
 

Letter

L2

An Extended Convex Combination Approach for
Quadratic  Performance Analysis of Switched

Uncertain Linear Systems

Yufang Chang, Guisheng Zhai, Senior Member, IEEE,
Lianglin Xiong, and Bo Fu

   Dear Editor,
L2

L2

L2

L2

This letter is concerned with quadratic  performance (quadratic
stability and  gain) for switched uncertain linear systems (SULS)
with norm-bounded uncertainties. Assuming that no single uncertain
subsystem achieves quadratic  performance γ but a convex combi-
nation of the subsystems can make it,  we propose a state-dependent
switching law such that the SULS achieves the desired quadratic 
performance. The discussion is extended to the SULS with state feed-
back  control,  and  a  sufficient  condition  is  proposed  to  design  the
state feedback gains and the switching law simultaneously.

There have been a  few references studying quadratic  stability/sta-
bilization of switched certain linear systems. Reference [1], [2] show
that if  there exists  a stable convex combination of subsystem matri-
ces,  then  a  state-dependent  switching  law  can  be  proposed  with  a
quadratic Lyapunov function to stabilize the switched system. Refer-
ence  [3]  investigates  quadratic  stability/stabilization  of  a  class  of
switched  nonlinear  systems  by  using  a  nonlinear  programming
(Karush-Kuhn-Tucker  condition)  approach.  Reference  [4]  extends
the discussion and results in [1], [2] to achieve quadratic stability for
switched  linear  systems  with  norm-bounded  uncertainties,  and  a
state-dependent switching law has been proposed for quadratic stabi-
lization.  Recently,  [5]  extends  the  discussion  and results  in  [1],  [2],
[4] to output dependent switching law design for quadratic stabiliza-
tion of switched linear systems with norm-bounded uncertainties. In
both [4] and [5], a matrix inequality approach is used for the convex
combination  of  subsystems  to  design  the  Lyapunov  matrix  in  the
switching  law.  Note  that  the  motivation  of  dealing  with  switched
uncertain  systems  is  both  theoretical  and  practical,  when  a  single
uncertain subsystem can not achieve certain desired performance.
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In this letter, we polish the quadratic stability/stabilization result in
[4], [5], and extend the discussion to quadratic  performance anal-
ysis and design for SULS. It  is  noted that  such control  problem has
been  studied  in  [6]  for  a  class  of  switched  non-linear  systems  with
norm-bounded  uncertainties,  and  the  main  approach  is  the  average
dwell  time  method.  In  that  context,  exponential  stability  of  the
switched system and a  weighted  performance is  obtained.  Here,
under  the  assumption  that  no  single  subsystem  achieves  certain
quadratic  performance, we propose an extended convex combin-
ation based condition and a state-dependent switching law such that

L2the switched system achieves the desired quadratic  performance.
The  extended  convex  combination  is  a  major  extension  to  the  one
proposed in [4],  [5],  which incorporates both uncertainties tolerance
and disturbance attenuation. It is emphasized that since the switching
law can not use either the uncertainty term or the disturbance input,
we extend  the  existing  switching  law  by  incorporating  the  corre-
sponding  system  matrices.  Moreover,  the  established  condition  and
the switching law are extended to the case of SULS with state feed-
back control in a natural and reasonable manner.
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Concerning the comparison with more references in the literature,
References  [7]  and  [8]  have  considered  robust  stabilization  of
switched linear  uncertain  systems,  but  the  assumption  on  each  sub-
system and the technical approach is different. For example, the dis-
cussion in [7] is based on the design of multiple Lyapunov functions,
and the subsystems in [8] are assumed to have certain quadratic 
performance  so  as  to  deal  with  the  affine  terms.  Reference  [9]  has
considered the problem of disturbance tolerance/rejection for a fam-
ily of linear systems (without uncertainties) subject to actuator satu-
ration  and  disturbances,  where  state-dependent  switching  laws  are
proposed for bounded state stability and  gain analysis. Since the
approach is based on multiple Lyapunov functions, the design condi-
tion  is  reduced  to  solving  a  set  of  complicated  matrix  inequalities,
which is different from the convex combination approach in this let-
ter.

Problem formulation: We consider the SULS described by
 {ẋ(t) = (Aσ +DσFσ(t)Eσ) x(t)+Bσw(t)

z(t) =Cσx(t)
(1)

x(t) ∈ Rn w(t) ∈ Rr

z(t) ∈ Rp

σ(t) : R→ SN = {1, . . . ,N}
N

Ai ∈ Rn×n Bi ∈ Rn×r

Ci ∈ Rp×n Di ∈ Rn×l Ei ∈ Rk×n

Fi(t) ∈ Rl×k

Fi(t)T Fi(t) ⪯ ζ2Ik

where  is the system state,  is the disturbance input,
and  is  the  controlled  output.  The  index  function

 is  the  switching  law  (signal)  defining
which subsystem is activated at the time instant t, and  is the num-
ber  of  subsystems.  The  constant  matrices , ,

, ,  represent  the  dynamics  of  the i-th
subsystem,  and  denotes  the  norm-bounded  uncertainty
satisfying , where ζ is a given positive scalar.

V(x) = xT Px P ≻ 0
w(t) = 0 V̇(x) < −ϵV(x)

x(t)
Fi(t)T Fi(t) ⪯ ζ2Ik

Definition 1 [5], [10]: The SULS (1) is said to be quadratically sta-
ble if there exist a quadratic function  with  and a
positive scalar ϵ such that  when ,  is  satisfied
for  all  nonzero  of  the  system  (1)  with  any  uncertainties

.
V(x)

tk
V(x) tk

The  derivative  of  may  not  exist  at  some  switching  points
since the right-hand side of (1) is not continuous in our problem set-
ting. For this purpose, we choose the Filippov solutions introduced in
[11].  That  is,  when  a  switching  occurs  at  time  instant ,  we  define
the derivative of  at  by
 

V̇(x(tk)) = sup
η∈[0,1]

{
ηV̇(x(t−k ))+ (1−η)V̇(x(t+k ))

}
(2)

V̇(x(t−k )) = lim
t→tk ,t<tk

d
dt V(x(t)) V̇(x(t+k )) = lim

t→tk ,t>tk
d
dt V(x(t))where , and .

L2
V(x) = xT Px

Definition  2  [8],  [12]:  The  SULS (1)  is  said  to  achieve  quadratic
 performance γ if it  is  quadratically stable with a  quadratic  func-

tion , and
 w t

0
zT (τ)z(τ)dτ < V(x(0))+γ2

w t

0
wT (τ)w(τ)dτ (3)

t > 0 w(t)r ∞
0 wT (τ)w(τ)dτ <∞

holds  for  any  time  and  any  disturbance  input  satisfying
.
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The  control  problem  in  this  letter  is  for  given  positive  scalar  γ,
assuming that  each  subsystem in  (1)  does  not  achieve  quadratic 
performance γ, we propose a state-dependent switching law such that
the SULS (1) achieves quadratic  performance γ.

L2

Remark  1:  The  assumption  that  each  subsystem  in  (1)  does  not
achieve quadratic  performance γ is motivated by one of the three
basic problems in switched systems and control. In such situation, we
can  not  activate  only  one  subsystem,  and  it  is  also  not  possible  to
only use the (average) dwell time approach for desired performance

 
Corresponding author: Guisheng Zhai.

L2
Citation: Y.  F.  Chang,  G.  Zhai, L.  L.  Xiong,  and  B.  Fu, “An  extended

convex  combination  approach  for  quadratic  performance  analysis  of
switched uncertain linear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9,
pp. 1706–1709, Sept. 2022.

Y. F. Chang and B. Fu are with Hubei Collaborative Innovation Center for
High-efficiency Utilization of Solar Energy, Hubei University of Technology,
Wuhan 430068, China (e-mail: changyf@hbut.edu.cn; fubofanxx@mail.hbut.
edu.cn).

G.  Zhai  is  with  the  Department  of  Mathematical  Sciences,  Shibaura
Institute  of  Technology,  Saitama  337-8570,  Japan  (e-mail:  zhai@shibaura-
it.ac.jp).

L.  L.  Xiong  is  with  the  School  of  Mathematics  and  Computer  Science,
Yunnan Minzu University, Kunming 650500, China (e-mail: lianglin_5318@
126.com).

Color  versions  of  one  or  more  of  the  figures  in  this  paper  are  available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2022.105824

1706 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 9, SEPTEMBER 2022



L2

L2

of the entire switched system. Moreover,  since both quadratic stabi-
lization and  gain are considered, the cases involved in the above
problem  formulation  are  multi-faced.  The  subsystems  in  the  SULS
may not be quadratically stable, or the  gain of certain subsystem
may be greater than γ even if it is quadratically stable.

L2Quadratic  performance analysis: We first state the following
design condition, which plays a central rule throughout this letter.

λi ≥ 0 i = 1, . . . ,N∑N
i=1 λi = 1

Design condition: Find a set of scalars  ( ) satisfy-
ing  such that
 

Aλ =
N∑

i=1

λiAi (4)

is Hurwitz, and furthermore
 ∥∥∥∥[ Eλ

Cλ

]
(sIn −Aλ)−1

[
ζDλ 1

γBλ
]∥∥∥∥∞ < 1 (5)

Bλ Cλ Dλ Eλwhere , , ,  are constant matrices satisfying
 

BλBT
λ =

N∑
i=1

λiBiBT
i , CT

λCλ =
N∑

i=1

λiCT
i Ci ,

DλDT
λ =

N∑
i=1

λiDiDT
i , ET

λ Eλ =
N∑

i=1

λiET
i Ei . (6)

L2
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Aλ
(Aλ,Dλ,Eλ)

Aλ
L2

Bi = 0, Ci = 0
∥Eλ(sIn −Aλ)−1Dλ∥∞ < ζ−1

The condition (4) and (5) requires a kind of “Hurwitz convex com-
bination  with  performance  1”.  The  form  is  similar  to  the
quadratic  stability  condition  [10]  of  single  system  with  matched
norm-bounded uncertainty,  but  the  matrices  in  (4)  and  (5)  are  con-
structed by the convex combination (6). Therefore, although we have
assumed  that  each  single  subsystem  does  not  achieve  quadratic 
performance γ,  the  design  condition  requires  that  a  kind  of  convex
combination  of  subsystems  should  achieve  quadratic  perfor-
mance γ. It is noted that the concept of Hurwitz convex combination

 has been proposed and used in the literature [1], [2], [8], [13], and
the convex combination triple  has been proposed in [4],
[5] to deal with stabilization of SULS with norm-bounded uncertain-
ties (without disturbance input). The idea of the convex combination
(4) and  (5)  with  (6)  presents  a  major  extension  to  the  above  refer-
ences. This is illustrated by the following observation: if one can find
a  Hurwitz  convex  combination ,  then  the  norm  condition  (5)  is
always true for  small  or  zero ζ and released (large enough)  per-
formance  index γ.  Moreover,  when ,  the  condition  (5)
shrinks  to , which  is  exactly  the  condi-
tion established in [4], [5].

Aλ P > 0
λi

Now, we give some discussion on how to check the above design
condition.  According to the bounded real  lemma [10],  the condition
(5) together with  being Hurwitz is equivalent to finding  and

's such that
 

 He{PAλ}
+ET
λ Eλ +CT

λCλ

 P
(
ζDλ 1

γBλ
)

 ζDT
λ

1
γBT
λ

P −Il+r


< 0 (7)

or equivalently,
 

He{PAλ}+ET
λ Eλ +CT

λCλ

+P
(
ζ2DλDT

λ +
1
γ2 BλBT

λ

)
P < 0 . (8)

P > 0
λi ∑N

i=1 λi He{PAi} < 0 He{PAλ} <
0 Aλ

λi Aλ
P > 0

λi

The condition (7) is a bilinear matrix inequality (BMI) w.r.t. 
and ’s,  and generally is  not easy to solve globally.  It  is  noted that
one necessary condition for (7) is  or 

, which is equivalent to  being Hurwitz. This motivates that if we
can manage to find the scalars  such that  is Hurwitz, we can use
those scalars to solve the inequality (7) with respect to . How-
ever, it is commonly known that to find the set of stabilizing scalars

 is  generally  difficult.  One  comparatively  efficient  strategy  to
achieve  such  task  is  the  so-called  gridding  method  (or  traversal

λi ≥ 0
∑n

i=1 λi = 1

λi P > 0
λi

search), which is based on the observation of  and .
Here,  we  extend  the  gridding  method  in  the  following  algorithm to
solve  (7)  with  respect  to ’s  and .  Due  to  continuity  with
respect  to  the  scalars ,  if  the  matrix  inequality  (7)  is  feasible,  the
algorithm will succeed when the division integer m is large enough.

Algorithm for solving (7):
[0,1]

m = 10 M = {0, 1/m, . . . , (m−
1)/m}

Step 1: Set the division number m of the interval  as a moder-
ate  integer,  for  example, ,  and  define  

.
λ1 M

λ1 λ2 M
λ1 +λ2 ≤ 1 λ1, λ2 λ3 M

λ1 +λ2 +λ3 ≤ 1 . . . λ1, . . . ,λi−1

λi M ∑i
j=1 λ j ≤ 1

λN

Step 2: Equation (1) choose  from  in ascending order; (2) fix
 and  choose  from  in  ascending  order  under  the  constraint

; (3) fix  and choose  from  in ascending order
under the constraint ;  (i) fix  and choose

 from  in ascending order under the constraint ,  and
so on, until  is chosen.

λi

λi

Step 3: Solve (7) with the ’s chosen in Step 2. If (7) is feasible,
record  the  solution  and  end  the  algorithm.  If  (7)  is  not  feasible,  go
back  to  Step  2  for  another  set  of ’s.  Or,  go  back  to  Step  1  to
increase the division integer m.

With  the  positive  definite  matrix P satisfying  (7),  we  define  our
state dependent switching law as
 

SW1 : σ(x) = arg min
i∈SN

gi(x) (9)
 

gi(x) = xT
[
He{PAi}+ET

i Ei +CT
i Ci

+P
(
ζ2DiDT

i +
1
γ2 BiBT

i

)
P
]
x . (10)

SW1 i ∈ SNUnder , we obtain that for any x and any ,
 

xT
[
He{PAσ}+ET

σEσ +CT
σCσ

+P
(
ζ2DσDT

σ +
1
γ2 BσBT

σ

)
P
]
x

≤ xT
[
He{PAi}+ET

i Ei +CT
i Ci

+P
(
ζ2DiDT

i +
1
γ2 BiBT

i

)
P
]
x . (11)

λi
i = 1 i =N

Multiplying both sides of (11) by non-negative scalars  and sum-
ming up the inequalities from  to  leads to
 

xT
[
He{PAσ}+ET

σEσ +CT
σCσ

+P
(
ζ2DσDT

σ +
1
γ2 BσBT

σ

)
P
]
x

≤ xT
[
He{PAλ}+ET

λ Eλ +CT
λCλ

+P
(
ζ2DλDT

λ +
1
γ2 BλBT

λ

)
P
]
x . (12)

We are ready to state and prove the main theorem in this letter.

SW1 L2

Theorem 1: The SULS (1) under the state-dependent switching law
 (9) achieves quadratic  performance γ.

L2
V(x) = xT Px

P > 0

Proof:  We  prove  quadratic  stability  and  gain  of  the  switched
system  by  using  the  Lyapunov  function  candidate ,
where  is the matrix satisfying (7) (equivalent to (8)).

ϵ > 0First, according to (8), one can always find a scalar  satisfying
 

He{PAλ}+ET
λ Eλ +CT

λCλ

+P
(
ζ2DλDT

λ +
1
γ2 BλBT

λ

)
P+ ϵP < 0 . (13)

SW1
Combining the above inequality with (12), we reach that under the

switching law ,
 

xT
[
He{PAσ}+ET

σEσ +CT
σCσ

+P
(
ζ2DσDT

σ +
1
γ2 BσBT

σ

)
P
]
x < −ϵxT Px (14)

holds for any non-zero x.
V(x)Next, the derivative of  along the trajectories of the SULS (1)

for the activated subsystem is computed and evaluated by 
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V̇(x) =
d
dt

xT Px = He{xT Pẋ}

= He{xT P(Aσx+DσFEσx+Bσw)}
= xT (He{PAσ}+ He{PDσFEσ}) x

+ xT PBσw+wT BT
σPx

≤ xT
(
He{PAσ}+ ζ2PDσDT

σP+ET
σEσ

)
x

−
(

1
γ

xT PBσ −γwT
)(

1
γ

xT PBσ −γwT
)T

+
1
γ2 xT PBσBT

σPx+ xT CT
σCσx− zT z+γ2wT w

≤ xT
(
He{PAσ}+ET

σEσ +CT
σCσ

+P(ζ2DσDT
σ +

1
γ2 BσBT

σ)P
)
x− zT z+γ2wT w

< − ϵV(x)− zT z+γ2wT w (15)

tk
t < tk t > tk

V(x)

tk

for  any  non-zero x,  where  the  final  inequality  is  obtained  by  (14).
Thus, (15) is true for any time t except the switching time instants .
Moreover, since (15) holds at any  and any , by combining
the Filipov definition (2) with (15) for the continuous function ,
we immediately  obtain  (15)  also  holds  at  the  switching time instant

. Therefore, (15) holds at any time instant.
w(t) = 0 V̇(x) < −ϵV(x)

V(x) = xT Px

When ,  we  obtain  from  (15),  and  thus  the
SULS (1)  is  quadratically  stable  with  the  quadratic  Lyapunov func-
tion .

V̇(x(τ)) < −zT (τ)z(τ)+γ2wT (τ)w(τ)
τ ≥ 0 τ = 0

τ = t V(x(t)) ≥ 0
L2

Moreover,  (15)  leads  to  for
any .  Integrating  both  sides  of  this  inequality  from  to

, with the fact of  for any t,  we obtain the inequality
(3),  which  implies  that  the  SULS (1)  achieves  quadratic  perfor-
mance γ. ■

Remark  2:  The  design  condition  (5)  is  reduced  to  the  matrix
inequality (7), which is equivalent to
 

He{PAλ} PDλ PBλ CT
λ ET

λ

DT
λ P −ζ−2Il 0 0 0

BT
λ P 0 −γ2Ir 0 0

Cλ 0 0 −Ip 0

Eλ 0 0 0 −Ik


< 0 . (16)

Q = P−1Multiplying the first row and column of (16) by  and rear-
ranging the order of rows/columns, we obtain
 

He{AλQ} QCT
λ QET

λ Bλ Dλ
CλQ −Ip 0 0 0
EλQ 0 −Ik 0 0
BT
λ 0 0 −γ2Ir 0

DT
λ 0 0 0 −ζ−2Il

 < 0 (17)

Q ≻ 0, λi ≥ 0,
∑N

i=1λi = 1which,  together  with ,  is  also  equivalent  to
the design condition (5).

γ2 ζ−2

L2

Remark  3:  Since  (16)  is  linear  with  respect  to  and ,  if  we
wish  to  find  smaller  performance  index γ,  then  we  proceed  to
solve the optimization problem
 

min γ2

s.t. (16), P > 0, λi ≥ 0,
N∑

i=1

λi = 1 . (18)

Or, if we need to tolerate larger uncertainty, we may deal with the
optimization problem
 

min ζ−2

s.t. (16), P > 0, λi ≥ 0,
N∑

i=1

λi = 1 . (19)

min aγ2 +bζ−2 a ≥ 0
b ≥ 0

Furthermore,  a  weighted cost  function  with 
and  can  also  be  designed  if  we  desire  to  incorporate  both  the

L2  performance  index  and  the  uncertainty  tolerance  in  a  balanced
manner.

Numerical simulation: Consider the SULS (1) where
 

A1 =

[
−16.08 25.44
25.44 −30.92

]
, A2 =

[
−36.96 −30.72
−30.72 −19.04

]
 

B1 =

[
1
0

]
, B2 =

[
−1
1

]
 

C1 =
[

0.5 1.5
]
, C2 =

[
−1.0 0.5

]
 

D1 =

[
1 1
3 1

]
, D2 =

[
1 4
1 2

]
 

E1 =

[
0.5 0
0.5 0.5

]
, E2 =

[
0.5 −0.5
0.5 1.0

]
and
 

F1(t) =
[

0.8 −0.5
0.5 0.8

] [
cos t −sin t
sin t cos t

]
F2(t) =

[
0.3 −0.7
0.7 0.5

] [
cos t −sin t
sin t cos t

]
.

FT
i (t)Fi(t) ≤ ζ2I2 ζ = 1Then,  holds with .

A1 A2

λ1 = 2/3 λ2 = 1/3 γ = 0.2

Since  and  are not Hurwitz, each subsystem can not achieve
any quadratic performance level. By using the algorithm proposed in
the previous section, we find that the matrix inequality (7) is feasible
with , ,  and
 

P =
[

0.4076 −0.0117
−0.0117 0.4164

]
.

To confirm the design condition (4) and (5), we have
 

Aλ =
2
3

A1 +
1
3

A2 =

[
−23.04 6.72

6.72 −26.96

]
and use the Cholesky decomposition method in MATLAB to obtain
for (6),
 

Bλ =
[

1.0000 0
−0.3333 0.4714

]
, Cλ =

[
0.7071 0
0.4714 1.1667

]
Dλ =

[
2.6458 0
2.1418 1.9355

]
, Eλ =

[
0.7071 0.3536

0 0.6770

]
.

γ = 0.2Then, it is confirmed the norm condition (5) holds with .

x(0) = [1 −1]T w(t) = 2e−6t cos5t

t > 0 L2

Using  the  switching  law  (9)  for  the  SULS  with  the  initial  state
 and  the  disturbance  input ,  we

obtain Fig. 1,  where  the  state  trajectories  of  the  SULS  converge  to
zero. And, (3) holds for any , which implies the desired  per-
formance has been achieved.

Extension to feedback controller design: We now extend the dis-
cussion to the SULS with control input
 {ẋ(t) = (Aσ +DσFσ(t)Eσ) x(t)+Bσw(t)+Hσu(t)

z(t) =Cσx(t)
(20)

x(t), w(t), z(t), y(t)
u(t) ∈ Rm

Hi ∈ Rn×m

where  and  the  corresponding  matrices  are  the
same as in (1), while  is the control input to be designed and

 is a constant matrix.

u(t) = Kσx(t)
L2 Ki

L2

The  control  problem  is  to  design  a  switching  state  feedback
 such  that  the  switched  closed-loop  system  achieves

quadratic  performance γ.  Note  that  the  state  feedback  gains 
and  the  switching  law σ should  be  designed  simultaneously  in  this
formulation. The control problem is practical and not trivial when the
design condition in Theorem 1 is not feasible (and thus, the SULS (1)
without  control  input  can  not  achieve  the  desired  quadratic  per-
formance γ).

Now, the closed-loop system composed of (20) and the switching
state feedback is
 {ẋ(t) = (Aσ +HσKσ +DσFσ(t)Eσ) x(t)+Bσw(t)

z(t) =Gσx(t) .
(21)

Aλ Aλ +
∑N

i=1 λiHiKiReplacing  in  (17)  with  and  then  letting
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KiQ = Mi, we obtain the following design condition:
 

Ω11 QCT
λ QET

λ Bλ Dλ
CλQ −Ip 0 0 0

EλQ 0 −Ik 0 0

BT
λ 0 0 −γ2Ir 0

DT
λ 0 0 0 −ζ−2Il


< 0 (22)

Ω11 = He
{
AλQ+

∑N
i=1λiHiMi

}
where .

L2
Q > 0 Mi

λi

Theorem 2: There is a switching state feedback for the SULS (20)
such that the switched closed-loop system (21) achieves quadratic 
performance γ, if there are matrix , matrix  and non-negative
scalars  satisfying the matrix inequality (22).

Ki = MiQ−1

P = Q−1

When (22) is feasible, the feedback gain matrices are computed by
,  and  the  switching  law  is  given  by  (9)  and  (10)  with

.
L2

L2

L2

Conclusion: We  have  dealt  with  the  quadratic  performance
analysis  problem  for  switched  uncertain  linear  systems.  Under  the
assumption that no single uncertain subsystem achieves quadratic 
performance γ but a convex combination of the subsystems can make
it,  we  have  proposed  a  state-dependent  switching  law  such  that  the
SULS achieves the desired quadratic  performance. We have also
extended  the  discussion  to  the  design  of  switching  state  feedback
controller,  together with its  application to the quadratic stabilization
of a boost converter. Our future work will consider the applicability
and extension of such convex combination approach to practical dis-
turbance  attenuation  [14]  and  [15],  switched  affine  systems  [16],
[17],  switched  dynamical  output  feedback  [18],  and  event-triggered
control [19] and adaptive tracking control [20] for SULS.
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Fig. 1. State trajectories in the numerical simulation.
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