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   Dear editor,
This  letter  presents  a  novel  symmetry  and  nonnegativity-constr-

ained  matrix  factorization  (SNCMF)-based  community  detection
model on undirected networks such as a social network. Community
is  a  fundamental  characteristic  of  a  network,  making  community
detection a vital yet thorny issue in network representation. Owing to
its  high  interpretability  and  scalability,  a  symmetric  nonnegative
matrix factorization (SNMF) model is frequently adopted to address
this  issue.  However,  it  adopts  a  unique latent  factor  (LF) matrix for
representing  an  undirected  network’s  symmetry,  which  leads  to  a
reduced  latent  space  that  impairs  its  representation  learning  ability.
Motivated  by  this  discovery,  the  proposed  SNCMF  model
innovatively  adopts  the  following  three-fold  ideas:  1)  Leveraging
multiple  LF  matrices  to  represent  a  network,  thereby  enhancing  its
representation  learning  ability;  2)  Introducing  a  symmetry  regulari-
zation term that implies the equality constraint between multiple LF
matrices  to  illustrate  the  network’s  symmetry;  and  3)  Incorporating
graph  regularization  into  the  model  to  preserve  the  network’s
intrinsic  geometry.  Experimental  results  on  several  real-world
networks  indicate  that  the  proposed  SNCMF-based  community
detector  outperforms  the  benchmark  and  state-of-the-art  models  in
achieving highly-accurate community detection results.

Networks  are  ubiquitous  in  the  age  of  the  Internet.  In  general,
multitudinous entities in a real system and their interactions form an
undirected  network,  e.g.,  wireless  sensor  networks  and  social
networks.  Commonly,  a community in a network can be considered
as  its  sub-graph  in  which  a  group  of  network  nodes  are  connected
tightly  with  each  other  through  direct  or  indirect  connections.
Communities are pervasive in a network, and play a significant role
in  revealing its  mechanism of  organization and operation.  Based on
accurately detected communities,  various network analysis  tasks are
facilitated, such as graph classification and social recommendation.

Related  work: To  date,  community  detection  has  attracted  great
attention from researchers, leading to a pyramid of detection models
[1].  Among them,  a  nonnegative  matrix  factorization  (NMF)  model
[2] has proven to be highly scalable and interpretable. Hence, it  has
been frequently applied to community detection. Given a network, an
NMF-based detector works by building a low-rank approximation to
the  target  adjacency  matrix  relaying  on  a  set  of  nonnegative  LF
matrices.  The  achieved  LFs  can  be  considered  as  either  the  soft-
threshold to identify the community of a specific entity, or the input
of  a  hierarchical  community  detector.  For  example,  Leng et  al.  [3]
present  a  graph-regularized Lp smooth  NMF  model  for  data
representation,  which  considers  the  intrinsic  geometric  information
of  target  data  and  generates  a  smooth  and  stable  solution.  By

incorporating the prior information into the factorization process, Ma
et al. [4] present a semi-supervised joint NMF model to improve the
community detection performance in a multi-layer network.

The  above-mentioned  approaches,  despite  of  their  efficiency  in
community  detection,  fail  to  correctly  represent  a  given  undirected
network’s intrinsic symmetry. SNMF works by adopting a unique LF
matrix  to  learn  a  low-rank  approximation  to  a  symmetric  matrix,
thereby  correctly  representing  its  symmetry,  which  is  equivalent  to
the Laplacian-based spectral  clustering and kernel k-means,  and can
well  be  utilized  to  perform  community  detection.  Yang et  al.  [5]
present a unified interpretation to SNMF-based community detectors.
Ye et  al.  [6]  propose  a  homophily  preserving  SNMF  model  that
combines  the  link  topology  and  node  homophily  of  a  network,
thereby  better  describing  community  structures.  Luo et  al.  [7]
propose  to  linearly  or  non-linearly  control  the  scaling-factor  of  a
nonnegative  multiplicative  update  scheme  for  a  graph  regularized
SNMF model, resulting highly-accurate community detectors.

However,  existing SNMF-based models  commonly adopt  a  single
LF matrix only for ensuring its rigorous symmetry, which is actually
a so strong constraint that restricts its representation learning ability
[8].  Thus,  this  work  aims  to  design  an  SNCMF-based  community
detector  that  represents  an  undirected  network’s  symmetry  with
multiple LF matrices, thereby achieving accurate results.

∈

∈

Problem statement: Given a network G = (V, E) as V denotes a set
of n nodes and E denotes a set of m edges, it can be described by an
adjacency  matrix A =  [aij]n×n,  where aij describes  the  relationship
between nodes vi and vj. For an unweighted G, aij is one if eij  E, and
zero  otherwise.  If G is  a  weighted  graph,  then A is  real-valued.  In
addition, A is  symmetric  if G is  undirected,  and  asymmetric
otherwise.  Note  that  in  our  context  the  undirected  network  is  taken
into consideration. ∀vi  V, a community detector aims to identify its
proper affiliation to its closely related nodes.
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As revealed in [5], [9], an NMF-based community detector usually
involves  four  key  process  stages:  1)  constructing  the  adjacency
matrix  of  a  given  network,  2)  designing  an  NMF-based  model,  3)
solving  the  built  model,  and  4)  detecting  community  based  on  the
achieved  model.  Its  workflow  is  depicted  in Fig. 1.  In  detail,  it
assumes  that  a  given  network  has K communities  as K be  prior
information, and then learns a rank-K approximation to A as  = XYT

(s.t. Xn×K, Yn×K ≥  0).  Note  that X denotes  the  community  feature
matrix, and Y is taken as the community indicator for identifying the
node-community indicator, i.e., ∀j {1~n}, k {1~K}, yjk denotes the
probability  that  node vj belongs  to  community Ck.  Hence,  such  a
process of detecting community is formulated as
 

∀v j ∈ V : ∀v j ∈Ck, if y jk =max
{
y jl |l ∈ {1 ∼ K}

}
. (1)
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Fig. 1. Workflow for an NMF-based community detector.
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To  achieve X and Y,  an  NMF  model  adopts  a  loss  function  to

express the difference between  and A. Such a learning objective is
defined based on the Euclidean distance, i.e.,
 

ONMF = min
X,Y≥0

∥∥∥XYT −A
∥∥∥2

F (2)

where  ||·||F is  the  Frobenius  norm. X and Y are  constrained  to  be
nonnegative for describing the nonnegative probabilities standing for
each node’s  community  tendency.  Note  that ONMF is  non-convex in
both X and Y,  making  their  global  optima  intractable.  However, X
and Y’s  stationary  point  can  be  achieved  via  an  alternative  and
iterative  learning  algorithm,  i.e.,  nonnegative  multiplicative  update
(NMU) scheme [2]
 

xik ← xik
(
(AY)ik

/ (
XYTY

)
ik

)
y jk ← y jk

((
AT X
)

jk

/ (
YXTX

)
jk

)
. (3)

With (3),  an  NMF-based community  detector  is  established.  Note
that  it  acquires  the  network  representation  without  considering  the
symmetry which is the intrinsic property for an undirected network.

An  SNMF-based  community  detector  adopts  a  unique  LF  matrix
Xn×K =  [xik]  to  represent  the  adjacency  matrix A only.  Its  learning
objective is given as
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OS NMF =min
X≥0

∥∥∥XXT −A
∥∥∥2

F (4)

where X can be found via an NMU algorithm, i.e.,
 

xik ← xik
(
(AX)ik

/ (
XXT X

)
ik

)
. (5)

For stable convergence, the following learning rule with a linearly
adjusted multiplicative term is commonly adopted:
 

xik ← xik
(
1/2+ (AX)ik

/ (
2XXT X

)
ik

)
. (6)

An SNMF-based model introduces strong symmetry into the model
for  precisely  representing  the  symmetry  of  an  undirected  network.
However,  the  unique  LF  matrix  also  leads  to  shrinkage  of  its  LF
space, which reduces its representation learning ability to A,  as well
as its performance for community detection.

Proposed  community  detector: A  unified  SNCMF  model  for
highly-accurate community detection is presented. Its main idea is to
introduce  equality-constraint-based  symmetry  regularization  along
with  the  graph  regularization  into  its  objective,  thereby  achieving
highly-accurate representation to the target network.

To make an NMF model own the symmetry of a target undirected
network,  we  put  the  symmetry  constraint  terms,  i.e.,  ||X−U||F and
||Y−U||F, into its learning objective as
 

ε = min
X,Y,U≥0

(∥∥∥XYT −A
∥∥∥2

F +α
(
∥X−U∥2F + ∥Y −U∥2F

))
(7)

where A denotes the adjacency matrix, X and Y denote LF matrices,
U is a bridge variable used to transfer the information between X and
Y,  and α > 0 is a coefficient to balance the symmetry constraint and
loss  error.  With  (7), X and Y are  required  to  be  equal  for  indirectly
representing the symmetry of A. On the other hand, this constraint is
loose  and  can  be  adjusted  with α:  as α increases, X and Y become
closer  to  make  SNCMF  better  illustrate A’s  symmetry,  and  vice
versa. However, LF space is not shrunk with two LF matrices, i.e., X
and Y,  as  well  as  one intermediate  matrix U.  Therefore,  (7)  ensures
SNCMF’s high representation learning ability to A.

To ensure the local invariance of a target network, we incorporate
the graph regularization with the bridge variable U into (7) as 

ε = min
X,Y,U≥0

(∥∥∥XYT −A
∥∥∥2

F +α
(
∥X−U∥2F + ∥Y −U∥2F

)
+λtr

(
UT LU

))
(8)

where λ adjusts the effect of graph regularization, L is the Laplacian
matrix and L = D − S.  Note that  the diagonal matrix D’s  element is
computed  as Dii =  ∑lSil,  and  the  similarity  matrix S measures  the
closeness  among  node  pairs.  It  should  be  pointed  that A and S are
numerically equal in our context.

Let Φ = [φik], Γ = [γjk] and Κ = [κsk] be the Lagrangian multipliers
for nonnegative constraints of X = [xik] ≥ 0, Y = [yjk] ≥ 0 and U = [usk] ≥
0, and the corresponding Lagrangian function is obtained
 

L = tr
(
XYT YXT −2AYXT +AAT

)
+λtr

(
UT LU

)
+αtr

(
XXT −2XUT

)
+αtr

(
YYT −2YUT

)
+2αtr

(
UUT

)
+ tr
(
ΦXT
)
+ tr
(
ΓYT
)
+ tr
(
KUT

)
(9)

L

where  the  commonly  accepted  property  that  ||A||F =  tr(AAT)  is
adopted  as  tr(·)  calculates  the  trace  of  a  matrix.  Hence,  the  partial
derivatives of  with respect to X, Y and U are achieved as
 

∂L/∂X = XYT Y −AY +αX−αU +Φ

∂L/∂Y = YXT X−ATX+αY −αU +Γ
∂L/∂U = −αX−αY +2αU +λLU +K. (10)
∂L/∂X = 0, ∂L/∂Y = 0 ∂L/∂U = 0By setting  and , a local minimum

of (8) is achieved. Thus, by combining (10) and the KKT conditions:
φikxik = 0, γjkyjk = 0 and κskusk = 0, ∀i, j, s ∈ {1~n}, k ∈ {1~K}, we
thus achieve the following inferences related to xik, yjk and usk: 

−
(
XYT Y −AY +αX−αU

)
ik

xik = 0 (11a)
 

−
(
YXT X−AT X+αY −αU

)
jk

y jk = 0 (11b)
 

−(−αX−αY +2αU +λLU)skusk = 0. (11c)
Then, we achieve the learning rules for xik, yjk and usk for SNCMF

 

xik ← xik
(
(AY +αU)ik/

(
XYT Y +αX

)
ik

)
(12a)

 

y jk ← y jk

((
AT X+αU

)
jk
/
(
YXT X+αY

)
jk

)
(12b)

 

usk ← usk
(
(α (X+Y) + λAU)sk

/
(2αU +λDU)sk

)
. (12c)

Hereto,  an  SNCMF-based  community  detector  is  obtained.  Note
that we take U as the indicator matrix for final community division,
since it actually shares the information from both X and Y.

With (12), we thus design an algorithm for the proposed SNCMF-
based  community  detector  in  Algorithm 1.  According  to  the  details
shown in Algorithm 1, the time cost of SNCMF can be summarized
as: TSNCMF = T1+T2+T3 =  Θ(n2)+Θ(n2TK)+Θ(nK)  ≈  Θ(n2TK),  where
the  lower-order-terms  are  dropped  since K<<n.  In  practice,  since K
and T are  small  and  positive  constants,  the  computational  cost  of
SNCMF  is  approximately  quadratic  with  the  node  count,  which  is
equal  to  most  existing  NMF-based  community  detectors  [2]−[9].
Note  that  the  time cost  of  the  model  can be  greatly  reduced via  the
help of GPU.

Experiments: For  evaluating  the  performance  of  SNCMF,  six
publicly-available  networks  from  real  applications  are  used  in  our
experiments  as  shown  in Table 1.  Normalized  Mutual  Information
(NMI) for measuring the similarity between the resulted community
assignment and the ground-truth community information is  taken as
the  indicator  to  evaluate  the  detection  accuracy  of  involved  models
[5], [7], [8]. Note that the NMI is in the scale of (0, 1), as large NMI
stands for high performance of a detection model.
 

Table 1.  Details of Adopted Networks
No. Networks Nodes Edges K Description
D1 Youtube [10] 11 144 36 186 40 Youtube online
D2 Friendster [10] 11 023 280 755 13 Friendster online
D3 LiveJournal [10] 7181 253 820 30 LiveJournal online
D4 Orkut [10] 11 751 270 667 5 Orkut online
D5 Amazon [10] 5304 16 701 85 Amazon product
D6 DBLP [10] 12 547 35 250 4 DBLP collaboration

 
 

We compare our method with nine benchmark and state-of-the-art
models: NMF [2], GNMF [11], SNMF [5], GSNMF [5], NSED [12],
SymNMF [13], DeepWalk [14], LINE [15], and HPNMF [6].

To obtain objective experimental  results,  hyper-parameters are set
as follows. For LINE and DeepWalk, we perform the experiments by
the  default  settings  in  their  official  toolkits.  For  graph  regularized
models, i.e., GNMF, GSNMF and SNCMF, the graph regularization
coefficient λ is uniformly set at 100 according to [11]. For HPNMF,
both of its parameters, i.e., λ and γ, are set at one, according to [6]. In
addition, for SNCMF, we set its symmetry regularization parameter,
i.e., α at 2–8 uniformly on all datasets.

In addition, the final experiment results are achieved by repeating
each  separate  experiment  20  times  with  various  initial  hypotheses.
Average NMI values of ten involved methods on six social networks
are  summarized  in Table 2.  Moreover,  the  corresponding  statistical
test  results,  i.e.,  Win/Loss  counts,  Friedman  ranks,  and p-value  of

 

    Algorithm 1 SNCMF-Based Community Detector
　Input: Network G, community count K, Parameters α and λ
　Operation Cost

1:
Initialize: Adjacency matrix A; Degree matrix D with
zeroes; LF matrices X and Y nonnegatively; Community set
C = {C1, C2, …, Ck}; Iteration count t = 0 and max-
iteration-count T; α and λ with nonnegative constants

T1

2: for i = 1~n

T2

3: 　for l = 1~n
4: 　Dii = Dii + Ail

5: 　end for
6: end for
7: while not converge and t ≤ T do
8: 　Update X according to learning rule (12a)
9: 　Update Y according to learning rule (12b)
10: 　Update U according to learning rule (12c)
11: 　t = t + 1
12: end while
13: for all vi ∈ V

T3
14:    Assign community affiliation according to (1) with U as

   a soft indicator
15: end for

  Output: Community set C = {C1, C2, … , Ck}
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Wilcoxon  test,  are  also  provided  in Table 2.  From  the  results,  we
have the following findings:

1)  Symmetry  regularization  enables  an  NMF-based  community
detector to achieve higher accuracy. As shown in Table 2, we see that
SNCMF outperforms GNMF on five testing cases out of six in total
significantly with a confidence level at 90%.

2)  Symmetry  and  graph  regularizations  work  compatibly  to  make
SNCMF  outperform  its  peers  in  terms  of  community  detection
accuracy. From the results, SNCMF achieves the best scores on four
networks  except  D3  and  D6.  Besides,  according  to  the  Friedman
statistical  results,  we  observe  that  it  achieves  the  lowest  average
Friedman rank among all tested methods, which means it obtains the
best  performance  among  its  peers.  In  detail,  SNCMF  has
significantly  higher  detection  accuracy  than  NMF,  SNMF,  NSED,
SymNMF, DeepWalk, LINE, and HPNMF with a confidence level at
95%, as well as GNMF and GSNMF with a confidence level at 90%,
respectively.

Â

Further, to check whether or not SNCMF can properly describe the
symmetry of an undirected network, we plot the data distribution in
the low-rank approximation  to D1 respectively generated by NMF,
SNMF, and SNCMF in Fig. 2. From it, we can observe that: 1) NMF
in Fig. 2(a) can not describe the symmetry of a target network at all;
2) SNMF in Fig. 2(d) precisely describes the symmetry of the target
network; and 3) SNCMF can capture a portion of the target network’
s symmetry, and its representation learning ability to the symmetry of
the  target  network  can  be  flexibly  adjusted  by α,  as  depicted  in

Figs. 2(b) and 2(c).
Conclusions: This  work  presents  a  novel  SNCMF  model  that

adopts  both  symmetry  and  graph  regularizations  to  accurately
represent an undirected network. Empirical studies on six real-world
social  networks  demonstrate  that  an  SNCMF-based  community
detector  achieves  higher  community  detection  accuracy  than  the
benchmark and state-of-the-art  methods. Thus, we conclude that the
representation to the symmetry of a target undirected network and the
LF  space  should  be  well  balanced  as  in  an  SNCMF  model  for
achieving highly accurate community detection results.

We plan to handle the problem of  hyper-parameter  adaptation via

evolutionary  computation  techniques  such  as  the  particle  swarm
optimization (PSO) algorithm [16] in our future work.
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D2 68.08±6.66✪ 45.17±2.89✪ 67.64±5.53✪ 62.64±6.95✪ 76.14±5.13✪ 78.40±4.49✪ 80.37±0.98✪ 70.31±1.95✪ 80.55±3.55✪ 81.85±4.03
D3 23.47±3.87✪ 49.89±2.41✪ 33.78±4.49✪ 73.17±3.82 19.79±5.19✪ 42.22±2.81✪ 48.38±2.71✪ 42.33±1.59✪ 66.82±0.39✪ 69.45±3.59
D4 29.53±2.13✪ 51.56±2.62✪ 29.39±6.36✪ 59.18±4.02✪ 31.25±4.93✪ 33.75±7.20✪ 57.37±1.48✪ 42.31±2.36✪ 48.13±8.46✪ 66.76±7.29
D5 42.21±1.46✪ 67.54±1.23✪ 45.58±1.72✪ 62.29±4.25✪ 38.17±1.64✪ 47.17±2.07✪ 51.98±1.49✪ 48.23±1.65✪ 61.21±3.93✪ 73.57±1.95
D6 7.18±3.22✪ 19.18±4.86 6.60±2.81✪ 9.25±1.69✪ 5.67±3.03✪ 9.18±2.75✪ 11.16±0.76✪ 8.92±0.44✪ 11.54±1.67✪ 16.51±3.31

Win/Loss 6/0 5/1 6/0 5/1 6/0 6/0 6/0 6/0 6/0 —
Ranks* 8.4 4.2 8.6 4.0 8.6 6.2 4.0 6.2 3.4 1.4

p-value** 0.0313 0.0625 0.0313 0.0625 0.0313 0.0313 0.0313 0.0313 0.0313 —
*A lower Friedman rank value indicates a higher community detection accuracy. **The accepted hypotheses with a significance level of 0.05 are highlighted.
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(c) SNCMF α = 1 
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(b) SNCMF α = 2−8 
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ÂFig. 2. Data distribution in  on D1.
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