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   Dear editor,

Primal-dual  dynamics  (PDD)  and  its  variants  are  prominent  first-
order  continuous-time  algorithms  to  determine  the  primal  and  dual
solutions  of  a  constrained  optimization  problem  (COP).  Due  to  the
simple structure,  they have received widespread attention in various
fields,  such  as  distributed  optimization  [1],  power  systems  [2],  and
wireless communication [3]. In view of their wide applications, there
are numerous theoretic studies on the convergence properties of PDD
and its variants, including the exponential stability analysis [4]–[9].

In [4], an asymptotically convergent PDD is proposed to solve the
optimization  problems  with  equality  and  inequality  constraints.
Especially  for  equality  COPs,  the  exponential  convergence  of  the
proposed PDD is  established under  the assumption that  the equality
constraint matrix has a full row rank. For COPs with linear equality
and inequality, PDDs with exponential convergence are respectively
designed  under  the  full  row  rank  assumption  in  [5].  Besides,  an
extended  augmented  PDD  is  provided  to  solve  linear  equality  and
nonlinear inequality COPs, and the semi-global exponential stability
is established in [6]. To solve a special class of COPs with separable
cost  function  and  equality  constraint,  [7]  provides  a  Lagrangian-
based  PDD,  and  [8]  gives  a  partial  PDD.  Moreover,  with  full  row
rank assumption, their exponential convergence are proved. In [9], a
fixed-time convergent PDD has been proposed for equality COPs.

In  this  letter,  we  investigate  a  modified  primal-dual  dynamical
system  (PDDS)  for  COPs  with  linear  equality  and  inequality
constraints,  and  establish  the  exponential  convergence  of
corresponding  PDDS  under  weaker  conditions.  The  obtained
theoretical  results  without  requiring  a  rank  condition  on  equality
constraint matrix can be used to improve the convergence results of
[8] and [9].

Problem statement:
Consider the following COP.

 

fopt = min
x∈Rn

f (x), s.t. A1x = b1, A2x ≤ b2 (1)

f : Rn→ R A1 ∈ Rm1×n A2 ∈ Rm2×n

b1 ∈ Rm1 b2 ∈ Rm2
where  is  a convex function, , ,

 and . Throughout the letter, we give the following
assumption.

f (x) µ f
l f X∗

fopt

Assumption 1: The cost function  is -strongly convex with
an -Lipschitz continuous gradient. The optimal set  is nonempty
and closed, and the optimal value  is finite.

For problem (1), the Lagrangian is given as follows:
 

L(x,λ) = f (x)+λT (Hx−h) (2)

λ = (ϕ,φ) ∈ D := Rm1 ×Rm2
+ H = [AT

1 ,

AT
2 ]T h = [bT

1 ,b
T
2 ]T

fopt =maxλ∈D d(λ) d(λ) =minx∈Rn L(x,λ)
Λ∗

(x∗,λ∗) ∈ X∗×Λ∗
x∗ x∗ = argminx L(x,λ∗)

x∗
λ∗ ∇ f (x∗)+HTλ∗ = 0

where  is  the  dual  variable, 
,  and .  Assumption  1  implies  that  strong  duality

holds: ,  where  is  the
dual  function  of  (1),  and  the  optimal  solution  set  of  the  dual
problem  is  nonempty.  is  the  pair  of  primal-dual
optimal solution iff  is feasible and , which
means  that  one  can  recover  a  primal  optimal  point  from  a  dual
optimal point  by solving the equation .

d(λ)
ld d(λ) = − f ∗(−HTλ)−hTλ f ∗

−d(λ)
f ∗(−HTλ)

f ∗(y) = (1/2)∥y∥2 f ∗(−HTλ) =
(1/2)∥HTλ∥2

−d(λ)

λ(0)
λ(0)

By Assumption 1 and the definition of conjugate function,  is
-smooth,  and ,  where  is  the  convex

conjugate of f. However,  may not be strongly convex, because
only when H has full row rank,  is strongly convex. For ex-
ample, if  and H is row rank deficient, 

 is  not  strongly  convex.  Therefore,  without  strong
convexity  of  the  dual  function ,  the  establishment  of  the
exponential  convergence  of  PDDS  for  the  problem  (1)  is  naturally
difficult.  To deal with this difficulty,  [4]–[9] assume that H has full
row  rank,  and  [10]  limits  the  initial  condition  of  the  dual  variable

 to  the  column  space  of H.  Different  from  these  studies,  this
letter  neither  assumes  that H has  full  row rank nor  restricts  to
the column space of H.  

Main results: This section considers the exponential convergence
of  PDDS  to  solve  the  COP  (1)  and  then  consider  the  case  with
equality constraints alone.  

COPs with equality and inequality constraints:
min{ f (x) : A1x = b1,A2x ≤ b2}

S = {x ∈ Rn: A1x = b1,A2x ≤ b2}
S ⊂ Rn

Consider  the  problem .  Let
 denote  the  constraint  set.

Throughout  this  subsection,  suppose  that  the  set  satisfies
strong Slater assumptions, i.e.,

A1
x̃ A1 x̃ = b1 A2 x̃ < b2

Assumption  2:  has  full  row  rank,  and  there  exists  a  feasible
point  such that  and .

Λ∗Under  Assumptions  1  and  2,  is  nonempty,  convex,  and
bounded,  which  is  particularly  significant  in  the  analysis  of  the
convergence  properties  of  the  following  projected  dual  gradient
dynamics.
 

x(t) = argmin
s∈Rn

L(s,λ(t))

λ̇(t) = −λ(t)+PD
(
λ(t)+υ · ∇d(λ(t))

)
, λ(0) ∈ D

(3)

0 < υ ≤ 1/ld PD(λ) D
λ(0) ∈ D
λ(t)

λ(0) ∈ D λ(t) ∈ D t ≥ 0

fopt −d(λ(t)) ∥PD(Hx(t)−h)∥ | f (x(t))− fopt |

where , and  denotes the projection of λ onto .
By [11, Theorem 5.2], for any initial condition , the solution
of  (3)  exists  globally.  Moreover,  any  solution  of  (3)  with

 is bounded, and satisfies that  for all . Then,
we give the following theorem to show the convergence properties of
algorithms  of  (3),  and  provide  the  exponential  convergence  of

, , and .

λ(t) Λ∗
λ(0) ∈ D α > 0 β > 0 γ > 0

Theorem  1:  Supposing  that  Assumptions  1  and  2  holds,  the
trajectory  of (3) converges exponentially to  with any initial
condition . Furthermore, there exist ,  and 
such that the following convergence properties hold.
 

fopt −d(λ(t)) ≤ α · e−βt, ∀t ≥ 0 (4)
 

∥PD(Hx(t)−h)∥ ≤
√

2α
υ
· e−

β
2 t, ∀t ≥ 0 (5)

 

∥x(t)− x∗∥ ≤
√

2α
µ f
· e−

β
2 t, t ≥ 0 (6)

 

| f (x(t))− fopt | ≤ γe−
β
2 t, t ≥ 0. (7)

    Proof: See Appendix A. ■
−d(λ) −∇d(λ)
Λ∗

Noting that if  is strongly convex, or if  is strongly
pseudomonotone and  is a singleton, the projected dynamics (3) is
exponentially  convergent  [11],  [12].  In  contrast,  for  the  PDDS  (3),
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we eliminate these assumptions and thus extend these results.  

COPs with equality constraints:

H = AT
1 h = bT

1
A1

In this subsection, without strong Slater assumptions, we consider
the special case of (1), where  and . Here, the matrix

 is  not  required  to  have  full  row  rank,  and  the  PDDS  (3)
degenerates into the following form.
 

x(t) = argmin
s

L(s,λ(t)) (8a)
 

λ̇(t) = ∇d(λ(t)). (8b)
d(λ) = − f ∗(−AT

1 λ)−
(x∗)T AT

1 λ x∗ ∈ X∗ A1
−d(λ) Λ∗

λ∗ ∈ Λ∗
λ∗+Null(AT

1 ) Λ∗ Null(AT
1 ) = {λ : AT

1 λ = 0}

The  dual  function  of  this  problem  is 
, where . If  is row rank deficient, the negative

dual function  is not strongly convex. Moreover,  would be
unbounded:  for  any ,  the  whole  affine  manifold

 would  be  in ,  where .
Therefore, the Theorem 1 is no longer applicable.

−d(λ)
Next, we analyze the convergence of (8) under weaker conditions.

By [13, Theorem 9],  has quadratic gradient growth, i.e.,
 

(λ− [λ]∗)T∇(−d)(λ) ≥ 1
(2l fω)∥λ− [λ]∗∥2

(9)

[λ]∗ Λ∗
A1

s∗ ∈ Rn AT
1 λ
∗ = s∗ λ∗ ∈ Λ∗ Λ∗

Λ∗ = {λ : AT
1 λ = s∗}

where  is  the  projection  of λ onto  and ω is  a  constant  only
related  to .  Moreover,  it  can  be  shown that  there  exists  a  unique

 such that  for any , and the set  can be
characterized  as  the  following  polyhedron: .
Through  the  above  analysis,  we  provide  the  following  theorem  to
show that the PDDS (8) is globally exponentially convergent without
strong Slater assumptions.

λ(t)
Λ∗ λ(0) ∈ Rm

ᾱ, β̄, α̃, β̃, γ̃ > 0

Theorem 2: Supposing that Assumption 1 holds, the trajectory 
of  dynamics  (8)  converges  exponentially  to  for  any .
Furthermore,  there  exist  such  that  the  following
convergence properties hold.
 

fopt −d(λ(t)) ≤ α̃ · e−β̃t, t ≥ 0 (10)
 

∥A1x(t)−b1∥ ≤ ldᾱ · e−
β̄
2 t, t ≥ 0 (11)

 

∥x(t)− x∗∥ ≤
√

2α̃
µ f

e−
β̃
2 t, t ≥ 0 (12)

 

| f (x(t))− fopt | ≤ γ̃e−
β̃
2 t, t ≥ 0. (13)

Proof: See Appendix B. ■

B L
BT x = 0

Lx = 0

B L

From a practical  perspective,  the assumption of  full  row rank can
not  be  sufficed  easily,  such  as  distributed  optimization.  For
distributed optimization problems over an undirected and connected
network,  several  primal-dual  approaches  have  been  provided  in
[14]–[17].  In  these  literature,  by  introducing  the  oriented  incidence
matrix  or  the Laplacian matrix  of  the considered network,  the
consensus constraints can be equivalently formulated as  or

, which not only simplifies the consensus equality constraint,
but also makes it  can be handled in a distributed manner.  However,
both  and  are  row  rank  deficient.  Therefore,  Theorem  2  is
significant in theory and practice.

L(x,λ(t))
x(t−τ), τ > 0 L(x,λ(t)) ≈ (∇xL(x(t−τ),λ(t)))T (x− x(t−
τ))+ (1/2τ)∥x− x(t−τ)∥2

In  the  comparison,  several  PDDs  provided  in  [4],  [5],  [7]  for
equality  COPs  employ  the  technique  that  the  smooth  part  of

 is  replaced  by  the  quadratic  approximation  centered  at
,  i.e., 

.  And  they  have  been  proven  exponen-
tially convergent under full row rank assumption. In Theorem 2, we
not  only  establish  the  exponential  convergence  of  the  PDDS  (8)
under  weaker  conditions,  but  also  fully  discuss  its  convergence
properties.

Then,  applying  the  analysis  techniques  in  Theorem  2  to  some
existing  primal-dual  dynamics  systems  [8],  [9],  we  establish  their
exponential  and  fixed-time  convergence  respectively  under  weaker
conditions and improve their convergence results.

In [8], the following separable problem is considered.
 

min
x1∈X,x2∈Ω

f1(x1)+ f2(x2), s.t. A1x1+A2x2 =C (14)

x1 ∈ X ⊂ RN1 , x2 ∈Ω ⊂ RN2 A1 ∈
RM×N1 A2 ∈ RM×N2 C ∈ RM

L(x1, x2,λ) = f1(x1)+ f2(x2)+λT (A1x1+A2x2−C) λ ∈
RM X∗1×X∗2×Λ∗

L(x1, x2,λ) X×Ω×RM f1 µ f1
f2

A1

where ,  is  closed  and  convex, 
,  , and . The Lagrangian of this problem

is , where 
 is  the  dual  variable.  Define  as  the  set  of saddle-

points  of  on .  It  assumes  that  is -
strongly  convex,  twice  differentiable  and  smooth,  is  Lipschitz
continuous and strongly convex on Ω, and  has full row rank. To
solve the problem (14), it provides the following PDDS.
 

x1(t) = argmin
s∈X
{ f1(s)+ (λ(t))T A1s}

ẋ2(t) ∈ PTΩ(x2(t))(−∂ f2(x2(t))−AT
2 λ(t))

λ̇(t) = ∇Φ(λ(t))+A2x2(t)−C (15)
TΩ(x2(t)) x2(t)

Φ(λ(t)) =mins∈X{ f1(s)+ (λ(t))T A1s}.
(x2(t),λ(t))

x1(t)

A1

where  is  the  tangent  cone  to  Ω  at ,  and
 In [8, Theorem 7], it shows

that  the  trajectory  associated  with  PDDS  (15)  is
exponentially  convergent  under  the  above  assumptions,  without
giving the convergence rate of . Via similar analysis technology
with  Theorem  2,  the  convergence  properties  of  the  PDDS  (15)  is
explored without the assumption that  has full row rank.

f1 µ f1
f2
x2(0) ∈Ω, λ(0) ∈ RM

X∗2×Λ∗ ν1, ν2 > 0

Corollary 1: Supposing that  is -strongly convex and smooth,
 is  Lipschitz  continuous  and  strongly  convex  on  Ω.  Given

,  the  solution  of  PDDS  (15)  converges
exponentially to , i.e., there exist  such that
 

∥x2(t)− x∗2∥+ ∥λ(t)− [λ]∗∥ ≤ ν1e−ν2t, t ≥ 0.
ν2, ν3 > 0Moreover, there exist  such that

 

Φ([λ]∗)−Φ(λ) ≤ ν3 · e−ν2t, t ≥ 0,

∥x1(t)− x∗1∥ ≤
√

4ν3
µ f1
· e−

ν2
2 t, t ≥ 0.

    Proof: See Appendix C. ■
A1

Next,  we  reanalyze  the  convergence  of  the  fixed-time  convergent
PDDS  provided  in  [9]  without  the  assumption  that  has  full  row
rank. Consider the following dynamical system:
 

λ̇(t) = −c1
∇g(λ)

∥∇g(λ)∥
p1−2
p1−1

− c2
∇g(λ)

∥∇g(λ)∥
p2−2
p2−1

(16)

g(λ) = −d(λ) c1,c2 > 0 p1 > 2 1 < p2 < 2where , , , and . Similar as
the proof of [9] and Theorem 2, we have the following corollary.

λ(t)
Λ∗

λ(0) ∈ Rm Tλ > 0

Corollary 2: Supposing that Assumption 1 holds, the trajectory 
of dynamics (16) converges to  within a fixed time for any initial
condition . Moreover, there exists  such that
 

lim
t→Tλ

fopt −d(λ(t))→ 0, lim
t→Tλ
∥A1x(t)−b∥ → 0

lim
t→Tλ
∥x(t)− x∗∥ → 0, lim

t→Tλ
| f (x(t))− fopt | → 0.

Tλ≤4/k1(2−α1)+4/k2(α2−2)
α1 = 2− (p1−2)/(p1−1) α2 = 2− (p2−2)/(p2−1) k1 =

c12(2+α1)/4(2ldl2fω
2)−(α1/2) k2 = c22(2+α2)/4(2ldl2fω

2)−(α2/2)

Furthermore, it holds that , where
 and , 
 and  .

  

Illustrative examples:

minx∈Rn (1/2)∥Ux−V∥2, s.t. Ax=b, Cx≥0 U∈R2000×100

V ∈ R100 A,C ∈ R100×100 b ∈ R100

In  this  subsection,  we  conduct  two  numerical  experiments  to
corroborate  our  theoretical  analysis.  Firstly,  consider  the  COP:

, where ,
, ,  and ,  which  are  generated

randomly.  The  numerical  results  are  shown  in  the  left  of Fig. 1,
which illustrates the exponential convergence of PDDS (3).

x∗ ∈
argminx∈R20

∑N
i=1(1/2)∥Uix−Vi∥2 Ui ∈ R20×20

UT
i Ui

Vi ∈ R20

min F(x) =
∑4

i=1(1/2)∥Uixi−Vi∥2, s.t.

Then,  consider  the  distributed  optimization  over  the  undirected
and  connected  network  with N computational  agents: 

, where  is the mea-
surement matrix generated randomly such that  is positive defi-
nite, and  generated randomly is the noise vector. Here, we
set the communication topology as a line graph with 4 nodes. By [16],
the problem is equivalent to 
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−
√
L⊗ I20x = 0, L

xi ∈ R20 x =
[(x1)T , . . . , (x4)T ]T η =

√
L⊗ I20λ λ = [(λ1)T , . . . ,

(λ4)T ]T λi

 where  is the Laplacian matrix of the considered
network,  is  the  local  variable  of  agent i,  and 

.  Let ,  where 
, and  is the local dual variable. Then the PDDS (8) for this

problem is
 

xi(t) = argmin
s
{ fi(s)−ηi(t)T s}, i = 1, . . . ,4

η̇i(t) = −
4∑

j=1

Li j · ∇ f ∗i (ηi(t)), i = 1, . . . ,4 (17)

f ∗i (1/2)∥Uix−Vi∥2where  is  the  conjugate  function  of .  The  state
transient  behaviors  of  the  4  agents  and  the  performance  of  the
algorithm (17) are shown as in the right of Fig. 1.  

Conclusions: In  this  letter,  we  have  studied  the  convergence
properties of PDDS (3) and (8) to solve COPs with linear constraints.
Under  weaker  assumptions,  we  have  shown  the  exponential
convergence  of  (3)  and  (8).  In  addition,  applying  the  analysis
technique in Theorems 1 and 2, the convergence results in [8] and [9]
have been improved.  
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Appendix A:

V1(λ) = υg(λ)−υg([λ]∗)−υ(λ− [λ]∗)T∇g([λ]∗)+ (1/2)∥λ− [λ]∗∥2
g(λ) =−d(λ) g(λ) g(λ)−g([λ]∗)−

(λ− [λ]∗)T∇g([λ]∗) ≥ 0 V1(λ) ≥ (1/2)∥λ−
[λ]∗∥2 ld g(λ)
g(λ)−g([λ]∗)− (λ− [λ]∗)T∇g([λ]∗) ≤ (ld/2)∥λ− [λ]∗∥2

(1/2)∥λ− [λ]∗∥2 ≤ V1(λ) ≤ ((υld +1)/2)∥λ− [λ]∗∥2
V1(λ)

Proof  of  Theorem  1: Consider  a  Lyapunov  function  as  follows,
,

where . Since  is convex, one has 
,  which  implies  that 

. On the other hand, by the -smoothness of , it holds that
.  Thus,  it

deduces  that .
Differentiating  along the solutions of (3), one gets
 

d
dt

V1(λ) = −(λ−υ∇g(λ)−P)T (P− [λ]∗)−∥λ−P∥2

−υ(P− [λ]∗)T∇g([λ]∗)−υ(∇g(λ)−∇g([λ]∗))T (λ− [λ]∗)
P = P(λ+υ · ∇d(λ))

(λ−υ∇g(λ)−P)T (P− [λ]∗) ≥ 0 [λ]∗ ∈ Λ∗
(P− [λ]∗)T∇g([λ]∗) ≥ 0

g(λ) (∇g(λ)−∇g([λ]∗))T (λ− [λ]∗) ≥ 0

where .  By  the  basic  property  of  projection
operator, one has . Since ,
it  holds  that .  Moreover,  the  convexity  of

 implies  that .  Under
Assumption  1  and  strong  Slater  conditions,  by  [18,  Theorem  3.2],
it gives that the following global error bound like property:
 

κ · ∥λ− [λ]∗∥2 ≤
∥∥∥∥λ−PD(λ+υ · ∇d(λ)

)∥∥∥∥2, ∀λ ∈ D (18)
κ > 0where  is a constant independent on λ. Hence, it holds that

 

d
dt

V1(λ) ≤ −∥λ−P∥2 ≤ −κ∥λ− [λ]∗∥2 ≤ −2βV1(λ)

β = κ/(υld +1) V1(λ) ≤ V1(λ(0))·
exp(−βt),∀t ≥ 0 1

2∥λ− [λ]∗∥2 ≤ V1(λ) dist(λ(t), Λ∗) ≤√
2V1(λ(0)) · exp(−βt), ∀t ≥ 0. λ(t)
Λ∗

where .  Then,  it  holds  that 
. By , it has 

 It  implies  that  converges  to
 exponentially, and convergence rate is no less than β. In the next,

we fully consider the convergence properties of PDDS (3).

fopt −d(λ(t))
−d(λ) ld g(λ) − g([λ]∗) − (λ−
[λ]∗)T∇g([λ]∗) ≤ (ld/2)∥λ− [λ]∗∥2

Step 1: Show the exponential convergence of . Since
 is -smooth,  it  has  that 

. Thus,
 

fopt −d(λ) ≤ (λ− [λ]∗)T∇g([λ]∗)+
ld
2
∥λ− [λ]∗∥2

≤ M1∥λ− [λ]∗∥+ ld
2
∥λ− [λ]∗∥2 ≤ α · e−βt, ∀t ≥ 0

α = 2max{M1
√

2V1(λ(0)), V1(λ(0))ld} M1 =
maxλ∈Λ∗ ∥∇g(λ)∥
where , 

.
∥PD(Hx(t)−h)∥

(λ−P)T (λ−P) ≤ υ∇g(λ)T (λ−P)

Step  2:  Show  the  exponential  convergence  of .
By  the  basic  property  of  projection  operator,  it  gives  that

. Thus, it holds that
 

∥P−λ∥2 ≤ 2υ∇g(λ)T (λ−P)−∥P−λ∥2

= (ldυ−1)∥P−λ∥2−2υ
(
∇g(λ)T (P−λ)+ ld

2
∥P−λ∥2

)
.

υ ≤ 1/ld g(λ) ld ldυ−1 ≤ 0
g(P)−g(λ)− (P−λ)T∇g(λ) ≤ (ld/2)∥λ−P∥2
∥P−λ∥2 ≤ 2υ(g(λ)−g(P)) ≤ 2υ( fopt −d(λ)

Since ,  and  is -smooth,  it  gives  that 
and .  Then,  it  holds
that .

∥PD(Hx(t)−h)∥
υ∥PD(∇d(λ(t)))∥2 ≤ (1/υ)∥λ(t)−P∥2

D = Rm1 ×Rm2
+ i = 1, . . . ,m1

υ · ∇id(λ) = Pi−λi υ · |PR(∇id(λ(t)))|2 =
υ · |∇id(λ(t))|2 = (1/υ)|λi−Pi|2.

Then, to prove the exponential convergence of , it
is  sufficient  to  show  that .
Inspired by [18], we will prove this inequality componentwise. First,
recalling  that ,  for ,  it  gets  that

.  Thus,  it  holds  that 
 Then, set the disjoint sets as

 

I− = {i ∈ [m1+1,m1+m2] : ∇id(λ) < 0}
I+ = {i ∈ [m1+1,m1+m2] : ∇id(λ) ≥ 0}.
υ · |PR+ (∇id(λ))|2 = 0 ≤ (1/υ)|λi−Pi|2, ∀i ∈ I−

i ∈ I+ υ · |PR+ (∇id(λ))|2 =
υ · |∇id(λ)|2 = (1/υ)|λi−Pi|2

It  gives  that .
On  the  other  hand,  for  any ,  one  has 

. In summary, it obtains
 

υ∥PD(Hx(t)−h)∥2 ≤ 1
υ
∥λ(t)−P∥2 ≤ 1

υ
·2υ( fopt −d(λ).

Then, (5) immediately holds.
∥x(t)− x∗∥

µ f L(x,λ(t)) = f (x)+
λ(t)T (Hx−h) µ f

Step  3:  Show  the  exponential  convergence  of .  It
follows  from f is -strongly  convex  that 

 is -strongly  convex  in  the  variable x.  Then,  it
deduces that
 

µ f

2
∥x(t)− x∗∥2 ≤ L(x∗,λ(t))−L(x(t),λ(t)).

x(t) = argmins∈Rn L(s,λ(t))
d(λ(t)) = f (x(t))+λ(t)T (Hx(t)−h) ∇d(λ(t)) = Hx(t)−h

L(x∗,λ(t))−L(x(t),λ(t)) = fopt−
d(λ)+λ(t)T (Hx∗−h). A1x∗ = b1 A2x∗ ≤ b2
λ(t)T (Hx∗−h) = φ(t)T (A2x∗−b2) ≤ 0.

On  the  other  hand,  implies  that
 and .

Thus,  it  concludes  that 
 Since ,  and ,  one  has

 Hence, (6) holds.
| f (t)− fopt |

λ∗ ∈ Λ∗ x(t) = argmins∈Rn L(s,λ(t))
Step 4: Show the exponential convergence of . For any

, it follows from  that
 

fopt = f (x(t))+ (ϕ∗)T (A1x−b1)+ (φ∗)T (A2x−b2).
φ∗ ∈ Rm2

+ (λ∗)T (Hx(t)−h) ≤
(λ∗)TPD(Hx(t)−h) fopt − f (x(t)) ≤
M2∥PD(Hx(t)−h)∥, M2 =maxλ∈Λ∗ ∥λ∥ f (x)−
f (x∗)−(x− x∗)T∇ f (x∗) ≤ (l f /2)∥x− x∗∥2 x∗=argmin f (x)+
(λ∗)T (Hx−h) ∇ f (x∗) = HTλ∗

f (x(t))− fopt ≤ M3∥x(t)− x∗∥+ (l f /2)∥x(t) − x∗∥2, M3 =

maxλ∈Λ∗ ∥HTλ∥ | f (x(t))− fopt | ≤
γexp(−βt/2), t ≥ 0, γ = 3 ·max{M2

√
2α/υ,M3

√
{2α/µ f },

αl f /µ f }

Since ,  it  can  be  shown  that 
.  Then,  it  holds  that 
 where .  Since 

, and 
,  it  holds  that ,  which  implies  that

 where 
.  Therefore,  it  holds  that 

 where 
. ■  

Appendix B:

E(λ) = (1/2)∥λ−
[λ]∗∥2 g(λ) = −d(λ) E(λ)

d
dt E(λ) = −(λ− [λ]∗)T∇g(λ) ≤ −(1/2l fω)∥λ−

Proof of Theorem 2: First, we show the exponential convergence of
dual  variable.  Consider  the  Lyapunov  function 

.  Since ,  differentiating  along  the  solu-
tion  of  (8b)  yields 
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Fig. 1. The numerical results of considered examples.
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[λ]∗∥2.
d
dt E(λ) ≤ −(1/l fω)E(λ) dist(λ(t),Λ∗) ≤
ᾱ · exp(−β̄t/2), t ≥ 0, ᾱ = ∥λ(0)−[λ]∗∥ β̄ = 1/l fω

λ(t) Λ∗

 The  first  inequality  holds  due  to  (9).  Thus,  it  holds  that
.  Then,  one  has 
 where , and . It

implies that  converges to  exponentially.
fopt −d(λ(t))

G(λ) = (1/2)(g(λ)−gopt)
gopt = − fopt G(λ)
d
dt G(λ) = −(g−gopt) · ∥∇g∥2. (λ−

[λ]∗)T∇g(λ) ≥ 1/(2l fω)∥λ− [λ]∗∥2
∥∇g(λ)∥ ≥ (1/2l fω)∥λ− [λ]∗∥
∇g([λ]∗) = 0 g(λ)−gopt ≤ 2ldl2fω

2 · ∥∇g(λ)∥2
d
dt G(λ) ≤ −((g−gopt)2/2ldl2fω

2) =−(G(λ)/ldl2fω
2)

α̃ > 0 β̃ > 0
fopt−d(λ(t)) ≤ α̃ · exp(−β̃t), ∀t ≥ 0 α̃=g(0)−gopt

β̃ = (2ldl2fω
2)−1

Step  1:  Show  the  exponential  convergence  of .
Consider  another  Lyapunov  function ,
where .  Differentiating  along the solution of (8b)
yields  It  follows  from  (9)  that 

. By Cauchy-Schwartz, one has
.  Then,  by  the  smoothness  of g and

, one has . Therefore,
it  holds  that .
Thus,  there  exist  and  such  that

,  where ,  and
.

∥A1x(t)−b1∥
∇d(λ) = A1x(t)−b1 ∥A1x(t)−A1x∗∥ = ∥∇g(λ)−

∇g([λ]∗)∥ ≤ ld∥λ(t)− [λ]∗∥ ≤ ldᾱ · exp(−β̄t/2), t ≥ 0
g(λ)

A1x(t)−b1

Step  2:  Show  the  exponential  convergence  of .  It
follows from  that 

.  The  first
inequality  holds  due  to  the  smoothness  of ,  and  the  second
inequality holds due to the exponential convergence of dual variable.
Thus,  is exponentially convergent.

∥x(t)− x∗∥

(µ f /2)∥x(t)− x∗∥2 ≤ fopt −d(λ) (µ f /2)∥x(t)−
x∗∥2 ≤ fopt −d(λ) ≤ α̃ · exp(−β̃t/2), ∀t > 0.

Step 3:  Show the exponential  convergence of .  Similar
as  the  proof  of  Theorem  3.1 – Step  3,  it  can  be  proved  that

. Hence, it holds that 

| f (t)− fopt |

λ∗ ∈ Λ∗ x(t) = argmins∈Rn L(s,λ(t))
fopt − f (x(t)) ≤ ∥s∗∥ · ∥x(t)− x∗∥, ∀t ≥ 0 ∇ f (x∗) = AT

1 λ
∗ =

s∗ f (x(t))− fopt ≤ ∥s∗∥ · ∥x(t)− x∗∥+ (l f /2)∥x(t)−
x∗∥2 | f (x(t))− fopt |≤ γ̃exp(−β̃t/2), t ≥ 0,

γ̃ = 2 ·max{∥s∗∥
√

2α̃/µ f , l f α̃/µ f }

Step 4: Show the exponential convergence of . Similar
as the proof of  Theorem 3.1 – Step 4,  it  can be proved that  for  any

,  it  follows  from  that
.  Since 

, which implies that 
.  Therefore, it  holds that 

where . ■  

Appendix C:

A1
f1 f2
(x∗1, x

∗
2)

Proof of Corollary 1: First, we show the exponential convergence of
PDDS (15) without the assumption that  has full  row rank. Since

 and  are strongly convex, the problem (14) has a unique solution
. Consider the following equality constraints problem.

 

min
x1∈X

f1(x1)+ f2(x∗2), s.t. A1x1 =C−A2x∗2. (19)

L(x1, x∗2,λ) = f1(x1)+ f2(x∗2)+
λT (A1x1+A2x∗2−C)

x∗1
Λ∗

Φ̃(λ) = − f ∗1 (−AT
1 λ)− (C−A2x∗2)Tλ, f ∗1

f1 f1
f ∗1

κ̃ > 0 A1
(λ− [λ]∗)T∇(−Φ̃)(λ) ≥ κ̃∥λ− [λ]∗∥2, [λ]∗

Λ∗ ∇(−Φ̃(λ)) = −A1(∇ f ∗1 )(−AT
1 λ)+(C−A2x∗2).

A1x∗1+A2x∗2−C = 0 ∇(−Φ̃(λ)) =
∇(−Φ(λ))+A1x∗1 ∇(−Φ̃(λ(t))) =
∇(−Φ(λ(t)))−∇(−Φ([λ]∗)), (λ(t)− [λ]∗)T×(∇(−Φ)(λ(t))−∇(−Φ)([λ]∗)

) ≥ κ̃∥λ− [λ]∗∥2.

The Lagrangian of this problem is 
. It holds that the optimal solution of problem

(19) is .  Moreover, problem (14) and problem (19) have the same
dual  optimal  solution  set .  Define  the  dual  function  of  (19)  as

 where  is  the  convex
conjugate  of .  Because  is  strongly  convex  and  smooth,  the
function  is strongly convex and smooth. Thus, by [13, Theorem 9],
it holds that there exists a constant  only related to  such that

 where  is  the  projection
of λ onto , and  By
KKT  condition,  one  has .  Thus, 

.  Then,  we  can  prove  that 
 which  implies  that 

V(x2,λ) =
(1/2)∥x2− x∗2∥2+ (1/2)∥λ− [λ]∗∥

ν1, ν2 > 0

Then,  define  the  Lyapunov  function  candidate 
,  similar  as  the  proof  of  [8,

Theorem 7], it can be shown that there exists  such that
 

∥x2(t)− x∗2∥+ ∥λ(t)− [λ]∗∥ ≤ ν1e−ν2t, t ≥ 0.
(x2(t),λ(t)) X∗2×Λ∗It implies that  converges to  exponentially. In

the  next,  similar  as  the  proof  of  Theorem  2,  we  consider  other
convergence properties of PDDS (15).  Then, similar as the proof of
Theorem (2), we can complete the rest of the proof. ■
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