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   Dear Editor,
Traffic driving is a dynamic and complicated task in which drivers

are required to pay close attention to the important targets or regions
to  maintain  safe  margins.  Rainy  weather  conditions  make  it  more
challenging with factors such as low visibility, raindrops, pedestrian
with  umbrellas,  wipers,  etc.  Studies  showed  that  rainy  condition
affects  driving  safety  significantly  [1],  [2].  It  is  reported  that,  in
raining  weather  condition,  the  odds  for  a  fatal  accident  are  3.340
times higher on highways than on streets [3]. An investigation of the
relationship between rainfall and fatal crashes in Texas from 1994 to
2018  on  fatality  analysis  reporting  system  (FARS)  database
illustrated  that  rain-related  fatal  crashes  represented  about  6.8% of
the  total  fatal  crashes  on  average,  moreover,  the  proportion  showed
high  variability  at  the  annual,  monthly,  and  hourly  time  scales  [4].
Therefore,  raining  is  a  complex  and  critical  factor  for  road  safety
planning  and  management.  In  fact,  the  traffic  environment  is  a
dynamic  scene  with  multiple  sources  of  information,  including
important  targets  that  are  highly  relevant  to  the  current  driving task
as  well  as  irrelevant  targets  that  may  distract  the  driving  task  [5].
Driven  by  the  visual  selective  attention  mechanism,  experienced
drivers often focus their attention on the most important regions and
only  show  concern  for  objects  related  to  driving  safety  in  those
salient  regions.  This  selective  attention  mechanism  [6],  [7]  helps
drivers  reduce  the  interference  of  irrelevant  scene  information  and
guarantee  the  driving  safety.  Understanding  the  selective  attention
mechanism of  experienced  drivers  and  then  simulating  the  efficient
saliency detection process in rainy conditions may help driving a car
in rainy conditions as well as on a sunny day.

Visual saliency prediction is a hot topic in the field of the driving
assistance  technologies.  It  applies  the  intelligent  algorithms  to
simulate  human  visual  search  patterns  and  extract  salient  areas  or
regions  of  interest  in  the  driving  scenes.  Its  purpose  is  to  find  the
regional  targets  that  are  highly  relevant  to  the  current  driving  task,
such as cars, pedestrians, motorcycles, bicycles, traffic lights, traffic
signs,  etc.,  in  order  to  give  drivers  supplementary  tips  or  warnings
and improve the driving safety. Many algorithms have been proposed
to predict the traffic saliency or drivers’ attention [8], [9]. Traditional
models  include  Itti  [10],  image  signature  [11],  and  hyper  complex
Fourier  transform  (HFT)  [12],  etc.  With  the  development  of  deep
neural  networks,  convolutional  neural  network  (CNN)  and  deep
learning  algorithms  are  adopted  to  predict  video  saliency.  Typical
models include spatiotemporal residual attentive networks [13], skip-
layer  visual  attention  network  [14],  multi-level  network  (MLNet)
[15],  expandable multilayer  network (EML-NET [16]),  TASED-Net
[17],  saliency  exponential  moving  average  (SalEMA)  [18],

convolution-deconvolution  neural  network  (CDNN)  [19],  driving
video fixation prediction with spatio-temporal networks and attention
gates  (DSTANet)  [20],  semantic  context  induced  attentive  fusion
network (SCAFNet) [21], etc. However, it is worth noting that none
of above models are based on driving datasets collected under rainy
conditions.

To evaluate the robustness of the saliency models, there are many
public  datasets  available  in  the  field  of  visual  saliency  detection.
Static  datasets  include  MIT  [22],  PASCAL-S  [23]  and  saliency  in
context  (SALICON)  [24].  Dynamic  video  datasets  include
Hollywood-2  [25],  UCF-sports  [25],  dynamic  human  fixation
(DHF1K)  [26],  etc.  Most  of  these  datasets  are  related  to  natural
images/videos  about  sports  and  life  scenes.  There  are  also  a  few
public  datasets  specifically  for  traffic  scenes,  e.g.,  Berkeley
DeepDrive  attention  (BDD-A)  [27],  DR(eye)VE  [28],  DADA-2000
[21] and Deng et al. [19]. Some datasets with synthetic images from
video game [29],  [30] were presented for object  detection [31].  The
comparing  statistics  of  the  often-used  saliency/attention  datasets  in
natural  and  driving  scenes  are  summarized  in  Supplementary
Material1.

Considering the lack of  rainy driving datasets  and the shortage of
investigation  on  saliency  prediction  models  in  rainy  conditions,  we
collected an eye tracking dataset from 30 experienced drivers, called
DrFixD(rainy).  Based  on  the  multiple  drivers’ attention  allocation
dataset, we proposed a new model based on the theory of two cortical
pathways  to  predict  the  salient  regions  of  drivers  in  rainy  weather
conditions. A CNN-based module is adopted to simulate the function
of ventral pathway to identify the image features of the traffic scenes,
and  a  long  short-term  memory  (LSTM)-based  module  is  applied  to
simulate  the  function  of  dorsal  pathway  to  process  the  dynamic
information between the video frames. The results indicated that our
proposed model  showed competitive  accuracy in  predicting driver’s
attention areas in rainy weather. The dataset and source code of our
method are available1.

Material and data collection:
Participants:  30  participants  took  part  in  the  eye  movement

experiment,  including 17 females and 13 males aged 24 to 53 years
old  (M =  35.8; SD  =  7.5).  The  participants  are  drivers  who have  at
least 2 years of driving experience and drove frequently. As a result,
their  driving  experience  ranges  from 2  to  17  years  (M =  7.5; SD  =
4.1).  All  participants  had  normal  or  corrected-to-normal  vision  and
were  provided  with  written  informed  consent  prior  to  participation.
The  experimental  paradigms  were  approved  by  the  Ethics  and
Human  Participants  in  Research  Committee  at  the  University  of
Electronic Sciences and Technology of China in Chengdu, China.

Stimuli and procedure: 16 traffic driving videos in rainy conditions
were collected by the driving recorders. The driving scenes are urban
roads  including  normal  streets,  crossroads,  overpasses,  etc.  Each
video  lasts  100−180  seconds  with  a  resolution  of 1280 ×720  and  a
frame rate  of  30 frames per  second.  Participants  were seated 57 cm
away  from  a  21-inch  CRT  monitor  with  a  spatial  resolution  of
1280×1027  pixels  and  a  refresh  rate  of 75  Hz.  Their  heads  were
stabilized with a chin and forehead rest. A steering wheel was placed
in front of the participants by assuming that they were driving a car.
In order to avoid fatigue and ensure the reliability of the experimental
data,  the  subjects  completed  the  whole  experiment  in  two  or  three
days  according  to  their  mental  states.  The  videos  were  divided  into
eight  blocks,  and  each  block  consisted  of  two  trials.  There  is  20
seconds blank interval between the two trials.  Eye movements were
recorded using an  eye-tracker  (Eyelink 2000,  SR Research,  Ottawa,
Canada)  with  a  sampling  rate  of 1000  Hz  and  a  nominal  spatial
resolution of 0.01 degree of visual angle.

Eye-movement  analysis:  The  procedure  of  eye  movement  data
analysis is same as Deng’s research [19]. The subjects’ eye fixations
were  recorded  to  construct  the  Drivers’ Fixation  Dataset  in  rainy
weather conditions (DrFixD(rainy)). In the DrFixD(rainy), there were
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30  fixation  points  per  video  frame,  then  all  of  the  fixational  points
from  the  30  participants  were  superimposed  for  each  frame.  The
drivers’ eye-tracking data fitted with a 2D Gaussian distribution were
used as the ground truth in the following training and test. By taking
advantage  of  multiple  drivers’ attentional  experiences,  the  dataset
may  contain  more  than  one  salient  region,  that  is,  except  for  the
primary  salient  region,  a  secondary  even  the  tertiary  region  may be
included if they exist.

Fixation  prediction  based  on  a  dual-branch  visual  model:
Human  visual  cortex  is  a  remarkable  visual  information  processing
system. It is divided into functionally distinct areas, and each area is
responsible  for  specific  visual  processing  tasks.  Two  parallel
processing pathways are commonly identified in visual cortex, one is
the ventral (recognition) pathway and the other is the dorsal (motion)
pathway [32].  The ventral  pathway mainly identifies  details  such as
the shape and size of objects, while the dorsal pathway is sensitive to
the  movement  and  location  of  objects.  The  two  pathways  work
together  to  detect “what”  and  “where”  the  objects  are  quickly  and
accurately. Wolfe et al. also proposed a similar dual-path model from
aspect  of  visual  search  in  scenes:  a “selective”  path  in  which
candidate objects must be individually selected for recognition and a
“nonselective” path  in  which  information  can  be  extracted  from
global and/or statistical information [33].

As  described  above,  when  driving  in  rainy  conditions,  raindrops,
low brightness and the movement of the wipers, etc. are the specific
factors  to  influence  the  driving  safety  compared  with  good  weather
condition.  Some  factors,  such  as  raindrops  and  brightness,  can  be
treated  as  static  image  features,  and  some  factors,  such  as  the
movement  of  wipers,  have  to  be  regarded  as  the  temporal  features.
Therefore,  considering  the  characteristics  in  rainy  weather,  inspired
by  the  mechanism  of  the  two  cortical  pathways  [32],  [33],  we
developed  a  new  architecture  that  combines  static  and  dynamic
branches  together  to  predict  the  saliency  maps  in  the  rainy  traffic
environment,  as  shown  in Fig. 1 .  On  one  hand,  the  CNN  has
excellent  ability  at  extracting  the  rainy  image  features,  so  it  is
adopted  to  simulate  the  function  of  the  ventral  pathway  to  identify
the traffic features in the static image saliency detection. On the other
hand,  the  LSTM  network  has  high  capability  of  handling  the
dynamic changes of  the time-dependence signals,  so it  is  applied to
simulate  the  function of  the  dorsal  pathway to  process  the  temporal
information between the video frames in predicting the motion of the
objects  in  a  rainy  weather  condition.  Thus,  some  missing  or
unnoticed  information  in  the  static  branch  can  be  made  up  by  the

dorsal (nonselective) pathway. Finally, the saliency maps of the two
branches are fused together.

Ss

In  the  static  branch,  same  with  the  model  [19],  a  convolution-
deconvolution  structure  is  used  to  obtain  the  static  features  of  the
images. In order to reduce the amount of parameters and increase the
computation  speed,  we  resized  the  image  to  320×192×3.  The
convolution  path  follows  the  typical  architecture  of  a  convolution
network,  namely,  two  3×3  convolutions  are  included,  and  each
convolution  is  followed  by  batch  normalization  (BN)  and  rectified
linear unit (ReLU), then a 2×2 max-pooling operation with a stride of
2  for  down-sampling.  The  deconvolution  path  consists  of  an  up-
sampling of the feature map, a concatenation with the corresponding
feature  map  from  the  convolution  path,  and  two  3×3  convolutions,
each  followed  by  a  BN  and  ReLU.  For  each  frame  image,  a  static
saliency map  with a size of 320×192×1 was obtained.

Ft∼t−5

t−5
Sd

In  the  dynamic branch,  we aim to  obtain  the  temporal  correlation
between  adjacent  frames.  Due  to  the  bottom-up  relationships  of
continuous video frames and the top-down pre-attention mechanism,
the  saliency  of  previous  frames  may  have  an  influence  on  that  of
subsequent frames, so we expect to utilize the temporal correlation to
improve  the  accuracy  of  the  prediction.  In  the  dynamic  branch,  the
current  frame and its  previous  five  frames  are  packed into  a
continuous  sequence  as  input,  and  the  feature  vector  (6×1024)  is
obtained after passing through the Encoder module, corresponding to
the six frames of the input sequence. After that, the feature vector is
sent  to  the  LSTM  and  the  output  (1×1×1024)  is  extracted  as  the
motion  information  at  time .  Then,  going  through  the  Decoder
module, the dynamic saliency map  (320×192) is finally obtained.
Specifically,  the  1×1×1024 feature  map  is  decoded  as  5×3×512
feature map by a 2D transpose convolution operator firstly. Then, the
5×3×512 feature map is decoded as 320×192×1 by four upsampling
and  deconvolution  operations.  The  size  of  feature  map  changes  to
(10×6×512),  (20×12×256),  (40×24×128),  (80×48×16),  (320×192×8)
in  turn.  Finally,  the  320×192×8  feature  map  is  convolved  as
320×192×1 by a 1×1 convolution and Sigmoid activation function.

To  make  full  use  of  the  temporal  information  as  well  as  avoid
attention  shift  within  the  period,  6  frames  is  chosen  as  the
consecutive input of LSTM. According to the cognitive neuroscience
researches, approximately 200 ms is required if attention shifts from
one  item to  the  next  in  visual  search  tasks  [34],  [35],  which  means
that  driver’s  attention  usually  remains  stable  within  200  ms.
Therefore, we set the input length as 6 frames because the temporal
course  of  6  frames  is  200  ms  (the  frame  rate  of  our  video  is  30
frames per second).
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Fig. 1. The architecture of the dual-branch visual model.
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Finally,  to  integrate  the  static  and  dynamic  feature  information
together, we concatenate the static saliency map  and the dynamic
saliency map , then a convolutional operation is followed to reduce
the image dimension. The final saliency map is a 320 192 grayscale
image. In the training process, the binary cross entropy (BCE) is used
as the loss function to evaluate the difference between the label and
the predicted result and minimize the difference.

Results: The  sixteen  videos  in  DrFixD(rainy)  are  randomly
divided  into  three  subsets.  Ten  videos  are  used  as  the  training  set,
two videos are used as the validating set, and four videos are used as
the testing set. All of these videos are untrimmed. In total, there are
52  291 frames  in  the  training  phase,  9816  frames  in  the  validating
phase, and 19 106 frames in the testing phase.

In  order  to  illustrate  the  performance  of  the  proposed  model,  we
compared it with nine other models, including six deep learning and
three  non-deep  learning  methods.  Among  them,  Itti  [10],  image
signature [11], and HFT [12] are non-deep learning methods. MLNet
[15],  TASED-Net  [17],  SalEMA [18],  EML-NET [16],  CDNN [19]
and  SCAFNet  [21]  are  deep  learning-based  methods.  Note  that,  all
the  models  have  been  retrained  on  our  dataset,  and  the  best
parameters and results are saved.

Qualitative evaluation: Fig. 2 shows an intuitive result of the dual-
branch visual model in predicting the drivers’ salient regions in rainy
weather conditions. From Fig. 2, we can see that the proposed model
can predict the driver’s gaze areas accurately. The last three columns
are  saliency  maps  by  classical  non-deep  learning  methods,  which
show  a  higher  false  detection  results.  On  the  contrary,  our  model
combines  bottom-up  features  and  top-down  dynamic  prediction
together  to  simulate  the  visual  selective  attention,  therefore,  it
matches the driver’s attention better and obtains the significant areas
that are more relevant to the driving task.

In  addition,  the  proposed  model  is  also  better  than  the  other  six
deep learning-based methods. As shown in Fig. 2, e.g., for the third,
sixth,  eighth  and  tenth  rows,  when  the  scenes  are  complex  or  there
are  multiple  targets,  our  model  can  predict  the  drivers’ potential
attention  allocation  accurately  for  the  main  target/region  as  well  as
the  secondary  one  if  it  exists,  which  is  consistent  with  the  drivers’
driving experience. Especially for the sixth and ninth rows, when the
wiper occludes part of the truck (sixth row of Fig. 2) and a crossing
pedestrian  (ninth  row  of Fig. 2 )  labeled  by  the  yellow  circles,  our
model  could  still  detect  them  while  it  is  difficult  for  other  deep
learning-based  state-of-the-art  (SOTA)  models  to  achieve  this,

indicating  that  our  model  shows  excellent  performance  in  an
occlusion  situation  of  wipers  in  rainy  condition.  Furthermore,  the
prediction results  of  the eighth and tenth rows in Fig. 2 present  that
our model can detect driver’s fixational regions more efficiently than
other models in the crowded driving scenes under rainy conditions.

Quantitative  evaluation:  For  quantitative  comparison,  six  classic
metrics are used to evaluate the models, including the area under the
ROC curve (AUC_Borji,  AUC_Judd),  normalized scanpath saliency
(NSS),  pearson’s  correlation  coefficient  (CC),  similarity  (SIM)  and
Kullback-Leibler  divergence  (KLD).  Among  them,  AUC_Borji,
AUC_Judd  and  NSS  are  location-based  metrics,  and  CC,  SIM  and
KLD  are  distribution-based  metrics  [19]. Table 1  shows  the
quantitative performance of our proposed model compared with other
models.  Note  that,  similar  to  the  evaluation  of  baseline  (infinite
humans)  on  MIT300  [22],  we  convert  the  human  drivers’ fixation
point  maps  into  saliency  maps  with  a  2D  Gaussian  distribution,
which are used to calculate the standard of human driver. In this case,
the  human  driver’s  AUC_Borji  and  AUC_Judd  evaluation  scores
may not  be 1,  because the AUC calculates the similarity of  fixation
point and saliency map, as well as the differences of observers. The
first row represents the drivers’ fixations (ground truth). If the value
of  a  model  is  closer  to  that  of  human,  the  model  shows  better
performance. As expected, our proposed model (last row of Table 1)
predicts the fixations more accurately than other models.

Ablation  study:  In  order  to  validate  the  effectiveness  of  the  dual-
branch  model,  we  compared  its  performance  with  that  of  each
individual  branch.  The  quantitative  evaluation  is  shown  in Table 2.
The result indicates that the combination of the two branches shows
better  saliency  prediction  than  individual  one.  Under  a  test
computing condition of NVIDIA TITAN RTX 24GB GPU, the speed
of saliency prediction achieves 289.39, 50.89 and 50.27 fps for static,
dynamic  and  dual-branch  model  respectively,  which  can  basically
meet  the  real-time  demand.  Besides,  we  have  done  a  further
validation  of  our  model  on  the  public  DR(eye)VE-rainy  [28]  and
BDD-A-rainy [27] datasets in Supplementary Material1.

Conclusions: In this work, we built up a rainy traffic video dataset
DrFixD(rainy)  containing  eye  tracking  information  from  thirty
drivers, which contributes to the researches on the traffic saliency in
rainy weather condition. Further, we proposed a two-branch saliency
model  based  on  the  theory  of  two  cortical  pathways  to  predict  the
driver’s  fixation  in  rainy  weather  conditions.  The  result  shows  that
our model can predict the drivers’ potential attention allocation of the

 

Original Fixation map Proposed SCAFNet CDNN EML-NET SalEMA TASED-Net MLNet Image signature Itti HFT 
Fig. 2. Saliency maps selected from the four test videos randomly. The maps were yielded by our model and nine other methods. The yellow circles indicate the
location of the truck (sixth row) and a crossing pedestrian (ninth row).
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main  target  or  region  as  well  as  the  secondary/tertiary  ones  if  they
exist.
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Table 1.  Performance Comparison of Our Model With the State-of-the-Art
Saliency Models Using Multiple Evaluation Metrics on DrFixD (rainy)

Models AUC_
Borji↑

AUC_
Judd↑ NSS↑ CC↑ SIM↑ KLD↓

Human 0.9620 0.9822 5.4196 1 1 0

Itti 0.8426 0.857 1.5569 0.3695 0.2702 1.6868

ImageSig 0.6368 0.6912 0.5298 0.1404 0.1781 2.4159

HFT 0.7606 0.7867 1.0077 0.2311 0.224 2.0079

MLNet 0.8942 0.928 3.8999 0.7944 0.6282 3.6946
TASED-

Net 0.8773 0.9471 4.2118 0.8393 0.5877 0.8451

SalEMA 0.8969 0.9536 4.1144 0.8465 0.6650 0.4734

EML-NET 0.8907 0.9462 4.2951 0.8512 0.5531 0.6968

CDNN 0.9001 0.9516 4.1069 0.8214 0.6339 0.5222

SCAFNet 0.8952 0.9416 4.1742 0.8351 0.6650 1.8686

Proposed 0.9066 0.9555 4.1902 0.8534 0.6664 0.4670
 

 

Table 2.  Ablation Study on Dual-Branch Model on DrFixD (rainy)

Models AUC_
Borji↑

AUC_
Judd↑ NSS↑ CC↑ SIM↑ KLD↓

Static 0.8925 0.9491 4.0049 0.8134 0.6393 0.5512

Dynamic 0.8980 0.9492 4.0308 0.8314 0.6414 0.5208
Static+

dynamic 0.9066 0.9555 4.1902 0.8534 0.6664 0.4670
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