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   Dear editor,

This  letter  presents  a  practical  industrial  process  identification
scheme. More specifically, to improve the identification accuracy of
practical  process,  a  decoupled  identification  scheme  is  developed
based on neural fuzzy network and autoregressive exogenous (ARX)
model,  which  is  based  on  multi-signal  sources.  The  multiple  signal
sources  include  binary  signals  and  random  signals.  Experimental
results  of  pH  neutralization  process  show  that  developed  identifi-
cation scheme can provide accurate identification accuracy.

Process  industries  may  be  modeled  through  their  mechanism
characteristics, called mechanism modeling. Nevertheless, it is rather
difficult to select this approach because of the complexity of practical
process  models,  which  often  needs  to  understand  comprehensively
practical processes characteristics. In this case, a selectable method is
to  establish  data-driven  models,  which  are  not  sensitive  to  process
knowledge. There are many data-driven model architectures, such as
Markov  jump  systems,  state  space  system,  and  block-oriented
systems.  For  these  models  mentioned,  block-oriented  systems  can
accurately various nonlinear processes [1].

Hammerstein  nonlinear  systems,  mixing  a  static  memoryless
nonlinear  subsystem  and  a  linear  dynamic  subsystem,  are  useful
configurations  of  block-oriented  systems  and  has  been  widely  app-
lied to represent numerous practical  nonlinear systems. Many meth-
ods have emerged to model the memoryless nonlinear subsystem and
linear dynamic subsystem.

Modeling  methods  of  linear  dynamic  subsystem  mainly  include
impulse response, ARX, Box-Jenkins, state space model, and so on.
These models can effectively describe the dynamic characteristics of
the system and the interaction between variables, thus they have been
widely used.

The  Hammerstein  nonlinear  systems  focus  on  modeling  appro-
aches  of  static  nonlinear  subsystem  with  high  precision  and
extension,  there  are  two  main  types  of  modeling  approaches:  linear
parameter  combination  of  known  basis  function  and  data-based
nonlinear  models.  The  former  mainly  include  polynomials,  splines,
piecewise  linear  functions  and  support  vector  machines,  but  when
studying multivariable systems, these methods need many parameters
in modeling. Data-based nonlinear models, such as neural networks,
fuzzy systems and neuro-fuzzy models, have the ability to represent
complex nonlinear functions.

Thus,  for  practical  industrial  process  identification,  it  is  very
important to establish the Hammerstein system which can effectively
describe  process  characteristics.  More  specifically,  it  is  to  establish
nonlinear  subsystems  with  high  precision  and  extension  and  linear

subsystems  that  can  meet  any  linear  dynamic  characteristics.  And
then  effective  identification  methods  are  used  to  estimate  of  each
subsystem parameters.

Related  work: In  recent  years,  a  large  number  of  substantive
researches have been carried out to identify the Hammerstein system,
two  main  identification  approaches  have  emerged,  namely  synchro-
nous  identification  and  separation  identification.  The  basic  idea  of
synchronous  identification  approach  is  that  parameters  of  hybrid
nonlinear  system  are  identified  by  constructing  hybrid  system  of
nonlinear subsystem and linear subsystem. Hammar et al. [2] studied
output-error  identification  based  on  robust  Levenberg-Marquardt
algorithm  for  heating  system  benchmark.  Aiming  at  improving
convergence  speed  and  parameters  estimation  accuracy,  auxiliary
model-based  expectation  maximization  method  is  researched  for
Hammerstein  systems  with  data  loss  [3].  Considering  the  Hamm-
erstein  system  with  dynamic  disturbances  and  measurement  noise,
extended  recursive  least  squares  (RLS)  identification  algorithm  is
derived  [4].  Based  on  data  filtering  technique,  the  parameter
identification  problem  of  multiple-input  single-output  Hammerstein
system  are  considered  [5].  Combining  hierarchical  identification
principle  and  model  decomposition  technique,  parameter  estimation
problems  of  two-input  single-output  Hammerstein  finite  impulse
response systems are discussed [6].

Although these  identification approaches  mentioned can complete
parameters  identification,  they  contain  parameters  product  term and
need  to  be  further  separated  using  parameters  separation  methods,
such  as  singular  value  decomposition  and  average  method.  There-
fore,  identification  accuracy  is  reduced  and  computational  compl-
exity  is  increased.  In  addition,  their  nonlinear  subsystems  are
modeled by polynomial models. If nonlinearities are not polynomial
models, these approaches do not converge [7].

On the contrary, the principle of separation identification approach
is  to  separate  the  identification  problems  of  static  nonlinear  subsy-
stem  and  linear  dynamic  subsystem  by  estimating  immeasurable
intermediate  variables,  thus  nonlinear  subsystem  parameters  and
linear subsystem parameters are carried out independently. Based on
special  input  excitation,  Kothari et  al. [1]  adopted  a  new parameter
identification  strategy  for  a  block-oriented  Hammerstein  process
using  Haar  wavelet  operational  matrix.  To  solve  the  enhanced  oil
recovery  problem  for  alkali-surfactant-polymer  (ASP)  flooding,  Li
et al. [8] used iterative dynamic programming optimization to study
biorthogonal  spatial-temporal  Hammerstein  modeling.  To  compen-
sate  for  noise  in  the  output,  correlation  analysis-based  error  com-
pensation  recursive  least-square  method  is  suggested  by  Li  and  Jia
[9]  for  the  Hammerstein  model.  Vanbeylen et  al. [10]  developed
blind  identification  method  for  discrete-time  Hammerstein  systems
from  output  measurements.  A  parametric  identification  for  parallel
Hammerstein systems using a three-step procedure is presented [11].

Compared  with  the  existing  synchronous  algorithms  for  Hamm-
erstein systems, a major advantage of these methods is that nonlinear
subsystem parameters and linear subsystem parameters are identified
independently,  which  improve  identification  accuracy.  However,
they only consider the interference of white noise, without taking into
account colored noise.

Recently, some novel optimization algorithms, such as population-
based  optimization  method  [12],  dwarf  mongoose  optimization
algorithm [13], Ebola optimization search algorithm [14], and reptile
search  algorithm  [15],  have  been  presented  to  handle  successfully
system  design  or  engineering  design,  which  would  inspire  resear-
chers to take interest.  Also, these optimization methods can be used
for Hammerstein system identification.

Problem statements: Neural network and fuzzy system have been
applied  widely  to  nonlinear  system  modeling  since  that  they  show
strong  nonlinear  approximation  ability  in  recent  years.  It  should  be
noted  that  neural  networks  have  strong  ability  of  the  self-learning,
but it is lack of reasoning ability of human brain. On the contrary, the
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fuzzy systems itself have no self-learning ability, which exists some
limitations  for  practical  application.  Therefore,  a  significant  techni-
que is to apply fuzzy neural network that combines fuzzy reasoning
ability  of  fuzzy  system  and  self-learning  of  neural  network  as  the
static  nonlinear subsystem. For the linear dynamic subsystem, ARX
model  as  our  discussion,  owing  to  the  potentiality  that  the  ARX
model  can  approximate  any  linear  dynamical  system  as  well  as  its
simplicity.

Considered  that v(k)  in Fig. 1 is  an  experimentally  immeasurable
quantity  in  the  Hammerstein  system,  but v(k)  may  describe  system
dynamic  characteristics,  which  increases  identification  difficulty.
Since  the  static  nonlinear  subsystem  is  not  activated  under  binary
signals, specifically, the intermediate variable v(k) also shows binary
signals  with  same  frequency  and  different  amplitude  as u(k)  [16].
Thus,  using  the  input  approximation  instead  of  the  intermediate
variable, parameters identification of nonlinear subsystem and linear
subsystem can be identified separately.
 

u(k) v (k) x(k)
w(k)

y(k)

e (k)

w1

wl

w2



Nonlinear subsystem ƒ(·) Linear subsystem G(·)

Industrial process 

1 + d1z−1 +  + dnd z−nd

1 + a1z−1 +  + and z−nd

x(k) = G(z)v(k) = v(k)
B(z)
A(z)

A(z) = 1 + a1z−1 +  + ana z−na

B(z) = b1z−1 +  + bna z−na

 
Fig. 1. Identification model of industrial process using Hammerstein system.
 

The nonlinear subsystem f(·) is approximated by four-layer neuro-
fuzzy  model  as  shown  in Fig. 1,  which  integrates  Takagi-Sugeno
fuzzy  system  and  radial  basis  function  based  feed  forward  network
into a connection structure.

Layer  1:  This  layer  is  input  layer.  The  node  in  this  layer  only
transmit  input  variable u(k)  to  next  layer.  Thus,  the  output  of  this
layer is u(k).

µl = exp(−(u (k)− cl)2/σl
2) cl σl

Layer 2: This layer is the membership function layer that receives
the signals from the input layer and calculates the membership of the
input  variable.  The  membership  function  chosen  is  Gaussian  mem-
bership function, that is,  , where  and 
are center and width.

µl

Layer 3:  This  layer is  rule layer.  The number of  the nodes in this
layer  represents  the  number  of  fuzzy  rules.  Since  there  is  one  input
variable u(k), it computes the fired strength of a rule as .

(k) =
∑L

l=1φl (u (k))wl φl (u (k)) =
µl/
∑L

l=1 µl wl

Layer 4: This layer is output layer. The output of the whole neuro-
fuzzy system is then given by  , where 

, L denotes  number  of  fuzzy  rule,  link  weights  are
weights.

The main contributions are as follows:
1) Unlike to most synchronous identification, the presented method

is  used  for  separating  parameters  identification  of  nonlinear  subsy-
stem  and  linear  subsystem,  which  simplifies  identification  process
and improves identification precision.

2)  By  using  the  recursive  extended  technique,  the  influence  of
output noise to parameter identification accuracy is reduced.

3)  For  the  unmeasurable  intermediate  variables  in  the  identified
Hammerstein  system,  the  auxiliary  model  technique  ensures  that
consistent estimation of system parameters can be obtained.

Proposed identification scheme: A three-stage  separation identi-
fication scheme is designed based on multiple signals that consist of
binary  signals  and  random  signals,  which  is  called  multiple  signal
sources  Hammerstein  system  identification  (MSS-HI),  as  shown  in
Fig. 2.  The  purpose  of  scheme  studied  is  to  identify  unknown
parameters  of  neural  fuzzy  network,  ARX model,  and  noise  model.
In  Stage  1,  the  characteristics  of  nonlinear  subsystem  are  not
activated  using  binary  signals,  and  then  parameters  of  ARX  model
and  noise  model  are  identified  by  recursive  extended  least  squares

algorithm. In Stage 2,  the width and center of neural  fuzzy network
are  adjusted  by  cluster  algorithm.  In  Stage  3,  the  weights  of  neural
fuzzy  network  are  estimated  using  auxiliary  model-based  recursive
extended least squares algorithm.

The specific processes of three-stage identification are depicted as
below:

Stage 1: The binary signals u1(k) are input to the listed system and
corresponding  outputs  are y1(k).  The  unmeasurable  noise  terms e(k)
of  the  identified  system  are  replaced  by  its  estimation  term,  so
recursive  extended  least  square  approach  is  applied  for  identifying
parameters  of  ARX  model  and  noise  model.  The  identification
procedures of this stage are given by
 

θ̂1(k) = θ̂1(k−1)+L(k)[y1(k)− ϕ̂T (k)θ̂1(k−1)]

L(k) =
P(k−1)ϕ̂ (k)

1+ ϕ̂T (k) P(k−1)ϕ̂ (k)

P(k) = [1−L(k)ϕ̂(k)]P(k−1)

ê(k) = y1(k)− ϕ̂T (k)θ̂1(k) (1)

ϕ̂ ê
ê θ̂ â âna

b̂ b̂nb d̂ d̂nd

where (k)  =  [−y1(k−1),…,−y1(k−na),u1(k−1),…,u1(k−nb), (k−1),…,
(k−nd)]  represents  information  vector  and 1(k)  =  [ 1, …, ,

1,…, , 1,…, ]  represents  parameters  vector, na, nb and nd are
orders.

Stage 2: Based on random signals u2(k), the width cl and the center
σl of  the  neural  fuzzy  network  are  regulated  by  adopting  clustering
algorithm [9], which are expressed by
 

cL = cL +
λ

NL +1
[u2(k)− cL], σL = min

j=1,2,...,NL
j,l

∣∣∣ci − c j
∣∣∣

ρ
(2)

where σl represents  the  width, NL is  the  number  of  cluster, cl
represent the center, λ is adjustable parameter, ρ denotes overlapping
parameter.

Stage  3:  The  criterion  function J(ϑ)  are  minimized  by  combining
auxiliary  model  technique  and  recursive  extended  principle  [17].
Thus, auxiliary model-based optimization method is used to identify
nonlinear subsystem.
 

J(ϑ) = [y2(k)− ψ̂T (k)ϑ̂]2, xa(k) = ξT
a (k)ϑa(k)

ŵ(k) = y2(k)− xa(k), ê(k) = ŵ(k)− ξ̂T
n (k)ϑ̂n(k) (3)

ψ̂ ξ̂ ϑ̂ ϑ̂ ϑ̂
ξ̂

ŵ ŵ ŵ ŵ ê ê
ϑ̂ â âna b̂ ŵ b̂nb ŵ ϑ̂ ana dnd

where T(k)  = [ξa
T(k), n

T(k)], T = [ 2
T, n

T]. ξa(k)  =[−xa(k−1),…,
−xa(k−na),ϕ1(u2(k−1)), …, ϕL(u2(k−1)), …, ϕL(u2(k−nb))]T, n(k)  =
[− (k−1),…,− (k−na), − (k−1), …,−  (k−nb),  (k−1),…,  (k−nd)],

2 =  [ 1, …, , 1 1, …, N], n =  [a1, …, ,d1, …, ], xa(k)
indicates auxiliary model output at k.
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Fig. 2. Identification scheme of Hammerstein nonlinear system.
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σ2
Convergence  analysis: Assumption  1:  Suppose  that e(k)  is

stochastic noise sequence with zero mean and variance , namely, 

E [e (k)] = 0, E
[
e2 (k)

]
≤ σ2

, E
[
e (k)e ( j)

]
= 0, k , j.

Assumption 2: There exist an integer N(t) and a positive constant α
independent of t such that the persistent excitation condition holds
 

N(t)∑
t=0

p−1∑
j=0

1
N
ϕ̂ (k+ t− j) ϕ̂T (k+ t− j) ≥ αI, a.s., ∀k > 0.

ϑ̂−ϑTherefore, the parameter estimation error  converges to zero.
Considering that the proof strategy of presented approach is similar

to  the  technique  presented  in  our  previous  research  [18],  thus  the
analysis process of the algorithm is not proved in this letter.

Experiments: Experiments  are  implemented  by  pH  process  [19],
the mechanistic model of pH process are described as
 

FS = FA +FB, V
dXA

dt
= FAC0A −FS XA, V

dXB

dt
= FBC0B−FS XB

V
dQ
dt
= [FACA −FBCB− (FA +FB)Q], Q = 10−pH − KW

10−pH (4)
where parameters nominal values are given in Table 1.
 

Table 1.  Nominal Values
Parameters Parameters implication Values

V Volume 2 L
XHCL HCL concentration 0.001 Mol/L
XNaOH NaOH concentration 0.001 Mol/L

XA HCL flow 0.0067 L/s
XB NaOH flow 0.005 L/s
KW Fixed value 10−14

C0A HCL initial concentration 0.01 Mol/L
C0B NaOH initial concentration 0.1 Mol/L

 
 

(1/N)
∑N

k=1 (obervedk − predictedk)2

(1/N)
∑N

k=1 |(observedk − predictedk)|
Mean square error (MSE = ) and

mean  absolute  error  (MAE  = )
are used.

To  certificate  the  feasibility  of  the  presented  MSS-HI  method,
polynomial-based  Hammerstein  model  (PHM)  method  [20]  and
filtering-based  recursive  least  squares  algorithm  (FRLS)  [21],  and
previous work [9] are compared. Fig. 3 shows parameters estimation
error  of  four  identification  algorithms  for  pH  process.  From Fig. 3,
the  presented  method  achieves  a  faster  convergence  rate  than  other
three  algorithms,  which  mainly  lies  in  that  the  proposed  method
applies separation identification technique to avoid the separation of
parameter  product  terms  appeared  in  [20]  and  [21],  and  estimates
noise model parameter instead of noise variance in [9].
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Fig. 3. Estimation error of four identification algorithms for pH process.
 

Remark  1:  For  industrial  process  identification,  it  is  significant
important  to  establish  a  process  model  that  can  meet  the  charac-
teristics  of  actual  process  and  identify  it  by  using  feasible  method.
The  proposed  separation  identification  scheme  for  the  pH  process
modeled  by  Hammerstein  system  solves  two  challenge  problems.

Firstly,  from  the  perspective  of  identification  accuracy,  the  neural
fuzzy  network  avoids  the  inevitable  restrictions  on  nonlinear
subsystem encountered by using polynomial method. Furthermore, in
terms  of  modeling,  the  proposed  method  applies  separation
identification technique to avoid the separation of parameter product
terms appeared in [20] and [21], improving identification accuracy.

Random  signals  with  [−0.5,0.5]  are  used  for  prediction  purposes,
the  prediction  outputs  of  pH  process  using  three  approaches  are
compared  in Fig. 4 and Table 2.  It  is  obvious  that  MSS-HI  outper-
forms  PHM  and  FRLS  in  terms  of  prediction  accuracy.  The
simulation results present that the prediction precision of MSS-HI is
higher  than  that  other  two  algorithms  in  MSE  and  MAE.  In
experiments, the signal noise ratio (SNR) is set as 7.13%, λ = 0.01, ρ =
2.  The  output  noise  affects  prediction  performance  of  system,  with
the increase of SNR, prediction performance decreases slightly.
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Fig. 4. Comparisons of prediction output of pH process.
 
 

Table 2.  Comparison of MSEs and MAEs
Approaches MSEs MAEs

PHM 0.1260 0.7785
FRLS 0.0994 0.4800

MSS-HI 0.0387 0.0754
 
 

Remark  2:  Simulation  results  show  that  the  nonlinear  subsystem
can  be  approximated  exactly  using  suitable  parameters λ and ρ.
Smaller λ and  larger ρ lead  to  smaller  model  error,  but  slower
convergence.  Thus,  the  parameters  selection  should  balance  system
error and convergence speed.

Remark 3: The strengths of the developed method mainly have two
aspects:  Firstly,  the  characteristics  of  nonlinear  subsystem  are  not
activated  using  binary  signals,  thus  nonlinear  subsystem parameters
and  linear  subsystem  parameters  are  identified  separately,  reducing
identification  complexity.  Secondly,  the  auxiliary  model  technique
and  recursive  extended  principle  ensure  that  parameters  consistent
estimation  is  obtained.  In  terms  of  weaknesses,  the  parameters
selection  of λ and ρ should  effectively  balance  system  error  and
convergence  speed.  In  addition,  the  correlation  of  noise  at  different
times needs to be further studied.

Conclusions: This  letter  presents  a  separation  identification
scheme  for  pH  process,  in  which  the  pH  process  is  modeled  by
Hammerstein system with neural fuzzy network and ARX model. In
terms  of  research  contributions,  the  designed  multi-signals  are  used
to realize identification separation of the Hammerstein system, which
improves  identification  precision.  In  view  of  the  unmeasurable
intermediate  variables  in  identified  Hammerstein  system,  the  auxi-
liary  model  technique  is  used  to  obtain  parameters  consistent
estimation. From the perspective of research limitations, the colored
noise  considered  is  only  linear  combination  driven  by  white  noise,
the  correlation  of  noise  at  different  times  is  not  researched.  Our
future works will be carried out from two aspects: firstly, some novel
optimization  algorithms  [12]−[15]  can  be  used  for  identification  of
practical  process  represented  by  Hammerstein  system.  In  addition,
the  nonlinear  subsystem  of  the  Hammerstein  system  is  modeled  by
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deep neural network models [22].
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