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   Abstract—Sheet  metal  forming  technologies  have  been
intensively studied for decades to meet the increasing demand for
lightweight  metal  components.  To  surmount  the  springback
occurring  in  sheet  metal  forming  processes,  numerous  studies
have  been  performed  to  develop  compensation  methods.
However, for most existing methods, the development cycle is still
considerably time-consumptive and demands high computational
or capital cost. In this paper, a novel theory-guided regularization
method for training of  deep neural  networks (DNNs),  implanted
in  a  learning  system,  is  introduced  to  learn  the  intrinsic
relationship  between  the  workpiece  shape  after  springback  and
the  required  process  parameter,  e.g.,  loading  stroke,  in  sheet
metal  bending  processes.  By  directly  bridging  the  workpiece
shape to  the  process  parameter,  issues  concerning springback in
the  process  design  would  be  circumvented.  The  novel
regularization  method  utilizes  the  well-recognized  theories  in
material  mechanics,  Swift’s  law,  by  penalizing  divergence  from
this  law  throughout  the  network  training  process.  The
regularization  is  implemented  by  a  multi-task  learning  network
architecture,  with  the  learning  of  extra  tasks  regularized  during
training.  The  stress-strain  curve  describing  the  material
properties  and  the  prior  knowledge  used  to  guide  learning  are
stored in the database and the knowledge base, respectively. One
can  obtain  the  predicted  loading  stroke  for  a  new  workpiece
shape  by  importing  the  target  geometry  through  the  user
interface.  In  this  research,  the  neural  models  were  found  to
outperform a traditional machine learning model, support vector
regression  model,  in  experiments  with  different  amount  of
training data. Through a series of studies with varying conditions
of  training  data  structure  and  amount,  workpiece  material  and
applied  bending  processes,  the  theory-guided  DNN  has  been
shown to achieve superior generalization and learning consistency
than  the  data-driven  DNNs,  especially  when  only  scarce  and
scattered experiment data are available for training which is often
the  case  in  practice.  The  theory-guided  DNN  could  also  be
applicable to other sheet metal forming processes. It provides an
alternative  method  for  compensating  springback  with

significantly  shorter  development  cycle  and  less  capital  cost  and
computational  requirement  than  traditional  compensation
methods in sheet metal forming industry.
    Index Terms—Data-driven  deep  learning,  deep  learning,  deep
neural  network (DNN),  intelligent  manufacturing,  machine  learning,
sheet metal forming, springback, theory-guided deep learning, theory-
guided regularization.
 

I.  Introduction

SHEET  metal  forming  has  been  employed  in  industry  for
centuries.  Among  different  forming  techniques,  sheet

bending  and  stamping  are  most  widely  used  in  sheet  metal
forming industry [1]. These techniques have been continually
developed for  over  a  century,  especially  in  the last  couple of
decades, to meet the increasing demand for lightweight metal
components with high strength to reduce weight and increase
fuel  efficiency in  the  automobile  and aviation industries,  due
to the stringent emission control. However, subject to its high
yield  strength-to-elastic  modulus  ratio,  high  strength
aluminum  alloys  and  steels  are  predisposed  to  notably  large
springback. As a consequence, the manufacturing accuracy of
conventional  metal  forming  techniques  would  suffer.  To
address this issue, vast  research on estimating the springback
behavior  in  different  sheet  metal  forming processes  has  been
conducted experimentally and numerically [2]–[4].

To surmount the springback in sheet metal forming process,
most  of  the  current  research  focuses  on  developing  compen-
sation  methods  in  numerical  simulations  or  experiments  [5],
[6].  With finite element (FE) simulations,  Lingbeek et al.  [7]
developed the smooth displacement adjustment (SDA) method
and  the  surface  controlled  overbending  (SCO)  method  to
optimize the tool shape for a deep drawing process to increase
the  geometry  accuracy  of  the  product  after  springback.  Lin
et  al.  [8]  developed  a  novel  advanced  forming  method,  hot
form  quench  (HFQ®),  for  forming  complex-shaped  high-
strength aluminum alloy sheets, which integrates hot stamping
process  with  heat  treatment  and  improves  geometrical
accuracy  by  minimizing  springback.  Wang et  al.  [9]
developed  a  three-dimensional  (3D)  scanning  method  to
replace  the  traditional  special  fixture  for  inspecting  the  part
during  the  stamping  of  a  rear  reinforcement  plate  of  a  door
panel,  which  was  stated  to  increase  the  qualified  rate  of  the
product to a new peak. In creep age forming (CAF), Li et al.
[10] proposed a one-step springback compensation method for
singly  curved  products  and  an  accelerated  method  for  CAF
tool  design  with  reference  to  the  springback  compensation
curves, which are established based on the numerical solution
of springback behavior of  CAF process.  The effectiveness of
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the  two  methods  was  demonstrated  by  CAF  experimental
tests.  Although  springback  occurring  in  different  sheet  metal
forming  processes  has  been  significantly  alleviated  by  the
increasing  amount  of  research  in  this  area,  the  development
cycle  is  still  considerably  time-consumptive  and  demands
high  computational  or  capital  cost.  In  this  context,  the
impressive  prediction  capability  and  low  temporal  cost  of
machine  learning  technology  has  attracted  researchers  to
harness  this  novel  artificial  intelligence  (AI)  technology  in
sheet metal forming industry.

Over the last two decades, machine learning technology has
been vastly applied to various manufacturing processes,  such
as metal forming [11], semiconductor [12] and nanomaterials
manufacturing  [13].  In  sheet  metal  forming  industry,
supervised  learning  technology,  compared  to  unsupervised
learning  [14]  and  reinforcement  learning  [15],  is  most
prevailing. The research focus of supervised learning in sheet
metal  forming  processes  mainly  resides  in  classification  and
regression. Traditional supervised learning algorithm includes
support  vector  machines  (SVM),  decision  tree,  Naive  Bayes
classifier  and  K-nearest  neighbors  (KNN)  algorithm  [16],
[17]. Liu et al.  [18] used SVM to predict the springback of a
micro W-bending process, and the SVM was demonstrated to
have high prediction accuracy and generalization performance
by  comparing  its  prediction  with  experimental  results.  Dib
et  al.  [17]  compared  the  performance  of  several  machine
learning  (ML)  algorithms  (multilayer  perceptron,  random
forest,  decision  tree,  naive  Bayes,  SVM,  KNN  and  logistic
regression) in predicting springback and maximum thinning in
a U-channel and square cup forming processes. Among these
models,  multilayer  perceptron  was  reported  to  be  the  best  in
identifying  the  springback,  with  slightly  higher  score  than
SVM. Apart  from bending,  Abdessalem et  al. [19] compared
the  performance  of  a  quadratic  response  surface  method
(RSM) and two least square support vector regression models
(SVRs),  with  polynomial  kernel  (PL-K)  and  radial  basis
function  kernel  (RBF-K),  in  predicting  a  limit  state  function
(LSF)  to  determine  the  best  surrogate  model  used  in  a
probabilistic  approach  for  the  structure  optimization  of
hydroformed  sheet  metals.  It  was  found  that  both  SVRs
outperforms the RSM in learning the nonlinearity of the LSF.

Neural  network  learning  subsumes  shallow  and  deep
learning,  which  are  commonly  distinguished  by  the  depth  of
learning  and  the  depth  of  networks.  To  date,  research  on
shallow  learning  dominates  the  development  of  machine
learning  in  sheet  metal  forming  [20].  For  example,  Narayan-
asamy et al.  [21] compared the performance of a multi linear
regression  model  and  a  four-layer  artificial  neural  network
(ANN)  in  predicting  the  springback  angle  of  an  air  bending
process,  from  which  the  ANN  exhibited  higher  prediction
accuracy than the regression model. Guo et al. [22] developed
a  combination  of  error  back  propagation  neural  network  and
spline function (BPNN-Spline) to predict the springback angle
in  a  V-die  bending  process,  in  which  the  BPNN  took  sheet
metal  thickness,  punch  radius,  die  radius  and  a  material
indication  parameter  as  inputs.  The  proposed  BPNN-Spline
model was demonstrated to outperform the traditional ANN in
predicting  the  bending  angles  at  different  punch

displacements.  Viswanathan et  al.  [23]  implemented  a  three-
layer  neural  network  to  predict  the  stepped  binder  force
trajectory  at  different  punch  displacement,  thus  realizing  the
control  of  springback  in  a  plane  strain  channel  forming
process.  Apart  from  the  prediction  of  springback  or  forming
parameters,  shallow learning has  also  been used to  substitute
or  reinforce  the  constitutive  model  for  metallic  material
[24]–[26].  A  three-layer  neural  network  was  developed  by
Jenab et  al.  [25]  to  predict  the  rheological  behavior  of
AA5182-O sheet. Without the limitations of the mathematical
function,  the  neural  network  was  reported  to  outperform two
phenomenological  models,  Johnson-Cook  (JC)  and  Khan-
Huang-Liang  (KHL)  models,  in  predicting  the  anisotropic
rate-dependent  behavior  of  AA5182-O.  Li et  al.  [26]
developed  a  machine-learning  based  JC  plasticity  model  to
capture the non-monotonic effect of the temperature and strain
rate on the hardening response for DP800 steel. By combining
shallow  neural  network  and  JC  model,  it  was  found  that  all
experimental  data  can  be  described  with  high  accuracy.  In
addition to using human designed features as the input to the
neural  network  like  above,  Hartmann et  al.  [27]  devised  a
four-layer  network  to  predict  the  optimal  tool  path,  by
learning a processed form of desired workpiece geometry, for
the  production  of  sheet  metals  in  an  incremental  sheet  metal
free-forming  process.  However,  special  attention  had  to  be
paid to the design of input and output to obtain good learning
efficiency.  It  was  claimed  that,  in  order  to  cover  the
component spectrum, the cardinality of the training set needed
to be significantly increased.

Unlike  numerous  studies  in  shallow  learning,  limited
research  has  applied  deep learning technology to  sheet  metal
forming  thus  far.  Since  the  great  success  of  deep
convolutional  neural  networks  (CNNs)  in  learning  and
extracting  physical  features  or  even  representations  of  data
with  multiple  levels  of  abstraction  from  raw  image-based
inputs [28],  [29],  deep learning has brought breakthroughs in
computer vision and image/speech/audio processing [30]–[32].
Reaping  the  benefits  from  the  notable  advancements  in
computer  science  technology  during  the  last  two  decades,
deep  learning  has  just  revealed  its  extraordinary  learning
capability in discovering the latent pattern and regularities in a
given  data  domain.  With  deep  learning,  instead  of  designing
hand-crafted  features  as  the  input,  the  workpiece  geometry
information  is  fed  into  the  network  to  achieve  end-to-end
learning and reduce the potential bias introduced in the design
of input representation. It was believed to outperform shallow
neural  network  learning  and  traditional  machine  learning
techniques,  such  as  KNN algorithm,  when  handling  AI-level
tasks  with  high data  dimensions  and complex functions  [33].
Consequently,  researchers  in  sheet  metal  forming  industry
start  resorting  to  deep  neural  network  (DNN),  which  is  an
approximation model used in deep learning and consisting of
relatively  deep  layers  of  neurons,  for  high-level  learning  or
optimization.  With  deep  learning,  Hamouche et  al.  [34]
demonstrated that a deep CNN can replace the traditional rule-
based implementations in classification and selection of sheet
forming  processes  for  its  higher  accuracy  rates.  Jaremenko
et  al.  [14]  developed  a  CNN  to  determine  the  forming  limit
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curve by learning and clustering the common patterns existing
in  sheet  metal  geometries  before  defects  occur.  DNNs  have
also been applied for the manufacturability prediction of sheet
metals [35] and utilized as a surrogate model (or meta-model)
[36],  [37].  It  was  seen  that  deep  learning  technology  was
mostly  applied  to  classification  problems  in  sheet  metal
forming  processes.  However,  most  optimization  problems  in
engineering involves parametric regression.

Yet,  overfitting  is  a  challenge  in  pure  data-driven  deep
learning  research,  which  frequently  occurs  when  only  scarce
data  are  available  or  with  improper  training  data  structures.
Besides,  the  inferior  interpretability  of  the  normal  DNN  has
caused confidence shrinkage in its predictions, which confers
it a title of “black box”. Acquiring massive experimental data
in  practice  is  also  prohibitively  expensive.  Consequently,
physics-informed  neural  network  (PINN)  was  developed  to
prevent  overfitting  problems  and  alleviate  the  low
interpretability issue by respecting prior expertise and guiding
the  learning  process  with  governing  equations  in  relevant
theories.  The most  prevailing  form of  physics-informed deep
learning  is  the  physics-informed  data  assimilation  regression
with physics-informed regularization method. In this method,
one  or  several  governing  equations  in  the  research  area,
normally  nonlinear  partial  differential  equations  (PDE),  are
used  and  converted  to  one  or  several  physics-informed
regularization  term  in  the  objective  function.  In  [38]–[41],
PINNs were used to predict numerical solutions of governing
equations  in  computational  fluid  dynamics  (CFD).  It  was
reported  to  outperform  pure-data  driven  DNNs  with  less
training  data.  Besides  of  guiding  deep  learning  with  known
governing PDEs, Tartakovsky et al. [38] used PINN to predict
the  unknown  state-dependent  coefficient  in  a  nonlinear
diffusion  equation.  Yao et  al.  [42]  developed  an  FEA (finite
element  analysis)-Net  which  embeds  the  governing  equation
used  in  finite  element  analysis  into  the  DNN  design  and
consists  of  an  FEA  convolution  network  and  an  inference
network, to predict  FE simulation results for some simplified
problems.  These studies have shown the superiority of  PINN
over  pure  data-driven  DNNs  in  generalization  accuracy  and
demand of training data.

However,  no PDE-like governing equations can be used to
delineate  the  main  physical  features  in  most  Lagrangian-
mechanics-like practical  engineering problems with changing
coordinates,  especially  when  macro-scale  parameters  are  of
interests.  To the  authors’ knowledge,  no attempt  has  been so
far reported that utilizes a data-driven or theory-guided DNN
(TG-DNN)  in  sheet  metal  forming  industry  for  high-level
optimization.  The  aim  of  the  research  is  to  fill  in  this  gap.
Thus, in this paper, two DNNs trained by pure training data or
a  novel  theory-guided  regularization  method  were  developed
for  a  learning  system,  named  intelligent  sheet  metal  forming
system  (ISMFS),  and  evaluated  by  applying  them  to  sheet
metal bending processes. By learning the intrinsic relationship
between the workpiece shape after springback and the loading
stroke,  the  springback  could  be  compensated.  The  TG-DNN
exploits  a  well-recognized  theory  in  material  mechanics,
named  Swift’s  law,  as  the  substitute  for  the  PDE  governing

equations  to  regularize  the  network  learning.  Instead  of
regularizing  the  prediction  of  outputs  of  interests,  the  TG-
DNN  incorporates  multi-task  learning  configurations  and
improves  the  network  generalization  by  regularizing  the
learning  of  extra  tasks.  With  this  method,  the  weights/biases
distribution  of  the  network  would  be  potentially  altered  in  a
way  that  also  facilitates  the  learning  of  the  primary  task,
which has been corroborated in results obtained from a series
of  comprehensive  numerical  experiments  in  this  research.  A
support  vector  regression  model  was  also  trained  in  this
research,  whose  predictions  were  used  as  the  baseline  of
learning  results.  The  results  in  this  research  show  that  both
data-driven  and  TG-DNN  outperforms  the  SVR  at  the  test
phase.  The  TG-DNN  can  preserve  high  learning  capability
when  only  scarce  training  data  are  available,  while  the
generalization  accuracy  of  pure  data-driven  DNN  has  seen
sufferings.

The contributions of this paper include: 1) filling the gap of
forming  process  parameter  prediction  with  deep  learning  in
sheet  metal  forming  industry;  2)  proposing  a  novel  theory-
guided  deep  learning  method  which  outperforms  both
traditional  machine  learning  and  data-driven  deep  learning
methods  in  the  prediction  of  non-linear  behavior  in  sheet
metal bending processes, when only scarce and scattered data
are  available;  3)  improving  the  interpretability  of  the
traditional neural model applied to metal forming industry; 4)
providing an alternative method for springback compensation
with  shorter  development  cycle  and  less  capital  cost  than
traditional methods.

The remainder of this paper is organized as follows: Section II
introduces  the  methodologies  in  this  research,  which  include
the experimental setup and FE models of sheet-metal bending
experiments,  the  DNN  architecture,  theory-guided  regulari-
zation using Swift’s law and data acquisition methods. Section III
presents  the  learning  results  of  all  the  models  and  the
discussions on them. Finally, Section IV concludes the paper,
with some discussions on the benefits  of the TG-DNN to the
practical development cycle of sheet metal forming processes
and potential future works. 

II.  Methodology

This research presents a series of numerical experiments to
evaluate the efficacy of both data-driven DNN and TG-DNN
for sheet metal bending. Both DNNs are trained to predict the
required  loading  stroke  for  sheet  metal  bending  processes,
given  only  the  computer-aided  design  (CAD)  data  of  the
desired  workpiece  to  be  produced.  This  section  presents  the
design and setups involved in the numerical experiments. 

A.  Bending Experiments Setup
To comprehensively  evaluate  the  effectiveness  of  the  data-

driven  DNNs  and  TG-DNN,  two  common  sheet  metal
bending techniques, four-point bending and air bending, were
employed with two commonly used material for sheet metals,
AA6082  [43]  and  SS400  [44].  Abaqus  2019  was  used  to
perform  the  numerical  experiments  and  export  the
experimental data.
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1) The Shape of the Components to be Manufactured
Fig. 1 presents  an  example  of  the  shape  of  a  target

component  and  its  geometry  representation  for  four-point
bending and air  bending, respectively.  The top surface of the
target  component  is  extracted  and  split  into  a  number  of
uniformly  distributed  data  points,  which  are  then  pre-
processed to grayscale map before fed into DNNs as stated in
Section II-B-1).
 

Target
components to

be manufactured

Extract data
points on top

surface

Four-point bending Air bending

Symmetry line

x1 x2
xi
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x1 x2
xi
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Fig. 1.     Examples of target components to be manufactured using four-point
bending  and  air  bending  respectively  and  geometry  representation  for
assessing the error between the designed and manufactured components. Only
the data points of half of the geometry were used because of the symmetric
shape.
 

2) Numerical Procedures
Fig. 2 present  the  FE  models  and  experimental  setups  for

four-point bending and air bending. As can be seen in the FE
model of the four-point bending in Fig. 2(b), the punch is only
allowed to translate along Y axis and given a displacement in
Y direction. The Die is fixed, and the workpiece is symmetric
about  its  symmetry  line.  The  friction  coefficients  between
tools  and  workpiece  in  both  cases  were  set  to  be  zero  for
simplicity.
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Fig. 2.     The geometry, test setup and plane strain FE model for the four-
point bending and air bending.
 

The  specification  of  the  experimental  setup  for  four-point
bending  and  air  bending  shown  in Fig. 2(a)  is  presented  in
Table I.

As  these  numerical  experiments  were  performed  in  2-D
scale, plane strain element with quadratic geometric order was
used  to  mesh  the  part  of  workpiece.  In  Abaqus  2019,  it  is

defined  as  CPE8R:  An  8-node  biquadratic  plane  strain
quadrilateral, reduced integration. The components modelling
the  punch  and  die  working  face  were  meshed  with
undeformable  mesh,  while  the  workpiece  was  set  to  be
homogeneous  and  modelled  with  deformable  mesh.  A  total
element number of 21 328 was used in the FE simulation, after
a  grid-independence  study  performed  to  determine  the  most
appropriate  mesh  size  which  assures  reasonable  simulation
accuracy with low computational time.

3) Material Properties
The  stress  and  strain  curves  of  material  of  AA6082  and

SS400  were  extracted  from  [43],  [44],  with  which  the  main
properties  of  these  materials  were  summarized  and  listed  in
Table II.  The  strain-hardening  coefficient,  n,  and  strength
coefficient, K ,  were  calculated  by  fitting  the  following
equation  to  the  data  domain  in  log-scale  stress-stain  curve
where plastic deformation occurs [45]
 

σ = Kεn (1)
where σ is the true stress and ε is the true strain.
 

TABLE II  
Values of the Parameters for the Materials Investigated

Item AA6082 SS400

E (GPa) 70 210

γ (-) 0.33 0.26

ρ (g/cm3) 2.71 7.86

n (-) 0.0731 0.1448

K (-) 400.22 708.27

E: Young’s modulus; γ: Poisson’s ratio; ρ: density; n: strain-hardening
coefficient; K: strength coefficient.
 

B.   Network  Training  in  the  Intelligent  Sheet  Metal  Forming
System

Fig. 3 shows the architecture of the ISMFS the DNNs were
implanted,  in  which  a  database  and  a  knowledge  base  were
embedded.  The  database  provides  factual  data  to  an  FEA
module  where  numerical  computations  are  conducted  to
acquire the data for training of the TG-DNN. The learning of
the DNN is guided by the prior knowledge or theories, which
are stored in the knowledge base. After the DNN is trained to
convergence,  a  new  target  workpiece  geometry  which  is
different  from those  in  the  training  data  is  fed  into  the  DNN

 

TABLE I  
Experimental Setup Data for Four-Point Bending

and Air Bending

Item Four-point bending (mm) Air bending (mm)

l 160 160

t 1 1

rp 5 5

Lp 50 –

rd 5 5
Ld 110 110

l: workpiece length; t: workpiece thickness; rp: punch radius; Lp: punch
distance; rd: die radius; Ld: die opening.
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through  a  user  interface.  A  predicted  stroke  for  the  newly
given geometry is  then obtained from the DNN and used for
another  process  simulation  in  the  FEA  module  to  yield  the
workpiece  geometry  after  springback.  Apart  from  obtaining
the data  from FEA simulations,  experimental  data  could also
be  used  as  the  training  samples.  In  this  research,  all  training
data  were  obtained  from  FEA  simulations.  Finally,  the  data
points  representing  the  predicted  and  target  workpiece
geometry  are  compared  to  determine  the  maximum  distance
between them, which is denoted by ∆GEOMpred. The value of
∆GEOMpred measures  the  prediction  accuracy  of  the  whole
learning system.

1) Training Data Design and Processing

σ

ε

The whole dataset for training and generalization evaluation
was  extracted  from computational  experiments,  conducted  in
the FEA module shown in Fig. 3,  in which a total number of
201  simulations  were  performed  with  loading  stroke  ranging
from 11 to 31 mm with an increment of 0.1 mm. The dataset
is in a form of input-output pair,  with input as the workpiece
geometry representation data and output as the loading stroke.
The output also includes physical parameters of true stress 
and true  strain ,  which  are  acquired  at  the  mid-point  on  the
top surface of  the workpiece before springback.  Examples of
the  CAD  of  the  desired  workpiece  after  springback  in  four-
point bending and air bending have been shown in Fig. 1. The
whole dataset  was then randomly split  into a training set  and
test set. Three different training to test data ratios were used in
this  research:  80%/20%,  50%/50% and  20%/80%.  This
composition of data was designed to evaluate the performance
of  the  TG-DNN  and  the  data-driven  DNN  with  different
amount of training data.

Modern  DNNs,  especially  the  convolutional  neural

networks (CNNs) in Computer Vision, have been proven to be
able to localize and extract the important features from image-
based  inputs,  which  have  been  confirmed  to  facilitate  the
learning of the relationship between input data and the outputs
of  interests  [37],  [46].  With  the  hindsight,  the  input  in  the
whole dataset was designed to be in an image-based geometry
representation,  known  as “ grayscale  map”,  with  a  1-D  array
containing  the  local  depth  value  about  the  free-end  of  the
workpiece.  Within  the “ grayscale  map”,  grayscale-values
(GS),  ranging  from  0  to  255,  were  used  to  encode  the  local
depth. 0 GS (“black”) denotes the location at and beyond the
free-end of the workpiece (no depth), while 255 GS (“white”)
denotes  the  location  with  highest  depth.  To  further  improve
the  learning  potential  of  DNNs,  the  input  data  were
normalized  by  its  highest  value  and  the  outputs  were
standardized in the output data domain.

Fig. 4 presents  some  examples  of  inputs  for  the  DNN  in
graphs  and  grayscale  maps,  respectively.  It  is  noted  that  the
transverse dimension in grayscale maps is used only for better
visualization. There are in total 801 pixels in the longitudinal
dimension, evenly distributed and aggregated to be the length
of  80  mm (half  length  of  the  original  workpiece  blank).  The
map values were interpolated, with inverse distance weighting
(IDW) interpolation method, from the computational results of
coordinates  along  half  of  the  top  surface  of  the  workpiece
after  springback,  leveraging  the  symmetry  of  the  workpiece
shape.

2) Deep Neural Network
A  classic  convolutional  neural  network  was  designed  with

the  concept  of  multi-task  learning  as  the  DNN  architecture,
which  is  schematically  shown  in Fig. 5 .  The  inputs  to  the
DNN are the greyscale maps extracted from the raw CAD data
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Fig. 3.     The architecture of the ISMFS with the internal data flow.
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of the target workpiece after springback, and the outputs from
the network include predictions of the required loading stroke
and two physical  parameters at  the regularization spot before
springback. TensorFlow Core v2.2.0 was used as the platform
to establish and train the neural networks.

The  convolutional  layer  utilizes  the  discrete  convolution
operation to shift the kernel function through the input space,
which is defined as follow:
 

gk
(
ik
)
=
(
Kk ∗ Ik

) (
ik
)
=

∞∑
t=−∞

Ik
[
ik − t
]
·Kk [t] (2)

∀ik ∈ [1,mk], Z gk (·)
k ik

mk Kk (·) Ik (·)

t −∞ ∞

where .  represents  the  convolution
function,  the  superscript “ ” denotes  the  layer  number. 
denotes  the  element  of  the  output  dataset  at  the k th  layer  of
network  which  is  of  dimension  of .  and  
represents  the  kernel  function and the  input  at k th  layer.  The
kernel for convolutional layer is of size of 3×1. The altering of
 from   to   signifies  the  shift  of  the  kernel  through  the

input space.
Thus,  one  single  convolutional  layer  is  then  defined  as

follow:
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where . 

 are  the  extracted  geometry features  from  the
(k–1)th  layer  of  the  network  from  the  original  workpiece
geometry .  denotes  the  nu-
mber  of  kernels  used  at  the k th  convolutional  layer. 
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f (·)

 is  the  output  from  the k th  layer,
which represents the newly extracted geometry features at this
layer.  represents  all  the  parameters  involved  at  the kth
layer,  including  weights  and  biases.  is  the  bias
vector.  is  known  as  activation  function  or  transfer
function,  rectified  linear  unit  (ReLU)  activation  function  is
used in this DNN for regression.

The function of the max pooling layer is defined as follow:
 

Ŷk
mPool

(
Xk
)
= ŷk

ik = max
1≤h≤Hk

x(ik−1)×Hk+h (4)

∀ik ∈ [1,mk],Z;∀h ∈ Z Hkwhere .  denotes  the  height  of  the
pooling  at  the k th  pooling  layer.  The  kernel  for  the  max
pooling layer is of size of 2×1.

For  a  single  layer  of  neurons  of  fully  connected  layers,  its
function is defined as follow:
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∀ik ∈ [1,mk], Z; ∀ik−1 ∈ [1,mk−1], Zwhere .
Therefore,  the  function  defining  the  whole  DNN shown  in

Fig. 5 is given as follow:
 

Ŷ (X;θ) =
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where  is the prediction outputs from the DNN, which
includes the predictions of the outcomes of the three learning
tasks:  loading  stroke,  true  stress  and  true  strain.  As  max
pooling layer does not have trainable parameters, there are no

,  and  in (6). The workpiece geometry deformed using
the  predicted  stroke  is  compared  with  the  target  geometry  to
determine  maximum  discrepancy,  which  measures  the
prediction accuracy of the DNN.

An  objective  function,  also  named  loss  function  [47],  is
used to measure the distance between the network outputs and
the true values. Mean square error (MSE), or quadratic loss, is
used as the standard objective function for the training of pure
data-driven DNN
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where  is the objective function,  represents the trainable
parameters  in  the  network  including  weights  and  biases. 
and  (composed  of )  represent  the  workpiece  geometry
representation (grayscale map data points) and the true values
of  the  learning  tasks  to  manufacture  the  target  workpiece,  in
which  is  named  the  labelled  output. ,  equal  to  3  in  this
research,  is  the  total  number  of  learning  tasks. , calculated
from  (6),  is  the  predicted  values  of  the  learning  tasks  to
manufacture the workpiece.

With  backpropagate  algorithm  [29]  and  chain  rule,  the
weights  matrices  and  bias  vectors  in  the  network  are
iteratively calibrated to obtain as low outcome of the objective
function as possible. The calibration goal can be expressed as
following:
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Fig. 4.     Examples of workpiece geometry representations (801 pixels).
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θ∗ = argmin
θ

J (θ; X,Y) (8)

θ∗ θwhere  are the optimal  to obtain the minimum value of the
objective  function  at  the  end  of  the  optimization.  Several
prevailing  optimization  algorithms  have  been  developed  to
realize this calibration process over the last decades, with their
different upsides and downsides. The commonly used learning
algorithms  include  stochastic  gradient  descent  (SGD)  [33],
Adam  [48]  and  root  mean  square  propagation  (RMSProp)
[49].

3) Parameter Norm Regularization

αΩ (θ)

Regularization  methods  have  been  applied  to  traditional
machine learning for decades,  and they are proved to be also
effective in limiting the capacity of DNNs after the advent of
deep  learning.  Parameter  norm  regularization  introduces  a
parameter  norm  penalty, ,  to  the  original  objective
function  shown  in  (7)  and  obtain  a  regularized  objective
function [33]
 

Ĵ (Θ; X,Y) = J (θ; X,Y)+αΩ (θ) (9)
α ∈ [0,∞)

Ω (θ)
J (θ; X,Y) Θ

θ

where  is  a  hyperparameter  used  to  control  the
relative  contribution  of  the  norm  penalty  term, ,
regarding  to  the  original  objective  function, . 
represents  all  the  parameters  involved  in  this  network,
including weights, biases and hyperparameters. It can be seen
that  the penalty term is  a  function of  trainable parameters, .
By controlling the training modes of the network parameters,
the  overfitting  issues  in  many  research  studies  can  be
addressed or alleviated [33].

Theory-guided  deep  neural  network  respects  prior
treasurable  theoretical  or  empirical  knowledge  by  leveraging
the  theories  to  regularize  the  learning  process.  Compared  to
pure data-driven DNN model, a well-trained TG-DNN would
be  more  than  just  a “ black  box” as  theoretical  knowledge  is
taken into account and the credibility of its  prediction results
is  thus  increased.  Similar  to  the  general  form  of  the
regularized  objective  function  in  (9),  the  theory-guided  loss
function is regularized by theoretical laws as shown as follow:

 

ĴT H (Θ; X,Y) = J (θ; X,Y)+αT H JT H (θ; X) (10)
αT H ∈ [0,∞)

JT H (θ; X)

where   is  a  hyperparameter  used  to  control  the
relative  contribution  of  the  theory-guided  penalty  term,

, which is defined as
 

JT H (θ; X) =
1

nH

nH∑
i=1

[
H(Xi, Ŷ (Xi;Θ))

]2
(11)

H(Xi, Ŷ (Xi;Θ))

nH

where  is a function of the inputs and outputs
of  the  TG-DNN  at  one  regularization  spot,  which  measures
the  divergence  of  the  theoretical  laws  at  this  spot.  is  the
total  number  of  regularization  spot.  By  minimizing  both  the
loss between network outputs and labels and the divergence of
the solutions from the theoretical laws, the network would be
able  to  learn  the  underlying  physics  of  the  theories  and
generate outputs respecting these theories.

H(Xi, Ŷ (Xi;Θ))

JT H (θ; X)

As  stated  in  the  introduction,  the  most  common  form  of
 for  PINN, to date,  is  the governing equation

in  the  research  area,  which  is  normally  one  or  several
nonlinear  partial  differential  equations  (PDE).  The
convergence  of  the  regularization  term  would  guide  the
learning process by forcing the governing equation to tend to
hold between the inputs and outputs of the PINN. In this way,
the  PINN could  learn  the  underlying  theoretical  laws  and  its
prediction would be more interpretable  than pure  data-driven
DNNs.  However,  due  to  the  intrinsic  complexity  of
Lagrangian  mechanics  in  most  practical  engineering
problems,  the  material  model,  Swift’s  law,  is  used  as  the
substitute  for  the  PDE  governing  equations  to  regularize  the
network learning. By implementing this theory in training, the
network could learn in a way respecting the material model. A
multi-task  learning  network  configuration  was  used  to
implement  the  regularization.  This  method  uses  a  less  hard
theory-guided  penalty  term  than  the  mainstream
PINNs to regularize the learning of extra tasks to improve the
learning  of  primary  ones,  instead  of  bridging  the  inputs  and
outputs  with  governing  equations.  Multi-task  learning  has
been  employed  in  numerous  researches  for  its  improved

 

pooling 3

pooling 1 pooling 2

ne

ne ne

ne

co
la

 
Fig. 5.     Architecture of the deep neural network in the ISMFS.
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learning  speed  and  accuracy  and  more  chances  for  harder
tasks to be learned than single-task learning [50], such as face
detection  and  gender  recognition  in  computer  vision  [51],
natural language processing [31], speech recognition [32] and
neurodegenerative  disease  diagnosis  [52].  The  rationale
behind  is  that  the  learner  with  multi-task  learning  can  learn
related work at the same time and use these tasks as inductive
bias for each other, which thus allows the domain regularities
to be better learned [33].

σv
εeq

Swift’s  law  is  a  generalized  power  law  for  expressing  the
material-hardening behavior  when plastic  deformation occurs
in  a  material  [53],  which  has  been  introduced  in  (1).  To
replicate  material  model  obtained  in  the  one-dimensional
tension  test,  a  plasticity  model  is  defined  using  a  scalar
equivalent stress and an equivalent plastic strain to replace the
true stress and true stress in (1). The von Mises stress, , and
the  corresponding  equivalent  plastic  strain, ,  are  used  in
this study
 

σv = Kεneq. (12)

Thus,  (12)  is  the  theoretical  equation  used  in  this  study  to
regularize  the  learning  of  the  TG-DNN.  Two  extra  tasks  on
learning  additional  physical  parameters  (true  stress  and  true
strain) are added to the TG-DNN for regularization.

H(Xi, Ŷ (Xi;Θ))
Consequently,  (12)  can  be  written  into  the  form  of

 

H
(
Ŷ (Xi;Θ)

)
= σ̂v (Xi;Θ)−K

(
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(

Xi;Θ ))
n
. (13)

Then  the  theory-guided  objective  function  regularized  by
Swift’s law is given as follow:
 

ĴT H (Θ; X,Y) = J (θ; X,Y)

+
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nH∑
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σ̂v (Xi;Θ)−K

∣∣∣ε̂eq (Xi;Θ)
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(14)
ε̂eq(Xi;Θ)where  an  absolute  value  of  the  term  is  used  to

prevent the base of the exponent from being negative values,
as n is less than 1.

JT H (θ; X)
The  effectiveness  of  the  introduced  theory-guided  penalty

term, ,  is  manually  checked  for  the  training
examples  by  comparing  the  calculated  values  of  the  penalty
term  and  the  ideal  value  (zero).  The  calculation  check  was
performed  for  the  whole  201  data  in  the  four  experiments
shown in Section III, with the relative error to the ideal value
presented  in Fig. 6 .  It  can  be  seen  that  the  relative  error  for
each training dataset is negligibly small,  thus, the application
of  the  theory-guided penalty  to  regularize  the  learning of  the
training data domain is theoretically valid.

4) Training Methods

ϵ

β1,β2, ϵ

For  training  the  SVR,  the  radial  basis  function  kernel  was
used, and the hyperparameters of “ ” and “C ” were set as 0.1
and 1, respectively. The SVR was established and trained with
scikit-learn  library  in  Python.  The  Adam  optimization
algorithm  [48]  was  used  to  train  the  DNNs,  with  default
parameters  of  its  hyperparameters  ( )  in  TensorFlow
Core v2.2.0. The DNNs were trained with mini-batch training
method [33]. At training, the training data were shuffled after

each training epoch, which indicates one full cycle through the
whole  given  training  dataset,  to  reduce  the  sequence  bias  to
the  learning.  The  sizes  of  mini-batch  used  in  different
experiments are presented in Section III.

An  exponentially  decaying  learning  rate  was  used  in  this
research,  as  lower  learning  rate  is  recommended  as  the
training  progresses.  The  learning  rate  decaying  scheme  is
defined as follow:
 

η = η0× sd

Td
td (15)

η
td η0 sd

Td sd
Td

where  denotes the learning rate at the current decaying time
step whose number is ,  is the initial learning rate,  is the
decaying rate and  is the total decaying step number.  and

 were set as 0.96 and 100 000 in this research.
The hyperparameters search space for the DNNs studied are

presented  in Table III .  The  highest  test  accuracy  that  the
model can reach in these search domains would be regarded as
the best performance the model can achieve.
 

TABLE III  
Hyperparameters Search Space

Data-driven DNN Theory-guided DNN

Learning rate η0 ∈
[
10−8,10−3

]
η0 ∈
[
10−8,10−3

]
Regularization coefficient – αT H ∈

[
10−4,1

]
 
  

C.  Data Acquisition and Training Process

ds σv εeq

Fig. 7 shows  the  training  data  acquisition  through  the  FE
simulation and how the data were used for TG-DNN training,
which  is  taking  place  in  the  ISMFS  as  shown  by  the  red
dashed  square  in Fig. 3 .  The  experimental  results  of  loading
stroke  ( )  and  two  physical  parameters  (  and  )  at  the
mid-point of the workpiece top surface were collected before
the springback of the workpiece. Thus, only one regularization
spot  was  set.  These  data  were  used  as  the  target  data  in
calculating the physics-guided objective function as shown in
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Fig. 6.     The  relative  error  between  the  calculated  results  of  the  theory-
guided penalty term for the whole 201 examples and the ideal value (zero) for
the  indicated  materials  and  processes.  4-pt  bend  denotes  four-point  bending
process.
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(14). The top surface geometry feature of the workpiece after
springback was extracted and pre-processed to grayscale map
before it was fed into the network as inputs.
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Fig. 7.     Training data acquisition and data flow between FE simulation and
TG-DNN training.
 

Fig. 8 shows the iterations in the whole learning process to
obtain  the  optimal  loading  stroke  to  manufacture  the  target
workpiece. The difference between the geometry of the target
workpiece and the workpiece manufacture with the predicted
stroke,  ∆GEOM,  is  evaluated  in  each  iteration  to  update  the
parameters  of  the  DNN.  |∆GEOM|  is  iteratively  reduced
through  this  learning  process  and  would  reach  a  minimum
value in the end of the learning.
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Fig. 8.     The learning process to obtain the optimal loading stroke prediction.
  

III.  Learning Results and Discussion

L2

All the neural models were trained with the hyperparameters
search space shown in Table III .  The model that  result  in the
lowest  relative  norm  on  the  test  set  was  then  trained  for
another  3  times,  and  the  generalization  error  of  the  network
was  obtained  by  averaging  the  performance  of  the  three
trained  models.  The  average  results  of  ∆GEOMpred from  the
three  training  is  used  to  measure  the  performance  of  the
machine learning models. 

A.  Comparison Between Support  Vector  Regression and Neural
Networks

To  evaluate  the  performance  of  the  machine  learning

models  described  in  the  methodology  section  (SVR,  data-
driven  DNN and  TG-DNN),  the  original  201  data  were  split
into  three  different  training-test  data  composition:  80%/20%,
50%/50% and  20%/80%.  The  training  data  were  randomly
sampled  from  the  whole  dataset  for  10  times  to  train  the
models,  of  which the average results  are shown in Fig. 9 .  As
the  theory-guided  learning  exploits  the  concept  of  multi-task
learning,  to  ascertain  whether  this  method  improves  learning
performance,  two  data-driven  DNNs,  multi-task  DNN  (MT-
DNN) and  single-task  DNN (ST-DNN),  were  established  for
comparison.  The  four  DNNs  used  the  same  architecture  as
shown in Fig. 5 ,  except  for  the ST-DNN which only has one
neuron  in  the  output  layer.  All  the  machine  learning  models
were applied to predict the loading stroke, based on the target
workpiece  geometry,  in  a  four-point  bending  process  of  a
sheet metal with material of AA6082. The number of trainable
parameters for ST-DNN is 6 217 769, and that for MT-DNN
and TG-DNN is 6 217 791.

From Fig. 9, the prediction accuracy from SVR has apparent
deterioration  when  the  amount  of  training  data  is  reduced,
while  those  from  the  three  neural  models  have  negligible
change.  Furthermore,  the  predictions  from  DNNs  conforms
well with the true data in all three cases, while the prediction
from  SVR  has  clear  deviation  from  its  true  data,  especially
when only 20% data were used for training. The results of the
maximum  distance  between  the  target  and  predicted
workpiece shape (∆GEOMpred),  which is  used to measure the
prediction accuracy, for the four machine learning models are
shown  in Table IV .  From  the  results  in  the  table,  the  data-
driven  models  and  the  theory-guided  model  show
indiscernibly  good  performance  in  all  three  experiments.  To
further  evaluate  the  learning  capability  of  the  data-driven
DNN and the TG-DNN, an experiment was performed with its
results shown in the sequel. 

B.   Comparison  Between  Data-Driven  DNN and  Theory-Guided
DNN

Because of the nearly equal performances of the data-driven
and  TG-DNN,  another  experiment  was  designed  with  new
composition of training and test  data.  The ratio of training to
test data is kept to the poorest condition as in last experiment
(about  20%/80%),  while  the  training  data  were  chosen  to
eschew large  continuous  regions  of  data  domain  which  were
unseen at training, instead of having a relatively uniform data
for  training  obtained  from  random  sampling.  Two  data
compositions, named symmetric (includes stroke values in the
range of 11–12 mm, 21–22 mm and 30–31 mm) and asymm-
etric  training  data  (includes  stroke  values  in  the  range  of
11–15 mm and 30–31 mm), were designed in this study. This
design of training data is to better reflect practical situations in
industry, where experimental data are expensive and scattered.
In  addition,  to  evaluate  the  learning  consistency  of  neural
models,  two  more  experiments  were  designed  to  apply  both
data-driven  DNNs  and  TG-DNN  to  1)  four-point  bending
process  with  a  new  material  of  SS400  and  2)  air  bending
process with the same material of AA6082. Thus, the learning
capabilities  of  the  neural  models  were  evaluated  in
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experiments with three varying conditions:
1) Different raw data structure: using symmetric/asymmetric

training  data,  which  were  acquired  from  the  four-point
bending process of the AA6082 workpiece.

2)  Different  workpiece  material:  using  symmetric  training
data,  which  were  acquired  from  the  four-point  bending
process of the SS400 workpiece.

3)  Different  forming  process  (applications):  Using
symmetric  training  data,  which  were  acquired  from  the  air
bending process of the AA6082 workpiece.

Fig. 10 shows  the  training  loss  curves  for  the  three  DNNs
during  training  and  their  generalization  performance  under
four  different  conditions.  The  generalization  performance  is
measured by evaluating the well-trained DNN on the test set,
and the predictions for  the whole data  domain from different
models  are  plotted.  It  was  seen  that  the  training  losses  of
DNNs  in  different  cases  all  converge  to  a  small  value  at  the
end  of  training.  Due  to  an  extra  theory-guided  regularization
term  in  the  objective  function  for  the  TG-DNN,  the
convergence  of  which  would  conflict  that  of  the  standard
objective  function,  the  converged  training  loss  of  the  TG-
DNN  are  larger  than  those  of  the  pure  data-driven  DNNs.
From the prediction curves  of  the  three models,  compared to
the performance of the DNNs trained with randomly sampled
training  data  in Fig. 9(a) ,  the  prediction  from  the  TG-DNN
remains a good fitting to its target value, while the data-driven
DNNs trained  with  scattered  data  in  this  section  fail  to  learn

the  true  function  in  the  unsupervised  data  domain  in  most
experiments.  Besides,  the  TG-DNN  shows  a  good  learning
consistency  from  its  consistent  performance  under  various
training  conditions  and  in  different  applications. Table V
shows the average results of ∆GEOMpred from the DNNs in all
experiments,  in  which  the  TG-DNN  is  superior  to  the  two
data-driven  DNNs.  It  is  worth  noting  that  the  MT-DNN
outperforms the ST-DNN in most  cases,  which indicates that
the learning of loading stroke could be improved by learning
extra tasks of local true stress and strain. 

C.  Learning With Scarce Training Data
In  industry,  experimental  data  can  be  rather  expensive,  for

which of  great  significance is  the  predictive  model  to  have a
good  performance  with  very  limited  training  data.  Thus,  in
this  section,  a  new  experiment  was  designed  to  have  a  total
number of 21 examples of dataset, with loading stroke ranging
from 11 to 31 mm with unit increment. The whole dataset was
then split  into a training set  and test  set,  with data pairs with
odd numbers of loading stroke (i.e., 11, 13, 15, 17, 19, 21, 23,
25,  27,  29,  31  mm)  as  training  set  and  data  pairs  with  even
numbers of loading stroke (i.e., 12, 14, 16, 18, 20, 22, 24, 26,
28, 30 mm) as test set. Thus, there are in total 11 and 10 data
examples  in  training  set  and  test  set,  respectively.  To
comprehensively evaluate the performance of the DNNs with
scarce data, three different amounts of training data were used
for training the neural networks. The original training set with
11  examples  were  designed  to  be  the “ full  training  set”.
Likewise, the training data with 6 (with stroke values of 11, 15,
19, 23, 27, 31 mm) and 3 (with stroke values of 11, 21, 31 mm)
evenly  distributed  examples  are  referred  to  as  the “half
training set” and “1/4 training set”.

All the networks were trained to convergence with the batch
size of 2. Fig. 11 presents the generalization results of the ST-
DNN, MT-DNN and the TG-DNN, well-trained with full and
half  original  training  data,  on  the  test  set.  The  training  data
were obtained from the four-point bending process of AA6082
workpiece.  It  can  be  seen  that,  with  full  and  half  amount  of
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Fig. 9.     Comparison between the true data and predictions of the data domain from SVR, ST-DNN, MT-DNN, and TG-DNN, which were trained with data of
three different ratios of training to test data. The true data were obtained from four-point bending test of AA6082. The training data were randomly sampled
from the whole dataset.
 

 

TABLE IV  
Comparison of the Average of the Maximum Distance
Between the Target and Predicted Workpiece Shape
(∆GEOMpred) From the Well-Trained SVR and DNNs

Evaluated on the Total Data Domain (mm)

Data composition 80% train/
20% test

50% train/
50% test

20% train/
80% test

SVR 0.43 ± 0.05 0.68 ± 0.04 3.21 ± 0.24

Single-task DNN 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.01

Multi-task DNN 0.02 ± 0.01 0.03 ± 0.02 0.03 ± 0.01

Theory-guided DNN 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.01
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training data, all DNNs perform nearly equally well. This can
also  be  observed  in Table VI ,  in  which  the  values  of
∆GEOMpred between  the  target  and  predicted  workpiece
geometry  from  all  models  are  negligibly  small  with  full  and
half training data.

With  1/4  training  samples,  the  training  data  were  also
designed to be structurally symmetric (includes stroke values
of 11, 21 and 31 mm) and asymmetric (includes stroke values
of 11, 13 and 31 mm) for four-point bending of AA6082 like
in Section III-B. The models were also applied to applications
of 1) four-point bending process with a new material of SS400
and 2) air bending process with the same material of AA6082
to  comprehensively  evaluate  the  performance  and  learning

consistency of the data-driven DNNs and TG-DNN.
Fig. 12 shows training loss curves for  all  the DNNs during

training  and  the  generalization  performance  of  them  under
four  different  conditions.  The  generalization  performance  is
measured by evaluating the  well-trained DNN on the  test  set
(with stroke values of 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 mm).
It was seen that the training losses of all the DNNs in different
cases  all  converge  to  a  small  value  at  the  end  of  training.
Similar to the results in experiments with 201 total data shown
in Fig. 10, the TG-DNN has a higher converged loss than the
data-driven  DNNs  due  to  its  extra  theory-guided
regularization  term  in  the  objective  function.  From  the
prediction graphs, the predictions of stroke values on the test
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Fig. 10.     The training loss curves for the three DNNs (upper row) and the evaluations of the DNNs on the total data domain (lower row) after training with
about 20% training data acquired from different applications. The training data was designed to be symmetric and asymmetric to have large continuous regions
of missing data domain.
 

 

TABLE V  
Comparison of the Average of the Maximum Distance Between the Target and Predicted Workpiece Shape (∆GEOMpred)

From the Well-Trained DNNs Evaluated on the Total Data Domain in All Experiments (mm)

Data str Workpiece material Mfg process ST-DNN MT-DNN TG-DNN

Sym AA6082 4-point bending 0.34 ± 0.03 0.09 ± 0.02 0.08 ± 0.02

Asym AA6082 4-point bending 0.26 ± 0.03 0.35 ± 0.04 0.11 ± 0.02

Sym SS400 4-point bending 0.35 ± 0.04 0.22 ± 0.03 0.07 ± 0.01

Sym AA6082 Air bending 0.44 ± 0.04 0.30 ± 0.05 0.20 ± 0.03

Sym: Symmetric; Asym: Asymmetric; str: structure; Mfg: Manufacturing.
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set from the TG-DNN have a good match to the target values
in  all  cases.  Compared  with  the  multi-task  and  single-task
learning  results,  where  generalization  errors  occur  evidently,
the  TG-DNN  exhibits  effective  learning  and  still  holds  high
generalization performance in the data domain away from the
training set. With only 1/4 training data, the data-driven DNN
fails  to  learn  the  true  function  in  the  unsupervised  data
domain,  while  the  TG-DNN succeeds  to  retain  high  learning
capability. From the average results of ∆GEOMpred in different
applications  shown  in Table VII ,  with  1/4  training  data,  the
results of ∆GEOMpred measured from TG-DNN only have an
increase  less  than  0.1  mm  than  those  obtained  from  training
with full and half data shown in Table VI. Thus, the TG-DNN
exhibits  a  significantly  more  robust  and  consistent  learning
capability  than  data-driven  DNNs  when  applied  to  problems
with different data structures and amount of the training data,
different  materials  of  the  workpiece  and  different  bending
processes.

It is worth noting that, in the case with asymmetric training
data shown in Fig. 12(b), the TG-DNN also managed to learn
the  true  function  in  spite  of  the  considerably  increased
learning  difficulties  due  to  large  amount  of  missing  data
domain for training purpose (between target stroke of 13 and
31  mm).  The  predictions  from  both  MT-DNN  and  ST-DNN
have evident deviation from the true function in this region. It
is  well  known  that  the  structure  of  the  training  dataset  has
significant influence on the training of neural networks, while
the  data  structure  is  commonly  irregular  when  acquiring  off-
the-shelf experimental data. Thus, the introduced TG-DNN, in
practice,  can  effectively  alleviate  the  demand  on  the  amount

and  structure  of  expensive  experimental  data,  which  could
reduce  the  effort  in  experiment  design.  Also,  from  the
prediction  graphs  in Figs. 10  and  12 ,  the  performance  of  the
data-driven DNNs trained with only three examples in Fig. 12
is  inferior  to  that  of  the  DNNs  trained  with  30–50  data  in
Fig. 10,  while  the  TG-DNN  shows  a  more  consistent
performance. This indicates the superior learning capability of
the  TG-DNN  than  the  data-driven  DNN  trained  with  very
scarce  data.  It  should  be  noted  that  other  efforts  have  also
been  made  to  deal  with  missing  data  values,  such  as  non-
negative latent factor model [54], [55], which outperforms the
state-of-the-art predictors.

Taking  case  1  and  case  4  (Figs. 12(a) and  12(d) )  as
examples, with the predicted values for target stroke of 24 mm
from the DNNs, the obtained workpiece geometries deformed
by four-point bending and air bending are compared with their
targets,  as shown in Fig. 13. It  can be seen that the geometry
predicted from TG-DNN is evidently closer to the target than
those  from  ST-DNN  and  MT-DNN. Fig. 13  also  shows  how
the ∆GEOMpred is measured for different DNNs.

σv εeq

To  ascertain  whether  the  generalization  accuracy  of  the
DNN  is  promoted  by  the  proposed  theory-guided
regularization method using Swift’s law, the final training loss
and test loss of the physical parameters (  and ) from the
well-trained  TG-DNN  and  the  MT-DNN  in  all  experiments
are  compared  as  shown  in Fig. 14 .  It  can  be  seen  that  the
training  loss  of  these  parameters  from  data-driven  DNN  are
extremely smaller than those from the TG-DNN, which is due
to the convergence conflict between the standard term and the
theory-guided term in the objective function for the TG-DNN.
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Fig. 11.     Comparison of generalization capability on test set between the data-driven and theory-guided DNNs with (a) full data; (b) half data, obtained from
four-point bending process of AA6082 workpiece.
 

 

TABLE VI  
Comparison of the Average of the Maximum Distance Between the Target and Predicted Workpiece Shape (∆GEOMpred)

From the Well-Trained Data-Driven and Theory-Guided DNNs Evaluated on the Test Set.
The Data Were Obtained From Four-Point Bending Process of AA6082 Workpiece (mm)

ST-DNN MT-DNN TG-DNN

Training data Full data Half data Full data Half data Full data Half data

Test accuracy 0.03 ± 0.01 0.08 ± 0.01 0.05 ± 0.01 0.08 ± 0.01 0.03 ± 0.01 0.10 ± 0.01
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However,  the  loss  of  the  physical  parameters  on  the  test  set
from the TG-DNN are smaller than those from the data-driven
DNN,  which  indicates  its  better  learning  outcome  in  the
physical-parameters  data  domain.  This  corroborates  the
learning  improvements  introduced  by  the  TG-DNN,  as  the
physical  parameters  were  directly  regularized  in  the  theory-
guided  objective  function.  Consequently,  the  superior
performance  of  the  TG-DNN  than  the  data-driven  DNN  is
demonstrated  by  the  introduced  theory-respecting
regularization  method.  With  the  effective  implementation  of
Swift’s  law  for  training  regularization,  the  interpretability  of
the DNN is improved.

In summary, the ISMFS with the novel TG-DNN proposed
in  this  research  has  shown  many  advantages.  The  successful

σv εeq

application of TG-DNN to sheet metal bending processes also
indicates  its  applicability  to  other  sheet  metal  forming
techniques, where the physical parameters (  and ) are, in
general,  monotonically  related  to  the  forming  parameters.
Despite of its versatility, TG-DNN could also have limitation.
As  the  learning  task  of  interest  is  not  directly  related  to  the
inputs  to  the  model  with  a  hard  theory-respecting
regularization  function  like  those  in  [38]–[41]  due  to  the
inherent  complexity  of  sheet  metal  bending  engineering
problems,  a  more  tricky  process  of  hyperparameters  tuning
than  those  for  PINN  could  potentially  be  needed.  As  a
consequence,  the  method  would  increase  the  computational
cost  compared  to  the  PINN  with  PDE  governing  equations.
However, because of the infeasible application of PINN in this
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Fig. 12.     The training loss curves for the data-driven and theory-guided DNNs (upper row) and the evaluations of all  the DNNs on the test set (lower row)
after training with 1/4 training data acquired from different applications.
 

 

TABLE VII  
Comparison of the Average of the Maximum Distance Between the Target and Predicted Workpiece Shape (∆GEOMpred)
From the Well-Trained Data-Driven DNNs and Theory-Guided DNN Evaluated on the Test Set in All Experiments (mm)

Data str Workpiece material Mfgprocess ST-DNN MT-DNN TG-DNN

Sym AA6082 4-point bending 0.80 ± 0.07 0.63 ± 0.06 0.18 ± 0.02

Asym AA6082 4-point bending 1.26 ± 0.10 2.69 ± 0.15 0.16 ± 0.02

Sym SS400 4-point bending 0.58 ± 0.06 0.69 ± 0.06 0.17 ± 0.01

Sym AA6082 Air bending 1.30 ± 0.09 1.24 ± 0.07 0.19 ± 0.03

Sym: Symmetric; Asym: Asymmetric; str: structure; Mfg: Manufacturing.
 

LIU et al.: DEEP LEARNING IN SHEET METAL BENDING WITH A NOVEL THEORY-GUIDED DNN 577 



research,  discussion  on  these  two  neural  networks  could  be
futile.
 

IV.  Conclusions

In  this  research,  a  novel  theory-guided  regularization
method for DNN training, embedded in a learning system, has
been  proposed.  The  TG-DNN,  which  utilizes  Swift’s  law  as
the  guidance,  improves  the  learning  performance  by
regularizing  the  learning  of  extra  tasks.  A  series  of  studies
have been performed to evaluate the machine learning models,
including a  support  vector  regression model,  two data-driven
DNNs  and  a  TG-DNN,  in  learning  the  intrinsic  relationship
between  the  deformed  workpiece  geometry  after  springback
and  the  corresponding  forming  parameter  of  loading  stroke.
The following conclusions can be drawn:

1)  The  neural  networks,  either  trained  in  data-driven  or
theory-guided,  exhibit  blatantly  better  learning  capabilities
than a traditional machine learning model, SVR, in predicting
the loading stroke of a four-point bending and an air bending
process.  With  less  training  data  sampled  randomly,  the
performance  of  the  SVR  deteriorates  sharply,  while  those  of
the neural models have negligible decrease.

2)  The  proposed  TG-DNN  outperforms  the  conventional
pure data-driven DNN for its superior generalization accuracy,
when  only  scarce  and  scattered  experimental  data  are
available for training. When decreasing the amount of training
data to a very small value (from 30–50 to 3 in this research),
the performance of the data-driven DNNs suffers while that of
the TG-DNN retains consistent.

3)  With  varying  experimental  conditions,  including  the
structure and amount of training data, workpiece material and
sheet metal forming application, the TG-DNN exhibits a more
robust  learning  capability  and  learning  consistency  than  the
data-driven DNNs.

σv εeq

4)  Other  than  bending,  The  TG-DNN  could  also  be
applicable  to  the  sheet  metal  forming  processes  where  the
physical  parameters  (  and  )  are,  in  general,  monotonic-
ally  related  to  the  forming  parameters.  The  theory-guided
learning  also  improves  the  interpretability  of  the  traditional
data-driven DNNs.

5)  Consequently,  in  practice,  the  proposed  theory-guided
regularization  method  could  potentially  relieve  the  high
demand  on  the  amount  and  structure  of  expensive
experimental  data.  Furthermore,  by implementing the theory-
guided deep learning technology, the problems of considering
springback  in  the  traditional  design  of  sheet  metal  bending
processes  could  be  circumvented.  The  TG-DNN,  thus,
provides  an  alternative  method  for  compensating  springback
with  significantly  shorter  development  cycle  and  less  capital
cost  and  computational  requirement  than  traditional
compensation methods which are based on FE simulations and
experiments.

One of  the  future  works  is  to  apply  this  TG-DNN to  other
sheet  metal  forming  processes.  Developing  a  harder
regularization  method,  by  introducing  new  or  more  theories
for  sheet  metal  bending  process  and/or  increasing  the
regularization  spots  in  the  theory-guided  objective  function,
could  also  be  worthy  of  investigation.  Also,  the  latent
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Fig. 13.     Comparison between the shape of the target workpiece (with target
stroke of 24 mm) and the workpiece manufactured with the stroke predicted
by  the  data-driven  and  theory-guided  DNNs,  which  were  trained  with  1/4
symmetric  data  acquired  from  mid-point  of  the  AA6082  workpiece  from
(a) four-point bending and (b) air bending.
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Fig. 14.     Comparison  between  the  training  and  test  loss  of  physical
parameters  (  and  )  between  well-trained  MT-DNN  and  TG-DNN  with
1/4  symmetric  training  data  acquired  from  mid-point  of  the  AA6082
workpiece from 4-point bending.
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relationship  between  the  process  parameters  and  the
workpiece  geometry  after  springback  could  be  learned  by
developing  equations,  which  could  be  transformed  from
equations  describing  the  workpiece-tools  topology  before
springback  by  adding  a  to-be-learned  term  relating  the
workpiece  geometry  before  and  after  springback.  Other
approaches  could  be  used  to  enhance  the  theory-guided
model,  with  more  advanced optimization methods  [56],  [57],
or discrete-time delayed neural networks [58], [59].
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