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Preparation of Hadamard Gate for Open Quantum
Systems by the Lyapunov Control Method

Nourallah Ghaeminezhad and Shuang Cong, Senior Member, IEEE

Abstract—In this paper, the control laws based on the Lya-
punov stability theorem are designed for a two-level open quan-
tum system to prepare the Hadamard gate, which is an important
basic gate for the quantum computers. First, the density matrix
interested in quantum system is transferred to vector formation.
Then, in order to obtain a controller with higher accuracy
and faster convergence rate, a Lyapunov function based on the
matrix logarithm function is designed. After that, a procedure
for the controller design is derived based on the Lyapunov
stability theorem. Finally, the numerical simulation experiments
for an amplitude damping Markovian open quantum system are
performed to prepare the desired quantum gate. The simulation
results show that the preparation of Hadamard gate based on
the proposed control laws can achieve the fidelity up to 0.9985
for the different coupling strengths.

Index Terms—Lyapunov control method, open quantum sys-
tem, operator preparation, quantum Hadamard gate, vector
space dynamics.

I. INTRODUCTION

DURING recent years much work has been done to
develop the quantum computers. In a quantum computer,

the data is loaded as a string of quantum bits (qubits) [1].
Quantum gates perform very simple operations on these qubits
such as flipping their values. By combining many quantum
gates, complex operations can be realized and these operations
can be used to manipulate the qubits. The preparation of
quantum basic gates is one of the most important research
topics in quantum control field [2]. The main objective is
to prepare stable and high-fidelity quantum gates within a
possible short time and prevent them from decoherence as
long as possible [3]. A quantum control process can be
divided into coherent and decoherent parts, corresponding to
the unitary and non-unitary operations, respectively [4], [5].
Up to now, many different quantum control methods have
been developed to generate higher fidelity quantum gates in
a short time. One of the common methods is the quantum
optimal control method, which has been extensively studied
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[6]−[11]. Dynamical decoupling method is also an effective
control way for the quantum gate preparation. In 2013, Piltz et
al. protected conditional quantum gates by robust dynamical
decoupling [12]. In 2011, Grace et al. combined dynamical-
decoupling pulses with the optimal control method for im-
proving preparation of quantum gates [13]. However, in the
methods mentioned above the control laws are not analytic
and the designing procedure is a time-consuming task. The
design of control laws based on the quantum Lyapunov method
greatly simplifies the mathematic calculation and its analytical
type of control laws make the control system be easily adjusted
[14], [15].

The Hadamard gate is one of the most basic and important
gates in quantum computers [16]. Any unitary operation can
be approximated with arbitrary accuracy by means of special
gates set in which the Hadamard gate must be included. Many
quantum algorithms use the Hadamard transformation as the
first step to initialize the state with random information. In
quantum information processing, the Hadamard transformation
acts as a one-qubit operator that maps the qubit basis states
to different superposition states [17].

In our previous work [18] we prepared a Not gate for one
qubit open quantum system. In this paper, we will design
a Lyapunov control method to prepare the Hadamard gate
using unitary time-evolution operator whose dynamics are
transferred to the Bloch vector space. We construct a matrix
logarithm function as the Lyapunov function. The design of
control laws is based on the Lyapunov stability theorem. The
purpose of the control is to drive the unitary evolution operator
from any initial quantum gate as close as possible to the
desired quantum gate in the shortest possible time. Two perfor-
mance indices of the system under environment uncertainties
are analyzed by means of the simulation experiments.

The rest of this paper is arranged as follows: in Section II,
the descriptions of the control system and the model of the
system are studied. In Section III, the Lyapunov function and
the design of control laws are investigated. In Section IV, the
Hadamard gate based on designed control laws is prepared in
numerical experiments, the performances of control laws are
analysed, and the comparisons with other control methods are
done. Finally, the conclusion is given in Section V.

II. DESCRIPTIONS OF THE CONTROL SYSTEM AND THE
MODEL OF THE SYSTEM

For a two-level Markovian open quantum system, the dy-
namics of state ρt can be described as the following Lindblad
equation [17]



734 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 3, MAY 2018

ρ̇t = −i [H(t), ρt] + L(ρt) (1)

where [H(t), ρt] = [H(t)· ρt− ρt·H(t)] is the commutator of
H(t) and ρt [19]. H(t) is the Hamiltonian of the system

H(t) = H0 + Hc (2)

where H0 is a free Hamiltonian which is a Hermitian diagonal
matrix, and Hc is the control Hamiltonian of the system

Hc =
1
2

∑

k=x,y,z

fk(t)σk (3)

where fx(t), fy(t) and fz(t) are control fields; σk, k = x, y, z
are the Pauli matrices

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

(4)

In (1), L(ρt) turns out to cause decoherence of the system
and is called the dissipation part which describes the correla-
tion between the system and the environment [17], [20], [21]

L (ρt) =
∑

α,β

γα,β

[
FαρtF

†
β −

1
2

(
F †β Fαρt + ρtF

†
β Fα

)]

(5)

where Fα, Fβ ∈ {σx, σy, σz} /
√

2; α, β ∈ {x, y, z}, are
Lindblad operators. γαβ are positive time-independent param-
eters and indicate the coupling strength of the system with the
environment. The set of γαβ in (5) creates a Hermitian and
positive semi-definite matrix Γ, which is also known as GKS
(Gorini-Kossakowski-Sudarshan) matrix [19], [20]

Γ =




γxx γxy γxz

γyx γyy γyz

γzx γzy γzz


 . (6)

In our work, the studied model of the Markovian open
quantum system is amplitude damping (AD). The related GKS
matrix for the AD system is [22], [23]

ΓAD = γ




1 i 0
−i 1 0
0 0 0


 . (7)

Moreover, the dissipation part of the AD system is [23]

LAD (ρt) =
γ

2

[
σi−ρtσi+ − 1

2
(σi+σi−ρt + ρtσi+σi−)

]
(8)

where σi− = σx− iσy , σi+ = σx + iσy , and γ is the coupling
strength of the system with the environment.

The preparation of quantum gates is more comprehensible
if they can be considered as a kind of operators. Under this
consideration, the dynamics of the operators must be obtained.
Since the density matrix dynamics of (1) is a bilinear equation
with dissipation part, it is not easy to use to manipulate the
gates. Fortunately for a two-level quantum system, the state of
the quantum system can also be described by the state vector.

As {I, σx, σy, σz} makes a basis for 2 × 2 Hermitian
matrices, the density matrix ρt in (1) can be rewritten in Bloch
vector rt as

ρt =
1
2
(I + rxt

σx + ryt
σy + rzt

σz) (9)

in this way ρt is represented by the vector rt = (rxt
, ryt

,
rzt)

T .
We define U(t) as a unitary time-evolution operator on

density matrix ρt; accordingly the time-evolution of ρt can
be written as

ρf = U(t)· ρ0·U†(t). (10)

According to (1), (9) and (10), we can obtain the following
dynamics equation

U̇(t) = (A(t) + B)U(t) (11)

in which A(t) is the adjoint representation of −iH(t) in
group of SO(3) which is derived from converting unitary part
−i[H(t), ρt] of (1) to the Bloch vector representation and has
the following form

A(t) =




0 −fz(t) fy(t)
fz(t) 0 −fx(t)
−fy(t) fx(t) 0




= fx(t)Ax + fy(t)Ay + fz(t)Az (12)

where Ax =




0 0 0
0 0 −1
0 1 0


, Ay =




0 0 1
0 0 0
−1 0 0


, and

Az =




0 −1 0
1 0 0
0 0 0


. B is extracted from converting the

dissipation part L(ρt) of (1) to the Bloch vector representation
and can be written as

B =
Γ + ΓT

2
− tr (Γ) I

=
1
2



−2(γyy + γzz) γxy + γyx γxz + γzx

γyx + γxy −2(γxx + γzz) γyz + γzy

γzx + γxz γzy + γyz −2(γxx + γyy)


 .

(13)

Based on (6) and (7), for the AD system we set γxx = γyy

= γ, γxy = γi, γyx = −γi and γxz = γyz = γzx = γzy =
γzz = 0. In this case, one has

B = γ



−1 0 0
0 −1 0
0 0 −2


 . (14)

From (9) and (10), the time-evolution of vector rt in the
Bloch vector space can be written as

rt = U(t) · r0. (15)

Accordingly, based on (11) we can obtain

ṙt = (A(t) + B) rt. (16)

Now for preparing the quantum gate, the control task
becomes to design the control fields in A(t) in order to drive
the initial gate towards the desired one.

By substituting the Pauli matrices (4) into the density matrix
given by (9), the relationship between ρt and rt becomes

ρt =




1
2
(1 + rzt)

1
2
(rxt − iryt)

1
2
(rxt

+ iryt
)

1
2
(1− rzt

)


 . (17)
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Consider the matrix G =
[

u1 u2

u3 u4

]
to be a unitary

time-evolution operator that applies on (17). The relationship
between the final density matrix ρf and the initial density
matrix ρ0 can be obtained as [24]

ρf = G· ρ0·G† =
[

u1 u2

u3 u4

]

×




1
2
(1 + rz0)

1
2
(rx0 − iry0)

1
2
(rx0 + iry0)

1
2
(1− rz0)




[
u1
∗ u3

∗

u2
∗ u4

∗

]

=
1
2
I +

1
2
rx0

[
u∗1u2 + u1u

∗
2 u2u

∗
3 + u1u

∗
4

u∗1u4 + u∗2u3 u∗3u4 + u3u
∗
4

]

+
i

2
ry0

[
u∗1u2 − u1u

∗
2 u2u

∗
3 − u1u

∗
4

u∗1u4 − u∗2u3 u∗3u4 − u3u
∗
4

]

+
1
2
rz0

[
u1u

∗
1 − u2u

∗
2 u1u

∗
3 − u2u

∗
4

u∗1u3 − u∗2u4 u∗3u3 − u4u
∗
4

]
(18)

where G† refers to the conjugate transpose of matrix G, and
u∗ stands for the conjugate of element u.

Let the final state vector be rf = (rxf
, ryf

, rzf
)T , by

comparing (17) with (18), rxf
, ryf

and rzf
can be obtained

as

rxf
=

1
2

(u∗1u4 + u∗2u3 + u2u
∗
3 + u1u

∗
4) rx0

+
i

2
(u2u

∗
3 − u1u

∗
4 + u∗1u4 − u∗2u3) ry0

+
1
2

(u∗1u3 + u1u
∗
3 − u2u

∗
4 + u∗2u4) rz0 (19)

ryf
=

i

2
(u∗1u4 − u1u

∗
4 + u2u

∗
3 − u∗2u3) rx0

+
1
2

(u1u
∗
4 + u∗1u4 − u∗2u3 − u2u

∗
3) ry0

+
i

2
(u1u

∗
3 − u∗1u3 − u2u

∗
4 + u∗2u4) rz0 (20)

rzf
= rx0 (u∗1u2 + u1u

∗
2) + iry0 (u∗1u2 − u1u

∗
2)

+ rz0 (u1u
∗
1 − u2u

∗
2) . (21)

Considering (15), (19), (20), and (21), the time-evolution
operator U(t), which drives the initial vector r0 to the final
vector rt in the Bloch vector space, can be derived as (22)
(see the bottom of this page).

In this paper, the desired gate is a Hadamard gate GH,
which is a unitary operator that implies on a single qubit, and
transfers each basis state

∣∣0〉
or

∣∣1〉
to the superposition of both

states, i.e., it transfers the basis state
∣∣0〉

to (
∣∣0〉

+
∣∣1〉

)/
√

2,

and the basis state
∣∣1〉

to (
∣∣0〉− ∣∣1〉

)/
√

2. The GH can be
written as [1]

GH =
1√
2

[(∣∣0〉
+

∣∣1〉)〈
0
∣∣ +

(∣∣0〉− ∣∣1〉)〈
1
∣∣]

=
1√
2

[
1 1
1 −1

]
. (23)

To obtain the Hadamard gate GH by the vector dynamics,
the matrix GH will be realized in the form of U(t) in (22) as
the unitary time-evolution operator in the Bloch vector space.

According to G =
[

u1 u2

u3 u4

]
and (23), the final parameters

of the Hadamard matrix in GH, i.e., u1 = u2 = u3 = 1/
√

2
and u4 = −1/

√
2, are substituted into (22); then the represen-

tation of the desired Hadamard gate in the Bloch vector space
is expressed as

Uf = Uf−H =




0 0 1
0 −1 0
1 0 0


 . (24)

III. DESIGN OF CONTROL LAWS

In Section II, density matrix dynamics and desired quantum
gate have been derived in the Bloch vector space, and we have
obtained the dynamics of time-evolution operator U(t) in the
same space. Now we design a proper Lyapunov function and
Lyapunov-based control laws. A suitable Lyapunov function
is first constructed and evaluated, then the control laws based
on the Lyapunov stability theorem are designed.

The Lyapunov stability theorem is used to determine the
stability of a control system without need of solving the partial
differential equations. It can also be used to design the control
laws in order to obtain a stable control system. According to
the Lyapunov stability theorem the dynamical system in (11),
is stable if there is a scalar function V (t) that satisfies the
following conditions: a) V (t) is positive semi-definite, i.e.,
V (t) ≥ 0 at any time; b) the first order time derivative of the
Lyapunov function is negative semi-definite, i.e., V̇ (t) ≤ 0 at
any amount of time [17].

The Lyapunov function V constructed in this paper is
based on the matrix logarithm log(Uf

†U(t)) [25]. Let’s define
Uf

†U(t) = W(t). As long as the spectral radius is less than
one, the Mercator series of log(W(t)) is [26]

log(W(t)) = (W(t)− I)− 1
2
((W(t)− I)2

+
1
3
((W(t)− I)3 − 1

4
((W(t)− I)4 + · · ·

(25)

U(t) =
1
2




u1u4
∗ + u1

∗u4 + u2u3
∗ + u2

∗u3 (u2u3
∗ − u1u4

∗ + u1
∗u4 − u2

∗u3) i ( u∗1u3 + u1u
∗
3 − u2u

∗
4 + u∗2u4)

(u1
∗u4 − u1u4

∗ + u2u3
∗ − u2

∗u3) i u1
∗u4 + u1u4

∗ − u2u3
∗ − u2

∗u3 (u1u
∗
3 − u∗1u3 − u2u

∗
4 + u∗2u4) i

2(u1u2
∗ + u1

∗u2) 2(u1
∗u2 − u1u2

∗)i 2(u1u1
∗ − u2

∗u2)


 .

(22)
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where I is the identity matrix.
The first two terms of Mercator series in (25) are chosen,

and the Lyapunov function in this paper is constructed by
taking the square norm of two terms as

V (t) = ‖L(t)‖2 = tr(L†(t)L(t)) (26)

in which, L(t) = W(t)− I − 1
2 (W(t)−I)2.

Equation (26) asserts that, V (t0) = 32 when U(t) = U0 =
I , and V (tf ) = 0 as long as U(t) = Uf . The constructed
Lyapunov function satisfies V (t) ≥ 0 at any time.

To design the control laws, the first order time derivation of
V (t) must satisfy V̇ (t) ≤ 0 at any amount of time, and V̇ (t)
= 0 while U(t) = Uf . According to (26), V̇ (t) is derived as
follows:

V̇ (t) = tr
(

d

dt
(L†(t)L(t)

)

= tr
(
L̇†(t)L(t) + L†(t)L̇(t)

)
(27)

where

L̇(t) = Ẇ(t)− (( W(t)− I) Ẇ(t))

L†(t) = W†(t)− I − 1
2

(W†(t)−I)
2

L̇†(t) = Ẇ†(t)−
((W†(t)− I

) Ẇ†(t)
)

(28)

in which, W†(t) = U†(t)Uf and Ẇ(t) = Uf
†U̇(t).

By substituting L̇(t), L†(t) and L̇†(t) into (27), V̇ (t)
becomes

V̇ (t) = tr
[(
− 1

2
˙U†(t)UfW†

− 1
2
W† ˙U†(t)Uf + 2 ˙U†(t)Uf

)
L

+ L†(−1
2
Uf

†U̇(t)W − 1
2
WUf

†U̇(t) + 2Uf
†U̇(t)

]

(29)

where the first and second terms of the trace function are the
conjugate transpose of each other. Moreover, all elements of
the trace function are real matrices, so the trace of these two
terms are equal, and (29) can be rewritten as

V̇ (t) = 2tr
[(
− 1

2
˙U†(t)UfW†

− 1
2
W† ˙U†(t)Uf + 2 ˙U†(t)Uf

)
L

]
. (30)

Substituting the conjugate transpose of U̇(t) in (11), i.e.,
U̇†(t) = U†(t)(A(t) + B)† into (30), one has

V̇ (t) = 2tr
[(
− 1

2
U†(t)(A(t) + B)† UfW†

− 1
2
W†U†(t)(A(t) + B)† Uf

+ 2U†(t)(A(t) + B)† Uf

)
L

]
. (31)

Substituting A(t) in (12) into (31), we can obtain

V̇ (t) = 2tr
[(
− 1

2
U†(t)(fx(t)Ax

+ fy(t)Ay + fz(t)Az + B)† UfW†

− 1
2
W†U†(t)(fx(t)Ax + fy(t)Ay

+ fz(t)Az + B)† Uf + 2U†(t)(fx(t)Ax

+ fy(t)Ay + fz(t)Az + B)† Uf

)
L

]
(32)

where B is defined in (14), and fx(t), fy(t), and fz(t) are real-
valued functions which are pulled out from the trace function
to divide (32) into 4 parts as shown in (33)

V̇ (t) = fx(t)2 tr
[(
− 1

2
U†(t)A†xUfW†

− 1
2
W†U†(t)A†xUf + 2U†(t)A†xUf

)
L

]

+ fy(t)2 tr
[(
− 1

2
U(t)†A†yUfW†

− 1
2
W†U†(t)A†yUf + 2U†(t)A†yUf

)
L

]

+ fz(t)2tr
[(
− 1

2
U†(t)A†zUfW†

− 1
2
W†U†(t)A†zUf + 2U†(t)A†zUf

)
L

]

+ 2tr
[(
− 1

2
U†(t)B†UfW†

− 1
2
W†U†(t)B†Uf + 2U†(t)B†Uf

)
L

]
. (33)

From (33) it is obvious that, V̇ (t) is composed of 4 parts
with the similar structure as(
−1

2
U(t)†X†UfW† − 1

2
W†U(t)†X†Uf + 2U(t)†X†Uf

)
L

then these similar functions are defined as S (X, t)

S (X, t) = 2tr
[(
− 1

2
U(t)†X†UfW†

− 1
2
W†U(t)†X†Uf + 2U(t)†X†Uf

)
L

]
(34)

in which X is Ax, Ay , Az or B, in the first, second, third,
or fourth term of (33) respectively. By substituting (34) into
(33), we have

V̇ (t) = fx(t)S (Ax, t) + fy(t)S (Ay, t)
+ fz(t)S (Az, t) + S (B, t) (35)

while Ax, Ay , Az , and B are defined in (12) and (14),
respectively.

Now the control task becomes to design the control func-
tions fx(t), fy(t) and fz(t), to make V (t) decrease mono-
tonically, i.e., V̇ (t) ≤ 0. The main idea of design is to make
the control laws consist of two terms, such that the first term
is used to ensure V̇ (t) ≤ 0, and the second term is used to
eliminate the dissipation part caused by B. For this purpose,
the control functions are designed as

fx(t) = −axS (Ax, t)− hx
S (B, t)
S (Ax, t)

fy(t) = −ayS (Ay, t)− hy
S (B, t)
S (Ay, t)

fz(t) = −azS (Az, t)− hz
S (B, t)
S (Ay, t)

(36)

where ax, ay , az , hx, hy , and hz , are tuning weights. In (36),
the terms −ajS(Aj , t), aj ≥ 0, j = x, y, z, are used for
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preparing the operator, while for terms −hjS(B, t)/S(Aj , t),
j = x, y, z, by adjusting hj , hx +hy +hz = 1, the dissipation
part caused by B goes to be eliminated.

Substituting (36) into (35), one gets

V̇ (t) =− axS2 (Ax, t)

− ayS2 (Ay, t)− azS
2 (Az, t) ≤ 0 (37)

This means the control laws given by (36) can ensure V̇ (t)
≤ 0, so these control laws satisfy the requirements of the
Lyapunov stability theorem.

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

In this section, the control laws in (36) are used to prepare
the Hadamard gate for a Markovian open quantum system,
i.e., to drive the time-evolution operator U(t) from the initial
identity matrix gate (38) to the desired gate (39).

U0 =




1 0 0
0 1 0
0 0 1


 (38)

Uf =




0 0 1
0 −1 0
1 0 0


 . (39)

Numerical simulations are conducted to investigate the
performances of control laws and the dynamical behavior of
the system. We mainly study the following three points:

1) The dynamics and characteristics of the time-evolution
operator under the Lyapunov-based control are investigated.
Meanwhile, the accuracy of preparation of the Hadamard gate
is analyzed based on two performance indices: the fidelity F
and the distance D, for different coupling strength γ. Then,
the performances of control laws are investigated by the
experiments.

2) The effects of control laws on the control system perfor-
mances are studied by analyzing the state-transfer from ρ0 to
ρf .

3) The comparisons between different control methods are
discussed.

A. Preparation of Hadamard Gate and Analysis of the Control
Performance Indices

In this subsection, the dynamics and characteristics of the
time-evolution operator U(t) under the action of the control
laws are studied. The Hadamard gate for the AD Markovian
open quantum system is prepared, and two control perfor-
mance indices are analyzed.

In dynamical equation U̇(t) = (A(t) + B)U(t), the fourth-
order Runge-Kutta method is used to obtain the time-evolution
operator U(t) as

U(t) = U0 +
h

6
· (K1 + 2·K2 + 2·K3 + K4) (40)

where

K1 = F·U0

K2 = F· (U0 +
h

2
·K1)

K3 = F· (U0 +
h

2
·K2)

K4 = F· (U0 + h·K3) (41)

in which

F = (fx(t)Ax + fy(t)Ay + fz(t)Az + B)
= A(t) + B. (42)

In (40), h is the sampling time. The control time is divided
into 100 steps from 0 to 0.1 a.u., so h = 0.001. As the steps go
ahead, according to (40), the first step starts from U0, and the
U(t) is updated until Uf is prepared. The control laws are used
to drive U(t) from U0 to Uf , in which ax = 70, ay = 106,
and az = 66 are set. At the initial time, we set the initial
values of control functions as fx (0) = 10.28, fy (0) = 10.73,
and fz (0) = 40.

The fidelity and the distance are introduced to analyse the
accuracy of quantum Hadamard gate preparation. The fidelity
is defined as [27]

F =
tr

(
U(t)U†(t)

)
+

∣∣∣tr(Uf
†U(t)

∣∣∣
2

N(N + 1)
(43)

where N is the system dimensions and for the two-level
system, N = 2. As long as the operator reaches completely
the desired operator, the fidelity is equal to one.

The distance is defined as

D = ‖U(t)− Uf‖2 = tr((U(t)− Uf )† · (U(t)− Uf )).
(44)

Accordingly, the distance gives the perception whether U(t)
achieves Uf and to what extent. When U(t) reaches Uf com-
pletely, the distance is equal to 0. Otherwise by considering
the fault tolerant quantum computation, the distance should
satisfy the following performance selected in our experiment

D < 10−4 (45)

which is the distance criterion for valid operator preparations.
As the system is an open quantum system, when the cou-

pling strength γ increases, there is a higher coupling strength
with the environment. Fig. 1 shows the experimental results
of the fidelity, when preparing the Hadamard gate for the AD
Markovian open quantum system under designed control laws
with three

Fig. 1. The fidelity under control laws for the AD system when γ = 0.01,
γ = 0.1, and γ = 0.18.
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coupling strength γ = 0.01, γ = 0.1, and γ = 0.18,
respectively.

One can see from Fig. 1 that, when γ = 0.01, at t =
0.0164 a.u., the fidelity reaches 0.9985. For larger parameters
γ, i.e., γ = 0.1 and γ = 0.18, the fidelity becomes 0.981
and 0.962, respectively. This indicates that as γ increases, the
dissipation part has more effect on the system, which makes
the fidelity decrease. When γ = 0.1 at time 0.091 a.u., the
fidelity has a fluctuation, and when γ = 0.18, the fluctuations
happen again with larger deviation at times 0.0447 a.u. and
0.092 a.u., which are caused by the dissipation L(ρt) of the
open quantum system. The designed Lyapunov control laws
can guarantee the system stability, and when the dissipation
makes the system deviate from the desired result, the control
laws can eliminate it in a very short time.

Fig. 2 is the result of the distance when preparing the
Hadamard gate for the AD Markovian open quantum system
with γ = 0.01, γ = 0.1, and γ = 0.18. For all parameters
γ, at t = 0.0164 a.u., the distance reaches less than 10−4,
and it remains in this criterion for the rest of time. For
γ = 0.1, at t = 0.092 a.u., the distance becomes 4 × 10−3,
but after a short time the controller brings it under 10−4

again. When γ = 0.18 , at times 0.047 and 0.093 a.u., there
are also some peaks that values are 3.1 × 10−2 and 5 ×
10−3, respectively, but these fluctuations are rectified by the
controller. These fluctuations are caused by the dissipation of
the system coupled to environments. As the γ increases the
fluctuations also increase, which are eliminated by the control
laws in a very short time.

The function of control laws consists of two parts: the first
is the preparation, and the second is the preservation. During
the preparation part, the desired gate is prepared, and two
control performance indices, i.e., density and fidelity, tend to
reach the minimum and maximum values, respectively. In the
preservation part, the desired gate remains stable under the
action of the control laws. The effects of control laws in the
preservation part eliminate the dissipation of the system which
emerges as the fluctuations.

Table I is the parameters in (36) selected in experiments in
order to have the maximum fidelity and the minimum distance
in the shortest possible time. The control laws as the function
of time with γ = 0.1 are shown in Fig. 3. From which one can
see that at t = 0.0164 a.u. the control laws tend to zero, then
there appear some fluctuations. This time is the preparation
time and during 0 ≤ t ≤ 0.0164 a.u., the control laws work
in the preparation part. After t = 0.016 a.u. and till the end
of simulation time t = 0.1 a.u., the control laws work in the
preservation part.

B. State-Transfer Under Designed Control Laws

In this subsection, in order to study the relation between
the density matrix and the gate, the numerical simulation of
corresponding state-transfer from the arbitrary identity matrix
U0 to desired gate Uf is fulfilled to verify the effect of
designed control laws. From (15) and (17), one can see that
the density

Fig. 2. The distance under control laws for the AD system when (a)
γ = 0.01, (b) γ = 0.1, and (c) γ = 0.18.

matrix ρt is an implicit function of U(t) by means of vector
rt.

Let the initial vector be r0 = (1, 0, 0), which is regarded
to be the superposition of basis states, i.e., (

∣∣0〉
+

∣∣1〉
)/
√

2.
According to (15) and (24), the desired final vector, which is
correlated to the state

∣∣0〉
, can be derived as

rf = Uf · r0 =




0 0 1
0 −1 0
1 0 0


 ·




1
0
0


 =




0
0
1


 . (46)
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TABLE I
MINIMUM VALUES OF D AND MAXIMUM VALUES OF F

ax ay az h1 h2 h3 fx(0) fy(0) fz(0) Maximum fidelity Minimum distance

70 106 66 0.35 0.31 0.34 10.28 10.73 40 0.9985 1.6× 10−4

Fig. 3. Control laws as the function of the time when γ = 0.1.

To find out the corresponding density matrix, the initial vec-
tor r0 = (1, 0, 0) and the final desired vector rf = (0, 0, 1)
are substituted into (17), we can obtain

ρ0 =
[

0.5 0.5
0.5 0.5

]
, ρf =

[
1 0
0 0

]
. (47)

Fig. 4 illustrates the trajectory of the time-evolution density
matrix as a function of time for the AD Markovian open
quantum system under the designed control laws.

Fig. 4. State-transfer from ρ0 to ρf under control laws for the AD system
when γ = 0.1.

Based on the principle of Von Neumann, the diagonal ele-
ments of a density matrix can be interpreted as the probability.
The trace of a density matrix must be normalized, which
means the sum of the diagonal elements of time-evolution
density matrix, i.e., ρ11 + ρ22, must be equal to one at each
moment of time-evolution [28]. The numerical simulation
results in Fig. 4 show that, at t = 0.012 a.u., ρ11 and ρ22

attain 0.999 and 0.001, respectively, whose sum is one. For
the rest of simulation time, the loss of stability in Hamiltonian

makes ρ11 decrease and fluctuate very little away from the
desired amount. Under the action of control laws, ρ11 remains
stable close to 1 [29]. When ρ11 decreases a bit, the other
diagonal element, i.e., ρ22 slightly increases, in which the sum
of ρ11 and ρ22 is always equal to one. Other elements, i.e.,
ρ12 and ρ21 attain to 4× 10−4 at t = 0.012 a.u.. From Fig. 4
one can see that, at times t = 0.015 a.u. and t = 0.091 a.u.,
there are some fluctuations in the trajectories of ρ12 and ρ21,
which can be eliminated by the control laws designed. The
numerical simulation results verify that the desired state in
(47) is achieved.

C. Comparison and Discussion

In [30], the optimal control theory is applied to a two-
level open quantum system to prepare the Hadamard gate by
minimizing an energy-type cost functional. 25 a.u. time was
used and the performance of F ≈ 1 − 10−16 was achieved
for a closed-loop system. In our paper, when the experimental
simulations are done in the same conditions, i.e., γ = 0, and
the maximum amplitude of control laws is no larger than
2, the performance of our experimental results is F = 1
at t = 2.025 a.u. which indicates that the control method
proposed in this paper can obtain higher fidelity in a shorter
time compared to that of the optimal control method in [30].

In [18], the Lyapunov control method is used to prepare a
Not gate for a two-level open quantum system. The perfor-
mance of F = 0.9976 at t = 0.0194 a.u. is obtained with γ =
0.01, and the maximum amplitude of control laws is less than
400. Under the same conditions the fidelity performance in our
paper is F = 0.9985 at t = 0.0165 a.u., which demonstrates
the preparation in this paper has higher fidelity with a faster
convergence rate.

V. CONCLUSION

This paper has prepared a Hadamard gate for the two-
level AD Markovian open quantum system based on the
Lyapunov stability theorem. The controlled system dynamics
are obtained in the Bloch vector representation. Two control
performance indices, i.e, the fidelity and the distance are inves-
tigated, and numerical simulations are implemented under the
MATLAB environment with different coupling strength γ. The
control laws which are designed based on a novel Lyapunov
function ensure high fidelity and low distance with a very short
preparation time. The performances of the gate preparation and
the state-transferring illustrate the effectiveness of designed
control laws to eliminate the dissipation caused by coupling
with environment.
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