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   Dear editor,

This  letter  presents  an  open-set  classification  method  of  remote
sensing  images  (RSIs)  based  on  geometric-spectral  reconstruction
learning.  More  specifically,  in  order  to  improve  the  ability  of  RSI
classification  model  to  adapt  to  the  open-set  environment,  an  open-
set  classification  method  based  on  geometric  and  spectral  feature
fusion  is  proposed.  This  method  proposes  to  realize  RSI  open-set
classification based  on  geometric  and  spectral  features  with  hyper-
spectral  and  light  detection  and  ranging  (LiDAR)  data  for  the  first
time.  In  a  variety  of  data  sources  of  remote  sensing,  hyperspectral
images (HSIs)  and  LiDAR  data  can  provide  rich  spectral  and  geo-
metric information for target objects. This letter combines both HSIs
and  LiDAR  data  to  realize  the  recognition  of  unknown  classes  and
the classification  of  known classes.  Experiments  show that  the  pro-
posed method is better than previous state-of-the-art methods.

With  the  development  of  deep  learning,  the  performance  of  RSI
classification has been rapidly improved. However, most of the exist-
ing  RSI  classification  has  a  premise  assumption,  that  is,  the  object
classes in the test set are also in the training set. Generally speaking,
the classification task under this assumption is called closed-set clas-
sification (CSC) [1],  [2].  In fact,  in many application scenarios, this
assumption does not accord with the fact. In the actual scenario, the
object classes in the test data set may not exist in the training set. In
open-set environment (OSE), the set of object classes in the training
set is a subset of the set of object classes in the test set. Because the
object classes on Earth are very rich and changing dynamically, col-
lecting  all  object  classes  on  Earth  is  an  almost  impossible  task.
Therefore, the RSI classifier will inevitably encounter the problem of
dealing  with  unknown open  classes.  How to  effectively  deal  with  a
large number of unknown classes is a key step to promote the practi-
cal application of RSI classification methods.

Obviously, since the training set can hardly cover all object classes
in the actual scene, the practicability of the model trained in closed-
set environment (CSE) will be greatly limited in OSE. The problem
to be studied in this letter is to accurately classify the known classes

while identifying the unknown open classes. This task is also called
open-set classification (OSC) [3], [4]. The open-set classifier trained
under OSE can effectively restrict known classes in the feature space,
so as to detect samples that do not belong to known classes and real-
ize  an  accurate  unknown  recognition.  Most  of  the  existing  OSCs
completely  rely  on  training  using  the  training  set  within  the  known
classes [5]. However, in this case, the trained feature extractors tend
to  extract  features  that  can  be  used  to  accurately  classify  known
classes, while the features that can help classify these known classes
may not help identify unknown open classes [6]–[8]. Therefore, this
approach may ignore the features that can help reject unknown open
classes. For OSC, how to fully retain the features that can be used to
identify unknown open classes is very important.

There may be such a phenomenon in HSIs: Objects with the same
spectrum  belong  to  different  classes,  so  it  is  possible  to  incorrectly
classify  unknown  classes  into  known  classes  or  misclassify  known
classes into unknown classes during open-set  HSI classification [9],
[10].  Therefore,  this  letter  uses  LiDAR  data  and  hyperspectral  data
for  OSC.  LiDAR  data  can  provide  geometric  texture  features  of
ground objects  [11],  and combined with spectral  information,  it  can
better realize the rejection of unknown classes and the identification
of known classes. Since the preservation of features that can be used
to  reject  unknown  classes  is  particularly  important  in  OSC,  we  can
design a framework to retain the most important spectral and geomet-
ric features in hyperspectral data and LiDAR data.

In  this  letter,  we  propose  a  novel  open-set  RSI  classification
method  called  geometric-spectral  reconstruction  learning  (GSRL).
Our  goal  is  to  learn  efficient  geometric-spectral  feature  represent-
ations for each sample, and retain features that are capable of classi-
fying  known  classes  and  identifying  unknown  open  classes.  By
adding  an  unsupervised  regularizer,  the  learned  geometric-spectral
representation can retain the features useful for identifying unknown
open  classes  and  classifying  known  classes  at  the  same  time.  The
proposed GSRL  method  is  mainly  composed  of  two  modules:  geo-
metric-spectral  reconstruction  module  and  geometric-spectral  open-
set  adaptation  module,  as  shown  in Fig. 1.  The  geometric-spectral
reconstruction module  generates  the  geometric-spectral  representa-
tion and the reconstructed geometric-spectral  feature matrix through
the  geometric-spectral  encoder  and  decoder  networks.  Then,  the
mean absolute error (MAE) between the reconstructed and the origi-
nal geometric-spectral feature matrices is calculated. The geometric-
spectral open-set adaptation module performs extreme value analysis
on the generated MAEs and generates a cumulative distribution func-
tion of the Weibull distribution [1]. For each test sample, the cumula-
tive  probability  of  the  Weibull  distribution  is  used  for  adaptive
adjustment  to realize the rejection of  the unknown classes.  Through
the  above two modules,  the  geometric  and spectral  features  of  each
sample  can  be  retained,  so  as  to  help  identify  the  unknown  classes
and classify known classes.

Geometric-spectral reconstruction learning:

H ∈ RDX×DY×NC

L ∈ RDX×DY×1 DX DY
NC

HSS ∈ RDX×DY×T

MGS ∈ RDX×DY×(T+1)

1) Geometric-spectral reconstruction module: Assume an HSI data
 and  its  corresponding  digital  surface  model  (DSM)

data  derived from LiDAR, where  and  are the
width  and  length  of  the  HSI  and  DSM  data.  is  the  number  of
spectral  channels  of  the  HSI  data.  In  order  to  make  full  use  of  the
spectral-spatial  information  of  HSI  data  and  retain  enough  features
that can be used to reject unknown classes, we first use the minimum
noise fraction (MNF) method to extract the spectral feature and spa-
tial  texture  information.  The  original  principal  component  analysis
(PCA) method has low robustness to noise, and there may be a situa-
tion where the principal component with the largest information has
low  signal-to-noise  ratio.  Therefore,  we  use  the  MNF  method  to
extract  the  spectral-spatial  information  of  HSI,  and  use  the  first  T
principal  components  to  form  the  spectral-spatial  feature  matrix

 [12]. Finally, the geometric-spectral feature matrix
 is formed by concatenating spectral-spatial fea-
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HSSture matrix  and the geometric data L generated by LiDAR
 

MGS = FCON(HSS,L) (1)

Algorithm 1 Geometric-Spectral Reconstruction Module

Input:
IGS ∈ RU×U×(T+1)　　A given geometric-spectral instance 
FθEN (·)　　Geometric-spectral encoder network 
DθDE (·)　　Geometric-spectral decoder network 
ΘGS IGS1: Generate geometric-spectral representation  of  by (2)

Rins
GS2: Generate reconstructed geometric-spectral matrix  by (4)

IGS
Rins

GSLGS

3:  Compute  the  MSE  between  and  the  reconstructed  geome-
tric-spectral matrix  as the geometric-spectral reconstruction loss

LGS4: Return 

FCON (·)
IGS ∈ RU×U×(T+1)

MGS U

FθEN (·)
ΘGS

AGS ∈ R1×C AGS

where  represents the concatenation function. For each sam-
ple, the corresponding geometric-spectral instance  
is extracted from , where  represents the spatial neighborhood
range of the instance. We feed the instance into the geometric-spec-
tral encoder network  to obtain the output of the global aver-
age pooling (gap) layer  and the output of the final hidden layer

, where C denotes the number of known classes.  is
also referred to as the activation vector [1], [6]. The forward propaga-
tion process can be formulated as
 

[ΘGS,AGS] = FθEN (IGS) . (2)
After obtaining the activation vector of the instance, the prediction

label of the instance can be calculated
 

yIGS = arg max
i∈[1,C]

eAi
GS∑C

j=1 eA j
GS

(3)

yIGS IGS
Ai

GS i

DθDE (·)
ΘGS

where  is  the  predicted  label  corresponding  to  the  instance ,
 is the activation number corresponding to the -th ground object

class.  HSI  data  not  only  has  rich  spatial  texture  features,  but  also
retains  the  continuous  spectral  information  of  the  ground  objects.
Meanwhile, LiDAR data provides rich geometric information, which
can be combined with spectral information to identify unknown open
classes more effectively. In order to fully retain the geometric-spec-
tral  information  to  help  distinguish  whether  the  test  instance  is  an
unknown ground object,  we use the geometric-spectral  decoder  net-
work , which is  a  deconvolution decoder  network,  to  recon-
struct the complete geometric-spectral information from : 

Rins
GS =DθDE (ΘGS) (4)

Rins
GS

IGS
IGS

Rins
GS

LGS

where  represents  the  reconstructed  geometric-spectral  matrix
corresponding to . Then, we calculate the MAE between the orig-
inal  geometric-spectral  matrix  and  the  reconstructed  geometric-
spectral  matrix  as  the  geometric-spectral  reconstruction  loss

:

Algorithm 2 Geometric-Spectral Open-Set Adaptation Module

Input:
NTR NTS　　The number of training and testing instances , 

IτGS, τ ∈ [1,NTR]　　The training geometric-spectral instances 
IυGS, υ ∈ [1,NTS]　　The testing geometric-spectral instances 

　　The number of tails σ
LτGS IτGS1: Compute geometric-spectral MAE  for  by Algorithm 1

Wcdf
α,β

(·) L1
GS ,L

2
GS , ...,L

NTR
GS2: Weibull Fitting  = FitHigh([ ], σ)

υ NTS3: For =1,…,  do
LυGS IυGS4: 　　Compute geometric-spectral MAE  for  by Algori-

thm 1
yIυGS

IυGS5: 　　Calculate the predicted label  of  by (3)
Wcdf
α,β

(
LυGS

)
6: 　　Calculate the cumulative probability 

Wcdf
α,β

(
LυGS

)
> γ7: 　　If  then

yIυGS
= unknown8: 　　　　

9: 　　End if
10: End for

yIυGS
, υ ∈ [1,NTS]11: Return 

 

LGS = FMAE
(
IGS,Rins

GS

)
(5)

FMAE (·)
IGS

θEN θDE

where  represents the MAE function. For a given geometric-
spectral  instance ,  the  process  of  reconstructing  the  geometric-
spectral  matrix  and  generating  the  geometric-spectral  reconstruction
loss  is  shown in  Algorithm 1.  Finally,  we use  the  back-propagation
method to solve the parameters  and  [13]–[15].

2) Geometric-spectral  open-set  adaptation  module:  Based  on  geo-
metric-spectral  reconstruction,  the  geometric-spectral  reconstruction
error is generated. For a given geometric-spectral instance, if its geo-
metric-spectral reconstruction error is large, it  may not be optimally
optimized. Therefore,  geometric-spectral  instances with large recon-
struction  errors  will  be  considered  as  unknown  [1],  [6].  To  find
unknown open instances, the extreme value theory (EVT) is used to
model the reconstruction error. In EVT analysis, the commonly used
distribution is the Weibull  distribution, which is usually suitable for
long  tail  data  [16].  The  commonly  used  method  to  calculate  the
parameters in the Weibull distribution is to use the FitHigh function
in LibMR library [17]. Through the Weibull distribution, we can find
the  deviated  instance  from  the  testing  instances  and  divide  it  into
unknown classes. The cumulative probability density function of the
Weibull distribution can be formulated as
 

Wcdf
α,β (z) =

{
1− e−(z/β)α (z ≥ 0)
0 (z < 0)

(6)

IGS Rins
GS

where  α  and β are  the  shape  parameter  and  the  scale  parameter,
respectively.  The  MAE  between  the  original  geometric-spectral
matrix  and  the  reconstructed  geometric-spectral  matrix  is
used for EVT modeling. In order to determine the boundary between
the unknown and known classes, we need to determine a threshold γ.
We  follow  the  previous  studies  to  set  it  to  50% [16].  Since  the
Weibull distribution is suitable for long-tail data, the number of tails
σ  also  needs  to  be  determined.  The main  process  of  EVT modeling
and  the  method  of  determining  the  final  class  of  each  instance  are
shown in Algorithm 2.

Experiments: In order to verify the effectiveness of the proposed
method, comparative experiments are conducted on two popular HSI
datasets  with  corresponding LiDAR Data  in  the  OSE,  including  the
Houston (HU)  dataset  and  the  Trento  (TR)  dataset.  In  this  experi-
ment,  two  different  openness  environments  (i.e.,  low  openness  and
high openness) are created. Among them, the low openness environ-
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Fig. 1. Overview  of  the  proposed  geometric-spectral  reconstruction  learning
for multi-source open-set classification with hyperspectral and LiDAR data.
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ment  corresponds  to  the  HU dataset  (select  1  class  as  the  unknown
open  class)  and  the  high  openness  environment  corresponds  to  the
TR dataset (select 2 classes as the unknown open class).

µm µm

1)  Datasets:  HU dataset:  The  spatial  resolution  and  image  size  of
the HSI and the corresponding LiDAR derived DSM are 2.5 m and
349×1905 [18],  [19]. For  the HSI,  after  preprocessing (attitude pro-
cessing  and  radiation  correction),  144  spectral  channels  are  left  for
experiments, and the wavelength range is 0.38  to 1.05 . This
dataset  contains  15  object  classes.  In  order  to  conduct  the  open-set
classification experiment, grandstand is additionally labeled as a new
class and the remaining 15 classes are selected as known classes. Fig. 2
shows the color composite image, the ground-truth map and the leg-
end of the HU dataset.
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Fig. 2. The composite image, the ground-truth map and the legend of the HU
dataset.
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TR dataset:  The  spatial  resolution  and  image  size  of  the  HSI  and
the  corresponding  LiDAR derived  DSM are  1  m and  600×166.  For
the  HSI,  it  has  63 spectral  channels  with  wavelengths  ranging from
402.89  to 989.09 . This dataset contains 6 object classes (i.e.,
wood,  buildings,  roads,  ground,  apple  trees,  and vineyard).  In  order
to conduct the open-set experiment, two classes (i.e., grass and soil)
are  additionally  labeled  as  new  classes  and  the  remaining  6  classes
are  selected  as  known  classes. Fig. 3 shows  the  color  composite
image, the ground-truth map and the legend of the TR dataset.

2)  Parameter  settings:  At  the  beginning  of  model  training,  the
learning rate is set to 0.5. After every 200 epochs, the learning rate is
multiplied by 0.1.  In this experiment,  the number of tails σ is set  to
40  [6],  [16]  and  the  number  of  principal  components T is  set  to  2.
The backbone used in GSRL is the same used in [16]. The computer
environment  for  model  training  is  as  follows:  the  processor  is  Intel
i9-10850K;  the  graphics  card  is  NVIDIA  GeForce  RTX 3090 with
CUDA 11.0;  the programming language and the deep learning plat-
form are Python (version 3.8.8) and PyTorch (version 1.7.1), respec-
tively.

3) Accuracies:  To verify the performance of  the open-set  classifi-
cation method with multi-source data,  we conducted several  experi-
ments on two datasets. In this experiment, we use three indicators to
verify the performance of the classification methods, that is, the over-
all  accuracy  (OA),  average  accuracy  (AA),  and  Kappa  coefficient
(κ).  In  order  to  avoid  extreme  values,  we  conducted  five  repeated
experiments and reported the average accuracies and standard devia-
tions. To  verify  the  effectiveness  of  the  proposed  method  with  lim-
ited training samples, L samples of each class are randomly selected.
In  this  experiment,  20  samples  from  each  known  class  are  training
samples (L = 20). We compare several state-of-the-art (SOTA) clas-
sification methods  with  the  proposed  method  to  verity  the  perfor-
mance.

The open-set classification methods for comparison include classi-
fication-reconstruction  learning  for  open-set  recognition  (CROSR)
[6]  and  multitask  deep  learning  method  for  the  open  world
(MDL4OW) [16]. The multi-source method for comparison is spec-

tral-spatial  residual  network  (SSRN)  [20]. For  SSRN,  if  the  maxi-
mum SoftMax value corresponding to a test sample is less than 0.5,
this sample is determined as unknown class. These comparison meth-
ods include both SOTA open-set and joint HSI and LiDAR data clas-
sification methods. Therefore, these methods can be used to compre-
hensively verify the performance of the proposed method.

The accuracies in terms of OA, AA and κ of the proposed method
and  comparison  methods  are  reported  in Table 1.  For  HU  dataset,
compared with the MDL4OW method, the OA, AA and κ of the pro-
posed GSRL method increase by 6%,  4.3%,  and 5.6%,  respectively.
The  classification  maps  of  the  HU dataset  are  shown  in Fig. 4.  For
TR dataset, compared with the MDL4OW method, the open OA and
AA are increased by 7.3% and 10%, respectively. Compared with the
CROSR method, the κ of GSRL is increased by 11%. The classifica-
tion maps of the TR dataset are shown in Fig. 5.

 
Table 1.  Classification Results of the Proposed Method and Several SOTA

Methods. The Highest Accuracies are Highlighted in Bold

Ind. SSRN CROSR MDL4OW Ours

HU

OA 84.3±0.9 47.2±0.8 80.3±0.7 86.3±0.9

AA 87.2±1.0 38.9±0.5 84.2±0.7 88.5±0.4

κ 83.1±0.7 42.4±0.4 78.9±0.6 84.5±0.6

TR

OA 82.4±0.1 81.8±1.6 83.9±3.3 91.2±2.7

AA 81.8±0.7 71.5±0.8 78.4±1.8 88.4±1.5

κ 79.1±0.2 79.5±1.8 81.5±1.6 90.5±1.7

 
 

In  order  to  verify  the  effectiveness  of  each  module  in  GSRL,  an
ablation study is conducted on HU dataset.  After removing the geo-
metric-spectral reconstruction module, the OA is decreased by 2.5%.
After removing the open-set adaptation module, the OA is decreased
by  2.1%.  It  can  be  concluded  that  each  module  in  the  proposed
method contributes to the improvement of the accuracy.

Conclusions: Although  the  method  based  on  deep  learning  has
achieved  success  in  RSI  classification,  it  still  lacks  robustness  in
dealing with unknown classes in OSE. The existing open-set classifi-
cation  methods  rely  on  training  with  known samples  in  the  training
set, which will lead to the learned features tending to retain the fea-
tures that help to classify the known classes and ignore the informa-
tion  that  can  be  used  to  reject  the  unknown  classes.  In  order  to
improve  the  adaptability  of  RSI  classification  methods  in  the  new
environment and make full use of the characteristics of hyperspectral
and  LiDAR  data,  an  open-set  classification  method  for  geometric-
spectral  feature  reconstruction  and  pixel  by  pixel  classification  in
OSE is proposed. By reconstructing the geometric-spectral feature, it
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Fig. 3. The composite image, the ground-truth map and the legend of the TR
dataset.
 

 1894 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 10, OCTOBER 2022



can  retain  the  features  useful  for  classifying  known  classes  and
rejecting unknown classes at  the same time, and enhance the ability
to separate  unknown  classes  from  known  classes.  Through  experi-
ments on two multi-source datasets, the performance of the proposed
method is better than existing open-set classification methods. In the
future  research,  we  will  continue  to  study  how  to  achieve  target
detection,  instance  segmentation,  significance  detection  and  other
tasks in the presence of unknown classes.
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Fig. 4. The classification maps of the HU dataset  (black represents unknown
classes). (a) SSRN; (b) CROSR; (c) MDL4OW; (d) The proposed GSRL.
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Fig. 5. The  classification  maps  of  the  TR dataset  (black  represents  unknown
classes). (a) SSRN; (b) CROSR; (c) MDL4OW; (d) The proposed GSRL.
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