 1. It
contains five  modules,  i.e.,  four  different  interface  networks,  hour-
glass  blocks,  a  CAM module  [12],  a  discriminator,  and  a  classifier.
The interface networks receive different input faces and output their
corresponding translated  cartoon  faces.  The  sky-blue  interface  net-
work receives young women’s faces, which is regarded as a teacher
to  guide  the  other  interface  networks.  The  purple,  yellow,  and  gray
interface  networks  correspond to  men (Student  1),  kids  (Student  2),
and  the  elderly  (Student  3),  respectively.  The  hourglass  blocks  are
fully considered to improve the extracted and translated performance
in  a  progressive  way.  Notice  that  the  sky-blue  background  denotes
that the parameters of the teacher’s hourglass blocks are shared with
other students.  The  CAM module  can  be  used  to  distinguish  differ-
ent facial domains by paying more attention to discriminative image
regions. The  discriminator  is  applied  to  distinguish  whether  a  car-
toon face is real or translated.
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Training strategy and loss function: We denote the interface netw-
orks for the encoder and decoder as  and , where  0, 1,
2,  and 3  corresponding to  teacher,  Students  1,  2,  and 3.  The shared
hourglass  blocks  for  the  encoder  and  decoder  are  denoted  as 
and . For a face , the translator  aims to map  to a cartoon
face from facial domain  to cartoon domain . It can be written as
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The training process comprises the following steps: 1) train a fine
translator  as  a  domain-guided  model,  which  can  map  young
women  face  to  cartoon  face  well;  2)  initialize  shared  parameters

 and  for  each  student.  and  are  sufficient  to
capture the common styles for different facial domains. It is owing to
that  is trained on a large number of samples; and 3) update the
parameters  for  different  interface  networks,  i.e.,  and ,
where  1, 2, and 3.
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Notice  that  the  parameters  of  each  interface  network  are  updated
independently and under the supervision of . Thus, it belongs to
a one-to-one tutoring strategy.
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Denote the facial domain distribution as , cartoon domain distri-
bution  as ,  the  discriminator  for  the  cartoon  domain  as .  The
training process for  is formulated as follows:

Xc

1)  Adversarial  loss:  It  is  introduced  to  match  the  distribution  of
translated images to :
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2) Cycle loss:  It  is  employed to alleviate the mode collapse prob-
lem [1]
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F
3)  Identity  loss:  The  cosine  distance  [13]  based  on  a  pre-trained

face recognition model  is fully considered, which ensures the iden-
tity distributions of input and output images are similar
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4) CAM loss: It is used to capture what makes the most difference
between two domains [12] in the current state by using the auxiliary
classifiers  and .
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5) Domain-guided loss: We detach another classifier  on the top
of , which can be used to classify the different interface networks.
The  loss  contains  two  items:  a)  a  loss  of  real  facial  images  used  to
optimize ;  b)  a  loss  of  fake  images  used  to  optimize  and
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where  represents  a  probability  distribution  for  different
interface networks computed by .

Comparison: We  compare  DGM  with  CycleGAN,  U-GAT-IT,
Photo2cartoon,  and  group-based  method  (GP)  [13],  these  methods
are the most recent and the best ones. The last one proposes a group-
based  method  for  few-shot  cartoon  face  generation.  The  results  are
shown in Fig. 2. We have three observations: 1) DGM can well trans-
late real faces to cartoons for men, kids, and the elderly, despite lack
of training  data;  2)  DGM can  well  preserve  the  facial  identity,  out-
line,  and local  details,  i.e.,  lipstick  and hair  color;  3)  The translated
results for different kinds of faces without affecting each other. The
favorable translation is owing to our detached domain-guided model
and one-to-one tutoring strategy.

The detached  domain-guided  model  contains  four  different  inter-
face networks, which ensures that other sub-models are trained with
supervision  from  the  sub-model  of  women  in  one  training  process.
The  one-to-one  tutoring  strategy  is  an  online  one,  which  can  adjust
the model’s parameters in real-time.

Table 1 shows  the  experimental  results  on  spatial  and  comput-
ational complexity: 1) Trainable model parameters (TMP); 2) Model
size  (MS);  3)  Floating-point  of  operations  (FLOPs);  4)  Amount  of

multiply-adds (MAdd); 5) Memory usage (MemR); and 6) Inference
time (IT).

f → c
c→ f

Ablation studies: We expect to evaluate DGM in two aspects: 1)
its  effectiveness;  and  2)  whether  the  one-to-one  tutoring  strategy
improves  the  performance.  Therefore,  we  set  two  configurations:
DGM with and without the one-to-one tutoring strategy. The results
show that DGM with the strategy eliminates image artifacts and fur-
ther  improves  the  translated  quality  for  facial  cartoonlization.
Besides, we fully evaluate the translated faces for domains  and

 based  on  many  full-reference  metrics  [14].  The  quantitative
results are shown in Tables 2 and 3. DGM outperforms all the com-
pared methods on SSIM, PSNR, MSSSIM, VSI, VIF, FSIM, GMSD,
LPIPS, and DISTS [8], [14]–[19].

Discussion  and  conclusion: In  this  letter,  we  propose:  1)  a
detached domain-guided model that translates different kinds of faces
in one model and without affecting each other; 2) a one-to-one tutor-
ing strategy that realizes fine-grained facial cartoonlization under the
conditions  of  lacking  data.  However,  our  method  may  have  some
failure  cases,  e.g.,  it  has  obvious  distortions,  especially  in  the  eyes.
We also do not fully consider edge detection. Besides, the evaluation
metrics  are  subjective  since  cartoon  faces  have  no  specific  ground
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Fig. 1. The framework of DGM, which receives four different kinds of faces and can translate these faces to cartoons well. Details are described in proposed
framework.
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Fig. 2. The  qualitative  comparison  results  with  CycleGAN  [1],  U-GAT-IT
[12], Photo2cartoon [11], and Group [13].
 

 

Table 1.  The Results on Model Complexity. M/u Denotes a Metric M and its
Corresponding Unit

TMP (million) MS/MB Flops (G) MAdd (G) MemR (GB) IT (s)

3.58 616.06 15.65 31.21 645.27 0.053
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truth. We plan to study a novel attention module by considering edge
detection to improve translated performance.
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f → cTable 2.  Quantitative Comparison Results for Domain . Methods With the Best and Runner-Up Performances are Colored With Red and Blue, Respec-
tively. The Higher the Metric Value, the Better the Performance

f → c :
Configure

Women Men Kids Elderly

Cycle GAT P2C GP DGM Cycle GAT P2C GP DGM Cycle GAT P2C GP DGM Cycle GAT P2C GP DGM

SSIM 0.23 0.25 0.24 0.93 0.95 0.36 0.30 0.25 0.91 0.93 0.3 0.29 0.30 0.90 0.92 0.28 0.34 0.25 0.76 0.91

PSNR 8.74 8.29 8.33 30.0 31.9 8.26 7.85 7.47 26.6 29.2 8.91 8.52 8.85 26.7 28.5 7.78 8.47 7.56 14.7 28.2
MS-

SSIM 0.05 0.10 0.09 0.98 0.99 0.09 0.06 0.05 0.97 0.98 0.14 0.13 0.17 0.95 0.96 0.09 0.1 0.03 0.75 0.97

VSI 0.82 0.84 0.82 0.99 0.99 0.84 0.84 0.84 0.98 0.99 0.86 0.86 0.86 0.97 0.98 0.87 0.87 0.85 0.91 0.98

VIF 0.02 0.22 0.01 0.67 0.71 0.01 0.01 0.01 0.51 0.58 0.02 0.01 0.02 0.53 0.55 0.02 0.01 0.01 0.25 0.51

FSIM 0.63 0.63 0.62 0.96 0.97 0.66 0.66 0.64 0.94 0.96 0.65 0.64 0.67 0.93 0.94 0.67 0.68 0.64 0.80 0.94

GMSD 0.74 0.74 0.75 0.96 0.97 0.74 0.75 0.75 0.93 0.96 0.75 0.75 0.76 0.94 0.95 0.76 0.77 0.76 0.81 0.95

LPIPS 0.33 0.31 0.26 0.95 0.96 0.35 0.33 0.27 0.92 0.94 0.33 0.30 0.32 0.90 0.91 0.32 0.34 0.28 0.79 0.90

DISTS 0.5 0.49 0.49 0.90 0.91 0.47 0.50 0.48 0.88 0.89 0.50 0.46 0.51 0.84 0.86 0.68 0.47 0.48 0.77 0.86
 

 

c→ fTable 3.  Quantitative Comparison Results for Domain 

c→ f :
Configure

Women Men Kids Elderly
Cycle GAT P2C GP DGM Cycle GAT P2C GP DGM Cycle GAT P2C GP DGM Cycle GAT P2C GP DGM

SSIM 0.66 0.63 0.63 0.95 0.96 0.77 0.71 0.71 0.95 0.96 0.75 0.71 0.65 0.93 0.96 0.77 0.73 0.73 0.93 0.94

PSNR 15.0 13.5 12.1 29.8 31.0 16.9 14.5 12.1 28.9 30.7 16.5 15.6 12.0 28.1 30.9 15.7 14.9 13.6 28.8 30.0

MSSSIM 0.75 0.74 0.67 0.98 0.99 0.83 0.77 0.72 0.98 0.98 0.80 0.77 0.66 0.96 0.98 0.79 0.76 0.73 0.97 0.97

VSI 0.89 0.89 0.88 0.98 0.99 0.92 0.91 0.89 0.98 0.98 0.93 0.92 0.89 0.97 0.98 0.91 0.90 0.89 0.97 0.97

VIF 0.19 0.16 0.14 0.59 0.62 0.31 0.19 0.17 0.56 0.60 0.32 0.27 0.16 0.51 0.59 0.29 0.24 0.21 0.50 0.53

FSIM 0.74 0.74 0.73 0.95 0.96 0.81 0.79 0.81 0.95 0.96 0.80 0.79 0.76 0.92 0.95 0.79 0.77 0.80 0.93 0.94

GMSD 0.76 0.77 0.76 0.96 0.97 0.78 0.77 0.79 0.94 0.96 0.80 0.80 0.78 0.93 0.95 0.79 0.78 0.82 0.94 0.95

LPIPS 0.77 0.76 0.74 0.97 0.98 0.85 0.81 0.80 0.96 0.97 0.83 0.81 0.74 0.95 0.97 0.82 0.80 0.78 0.95 0.96

DISTS 0.72 0.72 0.72 0.90 0.91 0.74 0.73 0.73 0.88 0.90 0.73 0.73 0.72 0.88 0.91 0.73 0.73 0.76 0.88 0.89
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