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   Dear Editor,

This  letter  deals  with  the  structural  controller  design  problem  of
interconnected  systems  with  unknown  feedback  topology.  Firstly,
under  a  cardinality  constraint  on  the  directed  communication  links
among  sub-controllers,  a  distributed  controller’s  feedback  gain  and
feedback  topology  are  incorporated  in  a  unified  co-design  frame-
work.  Secondly,  the  cardinality  constraint  introduced  in  the
distributed  control  is  represented  by  a  binary  integer  programming.
To deal with the complementary constraint, a nonlinear programming
(NLP) is proposed to relax the binary integer programming. Finally,
incorporating  the  NLP  into  the  standard  distributed  event-triggered
control method, an algorithm is developed for interconnected systems
to simultaneously design the feedback topology and controller gain.

An  interconnected  system  is  composed  of  several  coupling
subsystems, which usually coordinate with each other to accomplish
a  common  task.  Such  systems  exist  in  a  large  number  of  practical
scenarios, such as power plants [1], intelligent transportation [2]. Due
to their complex structure, large scale and comprehensive functions,
interconnected  systems  are  also  referred  to  as  large  scale  systems.
With the rapid progress in embedded microprocessors and commun-
ication  technology,  a  great  amount  of  concern  has  been  devoted  to
how to control the thriving interconnected systems [3].

It  is  noted  that  existing  distributed  control  strategies  are  mainly
claimed  over  prescribed  feedback  topologies.  In  this  way,  since  the
distributed  controller  design  and  the  feedback  topology  design  are
mutually  independent,  the  following  two  unexpected  cases  may
emerge. On the one hand, the preset feedback topology may provide
redundant communication channels, which could lead to unnecessary
expenditure  and  malicious  attacks.  On  the  other  hand,  it  is  also
perhaps  that  the  preset  feedback  topology  could  not  support  the
required  control  performance,  which  leaves  the  issue  of  distributed
controller  design  unsolvable.  While  a  feasible  solution  can  be
obtained  with  a  minor  modification  of  the  feedback  topology.
Therefore,  one  promising  way  to  deal  with  the  challenge  is  to  co-
design  of  the  feedback  topology  and  feedback  gain  for  an
interconnected system, which is the motivation of this letter.

The overall controller gain of an interconnected system is usually a
matrix  with  zero  blocks,  where  each  matrix  block  represents  a
channel  gain  and  a  null  block  implies  no  channel  is  set.  Therefore,
for  an  interconnected  system,  the  design  of  a  structured  controller
with  unknown  zero/nonzero  structure  is  actually  a  co-design  of
feedback  topology  and  feedback  gain.  With  given  controller
structure,  a  chordal  decomposition  method  is  proposed  to  design
sparse  structured  controller  gain  [4].  A  structured  controller  design
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method is developed via constraining some decision matrix variables
in the Lyapunov method [5]. In the case when feedback topology is
not  preset,  the  structured  controller  design  problem  becomes  non-
deterministic polynomial (NP) hard due to its combinatorial property
[6].  By  decomposing  a  nonlinear  term  existed  in  a  linear  matrix
inequality into linear ones, a sparse promoting algorithm is presented
for  a  liner  system  [7].  But  a  clear  relationship  between  the  sparse
structure  and  feedback  topology  is  not  established.  A  alternating
direction multipliers method is developed for the sake of generating a
feedback gain with as many zero elements as possible in an optimal
control problem [8]. A weighted  iterative algorithm is proposed for
interconnected systems to generate controller  gains with null  blocks
[9]. More recently, a structured controller design method is proposed
in [10] through a regularized mixed-integer programming (RMIP). It
is  noted  that  the  method  in  [10]  is  one-step  with  a  fixed  sparsity,
while  iterative  procedures  are  utilized  in  [9]  to  gradually  promote
sparsity  in  controller  gain.  However,  one  drawback  of  the  former
approach [10] is that a sufficient large upper bound should be preset
for the expected structured controller gain in advance.

On the other hand, event-triggered transmission strategy (ETS) has
witnessed  incredible  developments  over  the  past  decade  due  to  its
advantage on resource saving [11]. In effect,  the way that ETS savs
resources  by  reducing  redundant  transmissions,  is  exactly  a
sparsification  of  feedback  traffic  flow  in  some  specific  channel(s).
While  it  is  obvious  that  sparsification  of  feedback  topology  could
save  the  transmission  resources  by  reducing  redundant  feedback
communication  channels,  which  is  also  an  important  motivation  of
structure controller design.
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This letter is going to investigate the issue of structured controller
design for event-triggered interconnected systems via NLP. The main
contributions  of  this  letter  are:  1)  An  algorithm  based  on  NLP  is
developed to deal with the NP hard cardinality constraint. Compared
with  iterative  algorithms,  the  initial  point  is  not  required  to  set
beforehand;  Compared  with  RMIP,  the  preset  bound  for  controller
gain is no longer needed. 2) A practicable solution is provided to co-
design  of  feedback  topology  and  feedback  gain  for  event-triggered
interconnected  systems.  And  the  limited  transmission  resources  can
be substantially saved from reducing redundant feedback channels as
well  as  from  reducing  unnecessary  transmissions  in  the  remaining
feedback channels.

Problem  statement: Consider  an  interconnected  system  that  is
comprised of some coupling subsystems with the model of
 

ẋ j(t) = A jx j(t)+
N∑

i, j

H jixi(t)+B ju j(t), x j(0) = x j0 (1)

j ∈ Ξ := {1,2, . . . ,N} x j(t) u j(t)
A j B j

H ji

where ,  denote  the  state  vector; 
represent control  input generated via sub-controller j;   and  are
known matrices;  is a constant matrix representing a coupling gain
from subsystem i  to j.  Fig. 1 schematically illustrates the considered
interconnected system.

Each  subsystem  is  equipped  with  a  sub-controller,  which  could
interact  with other  sub-controllers  over  networks.  The controller  for
the overall system is composed of N sub-controllers, and the form of
each is given as follows:
 

u j(t) = K j jx j(t)+
N∑

i, j

K jixi(t) (2)

K jiwhere the sub-controller gains s are to be determined.
K jisIt  is  noted  that  the  zero/nonzero  structure  of  constitutes  the

communication topology among sub-controllers. Different from most
of the existing system frameworks [12], the communication topology
among  sub-controllers  is  neither  fixed  nor  stochastically  varying  in
this letter, while it is to be determined under a cardinality constraint
on the directed transmission links among sub-controllers.

For  the  purpose  of  reducing  occupation  of  the  transmission
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resources,  we utilize a  distributed ETS (DETS) for  the transmission
of state measurement. An event threshold condition of sampled data
is required to be evaluated before transmission. The DETS designed
in this letter will only transmit data when the threshold is violated.

x j(kh) kh
x j(kh)

In what follows,  represents the signal sampled at instant .
Only  the  that  violates  the  following  threshold  condition  will
be transmitted to sub-controller j:
 

ET
j (kh)Γ jE j(kh) < δ jxT

j (kh)Γ jx j(kh) (3)

E j(kh) = x j(kh)− x j(r
j
k j

h) x j(r
j
k j

h))
kh

δ j ∈ (0,1) Γ j > 0
h,Γ, δ

Γ = diag{Γ1,Γ2, . . . ,ΓN } δ = diag{δ1, δ2, . . . , δN }
[kh, (k+1)h) ϱ(t) = t− kh

where ;  is  the  data  most  recently
transmitted  up  to  the  instant ,  while h  represents  the  sampling
period.  and   are  parameters  of  the  DETS.  Clearly,
the  DETS  can  be  compactly  represented  by  DETS( ),  where

, . When t evolves over
, define . We have

 

x j(r
j
k j

h) = x j(t−ϱ(t))− e j(t), t ∈ [r j
k j

h,r j
k j+1h) (4)

e j(t) = x j(t−ϱ(t))− x j(r
j
k j

h)with .  Then,  control  input  for  the overall
system could be written as
 

u(t) =K(x(t−ϱ(t))− e(t)), t ∈ [psh, ps+1h) (5)
K := (K ji)N×N x(t) = col{x1(t), . . . , xN (t)}where , ,

 

ps =max{r1
k1
,r2

k2
, . . . ,rN

kN
}, ps+1 =min{r1

k1+1, . . . ,r
N
kN+1}.

K

cardnd(K)

It  is  noted  that  controller  gain  as  well  as  its  structure  is  to  be
designed in  this  letter.  In  the  existing literature  on controller  design
of  interconnected  systems,  the  communication  topology  among  the
sub-controllers is well set beforehand. But it is practically difficult to
determine which sub-controllers should be connected in advance. For
the sake of seeking some optimal control performance, it is nature to
set as many feedback channels as possible. However, in this way, in
addition  to  the  waste  of  transmission  resources  to  some  extent,  the
establishment  of  too  many  communication  channels  can  also  easily
incur network attacks [13]. Therefore, in this letter, we constrain the
number of feedback communication channels among sub-controllers
prior  to  the  design  of  controller  gains.  This  number  is  denoted  as

 with the following definition:
 

cardnd(K) := The number of K ji in K , K ji , 0, j , i. (6)
cardnd(K) ≤ κ
κ ∈ [0,N2 −N)

K

Controller  (5)  with  will  be  termed  a ϰ-sparse
structured  controller,  where  is  an  integer.  Therefore,
our  purpose  is  to  design  a  structured  controller  gain  which
guarantees  exponentially  asymptotical  stability  of  the  following
controlled system:
 

ẋ(t) =Ax(t)+BK x(t−ϱ(t))−BKe(t) (7)
 

cardnd(K) ≤ κ (8)

A Bwhere  and  can be easily obtained from (1).
Remark 1: In the proposed system framework, to design a ϰ-sparse

structured controller for the interconnected system is actually a kind
of co-design of feedback topology structure and the feedback gain for
the system. Although the positive integer ϰ  is preset in this letter,  it
can be adjusted according to practical control and/or communication
requirements. Generally, a larger ϰ implies more feedback channels,
better  control  performance  and  higher  communication  cost.
Therefore,  one  purpose  of  structural  controller  design  is  to  seek  a
tradeoff between control and communication performances.

Remark  2:  It  is  noted  that  all  the  subsystems  inherit  the  same
sampling rate in this letter. However, the developed approach applies
to the multi-rate sampling scenario, where the issues of transmission
delays and packet dropouts could also be considered.

Structured controller design: It  is  noted that  the main challenge
of  designing  a  allowable  controller  for  event-triggered  closed-loop
systems (7)-(8) is how to deal with the cardinality constraint (8). We
will  first  seek  a  centralized  feedback  gain  for  system  (7),  based  on
which, a ϰ-sparse structured controller is to be designed.

h,Γ, δ K

X > 0, Y > 0, Z

Theorem  1:  With  preset  DETS( ),  controller  gain  and  a
positive  scalar α ,  event-triggered  system  (7)  is  exponentially
asymptotically  stable,  if  one  could  find  matrices , S
such that
  Z S

S T Z

 > 0 (9)
 

Π11 Π12 −e2αhS −XBK hAT

∗ Π22 e2αh(Z+S ) 0 hKTBT

∗ ∗ −e2αhZ 0 0

∗ ∗ ∗ −Γ −hKTBT

∗ ∗ ∗ ∗ −Z−1


< 0 (10)

where
 

Π11 = XA+AT X+2αX+Y − e−2αhZ

Π12 = XBK + e−2αh(Z+S )

Π22 = δ⊗ IΩ− e−2αh(2Z+S +S T ).

    Proof: One can find similar derivations in [14]. ■
Then,  by  some  matrix  transformations,  one  can  get  the  following

centralized controller synthesis result.

X j > 0 Ω j > 0 Y > 0,Z j ∈ Ξ

Theorem  2:  Given  positive  scalars α  and  δ ,  system  (7)  is
exponentially  asymptotically  stable,  if  one  could  find  matrices

, , , S, K,  such that
  Z S

∗ Z

 > 0 (11)
 

Π11 Π12 −e2αhS −BK hXAT

∗ Π22 e2αh(Z+S ) 0 hKTBT

∗ ∗ −e2αhZ 0 0

∗ ∗ ∗ −Ω −hKTBT

∗ ∗ ∗ ∗ −XZ−1X


< 0 (12)

where
 

Π11 =AX+XAT +2αX+Y − e−2αhZ

Π12 = BK + e−2αh(Z+S )

Π22 = δ⊗ IΩ− e−2αh(2Z+S +S T )

X = diag{X1,X2, . . . ,XN }, Ω = diag{Ω1,Ω2, . . . ,ΩN }.
Kc = KX−1

Γ = X−1ΩX−1
Furthermore,  a  centralized  controller  gain  is  given as .

And the weighting matrix is given as .
Kc

cardnd(Kc) ≤ κ
Kc Kc = KX−1

cardnd(Kc) = cardnd(K)

One can see that a feasible gain matrix  resulted from Theorem 2
does not inherit the required sparse structure. That is, the cardinality
constraint  can not be guaranteed. However, from the
way  that  is  generated, ,  one  can  find  that

 since  invertible  matrix X  is  block  diagonal.
Therefore,  we  can  transfer  the  imposed  cardinality  constraint

 

Sub- Sub-
controller 1 controller N

Subsystem Subsystem
1 N

Network

Subsystem Subsystem
2 j

Sub- Network Sub-
controller 2 controller j

 
Fig. 1. A networked interconnected system.
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Kc
K

equivalently from  to K. For this purpose, one can first partition K
into  blocks  such  that K  and   inherit  the  same  block  structure.
Introduce a set of binary variables as follows:
 

{z ji ∈ {0, 1} | j, i ∈ Ξ, j , i}. (13)
cardnd(K) ≤ κThen, the constraint  can be equivalently transformed

as
 

∑
j,i

z ji ≥ N(N −1)−κ

z ji ∈ {0, 1}
z jiK ji = 0.

(14)

To enlarge the feasible region of binary integer programming (14),
we consider a relaxation of (14).
 ∑

j,i

z ji ≥ N(N −1)−κ (15a)

 

0 ≤ z ji ≤ 1, z jiK ji = 0. (15b)

z jiK ji = 0

It is noted that (15a) and (15b) still can not be directly applied into
structured  controller  design  due  to  the  complementary  constraint

.
cardκnd(·)Define  as follows:

 

cardκnd(K) := N(N −1)− cardκnd(K)

cardκnd(K) = The number of K ji |K ji ≤ κ, −K ji ≤ κ
j , i K ji ≤ κ K jiwhere ,  means that all the elements in matrix  are less

than or equal to κ  with κ  being a positive scalar.  Then, we have the
following result.

cardκnd(K) ≤ κ
K ji z ji, j, i ∈ Ξ, j , i

Lemma 1: Given a scalar κ, constraint  is satisfied if
and only if one could find matrices  and scalars 
such that
 ∑

j,i

z ji ≥ N(N −1)−κ (16a)

 

0 ≤ z ji ≤ 1 (16b)
 

z ji ≤ κ or K ji ≤ κ (16c)
 

z ji ≤ κ or −K ji ≤ κ. (16d)
cardκnd(K) ≤ κ

z ji

Proof: Necessary condition. Suppose that  holds. Set
 as follows:

 

z ji =

 0, if K ji ≤ κ, −K ji ≤ κ
1, else.

(17)

Then, one can verify that (16a)−(16d) hold.

z ji z ji > κ N(N −1)−κ
cardκnd(K) ≥ N(N−

1)−κ cardκnd(K) ≤ κ

Sufficient  condition.  It  follows  from  conditions  (16a)  and  (16b)
that  the  number  of  satisfying   is  at  least .
Therefore,  conditions  (16c)  and  (16d)  lead  to 

, which implies that  holds. ■

K ji

By using Lemma 1, we can relax complementary constraint (15b)
to  nonlinear  constraint  (16b)−(16d),  which  can  be  easily  resolved.
Fig. 2 illustrates the feasible region of (16b)−(16d) in the scalar case,
i.e., all of the matrices s are scalars. One can find from the figure
that  the  feasible  region  of  (16b)−(16d)  can  be  described  by  some
nonlinear functions [15].

cardκnd(K)
[−κ,κ]

cardκnd(K) cardnd(K)

K cardnd(K) ≤ κ

It follows the definition that  denotes the number of K’s
nondiagonal  blocks  whose  elements  can  only  vary  between .
Therefore,  as κ  approaches  0,  approaches  .
Based on the NLP, we have the following Algorithm 1 to generate a
feasible  structured  controller  gain  with  ,  which
guarantees  exponentially  asymptotical  stability  of  event-triggered
system (7).

z ji K ji

K ji

Remark  3:  The  values  of  and   are  mutually  constrained  in
binary  integer  programming  (14)  as  well  as  in  the  nonlinear
programming  in  Algorithm  1.  In  this  case,  the  number  of  null  or
“small” blocks  ( )  can  be  constrained  by  constraining  the  sum of

z jis.

κ = κ/10
Remark 4: In Algorithm 1, the step length can take a larger value.

For  example,  take  in  Step  4.  After  all,  a  smaller κ  implies
that  the  deleted  block  matrices  are  closer  to  a  null  matrix,  and  the
verification in Step 4 is more likely to succeed. Or actually, one may
directly obtain a feasible solution by taking a smaller enough κ once
and for all.

Algorithm 1 ϰ-Sparse Structured Controller Design via NLP

κ = κ01:  Set .

Kc

2:  Solve  Theorem 2 under  constraint  (16a)−(16d)  to  obtain  a  fea-
sible solution ( , α, δ, Γ).

K K ji ≤ κ, −K ji ≤ κ
Kc

3: Obtain  by deleting the terms satisfying  from
.

K K
κ = κ/2

4: Verify ( , α, δ, Γ) through Theorem 1. If yes, exit and return ;
else go to Step 2 with .

An example: We select a fourth-order power plant for simulation
to  validate  the  presented  structured  controller  design  approach.  The
power  system  consists  of  three  subsystems.  The  modeling  and
parameters of the power plant can be found in [16].

h = 10 ms α = 0.01 δ = diag{0.1,0.2,0.1} κ = 2
κ0 = 0.01

K

Choose , , .  We  take 
and  in this example. Solving Algorithm 1 leads to a feasible

 as follows:
 

K =


K11 0 0

0 K22 K23

K31 0 K33

 (18)

with
 

K11= [1.172E−05 8.125E−07 5.510E−07 −7764.2]

K22= [1.518E−05 1.433E−06 −5.63E−07 −8017.2]

K23= [−3.07E−06 −1.778E−06 4.85E−06 408.75]

K31= [1.549E−05 130.57 −1.306E−06 9.242E−09]

K33= [1.082E−05 7.674E−07 8.053E−07 −7901.1] .

K
cardnd(K)

In  order  to  show the  merits  of  the  developed  approach,  we  try  to
use  some  existing  methods  for  sparsity  optimization  for  the  same
power  system,  such  as  alternating  direction  method  of  multipliers
(ADMM) in [8]. The ADMM is a typical sparsity promoting method
in  the  literature.  For  the  same example,  the  simulation  results  show
that  our  nonlinear  programming  method  can  generate  more  zero
blocks  in  the  controller  gain  in  the  limit  case.  Moreover,

 can be easily adjustable with the developed approach.

Ts = 6

State  responses  of  the  controlled  plant  shows  the  exponential
stability  of  the  plant. Figs. 3−5  illustrate  state  responses  of  the
controlled  plant.  Under  the  DETS.  It  is  noted  that  within  the
simulation  period  s,  the  number  of  event-triggered  trans-
missions in the three subsystems are respectively, 130, 135, and 136,
all far less than 600, the numbers of transmissions under the periodic
sampling/transmission  strategy.  This  illustrates  DETS’s  merit  on
resource efficiency.

Conclusions: The design of structured controller with sparse gain
matrix  for  interconnected  systems  has  been  studied.  The  distributed
control  framework  of  an  interconnected  system  under  a  DETS  and
unknown feedback topology has  been developed for  simultaneously
designing  of  the  feedback  topology  and  feedback  gain.  The
cardinality  constraint  involved  in  the  structured  controller  design
issue has been relaxed and resolved by a nonlinear programming. By
incorporating the NLP into the standard centralized controller design

 

Zji

κ

κ−κ Kji

1

 
Fig. 2. Feasible region of (16b)−(16d) in the scalar case.
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method,  an  algorithm  has  been  developed  for  designing  sparse
structured  controller  with  cardinality  constraint.  The  developed
approach has been verified via a three machine interconnected power
plant.
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