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Neural-Network-Based Terminal Sliding Mode
Control for Frequency Stabilization of

Renewable Power Systems
Dianwei Qian and Guoliang Fan

Abstract—This paper addresses a terminal sliding mode con-
trol (T-SMC) method for load frequency control (LFC) in
renewable power systems with generation rate constraints (GRC).
A two-area interconnected power system with wind turbines is
taken into account for simulation studies. The terminal sliding
mode controllers are assigned in each area to achieve the
LFC goal. The increasing complexity of the nonlinear power
system aggravates the effects of system uncertainties. Radial basis
function neural networks (RBF NNs) are designed to approximate
the entire uncertainties. The terminal sliding mode controllers
and the RBF NNs work in parallel to solve the LFC problem for
the renewable power system. Some simulation results illustrate
the feasibility and validity of the presented scheme.

Index Terms—Generation rate constraint (GRC), load fre-
quency control (LFC), radial basis function neural networks
(RBF NNs), renewable power system, terminal sliding mode
control (T-SMC).

I. INTRODUCTION

W ITH the rapid development of economy, electrical
power demand has become continuously stronger year

by year. A vast amount of fossil fuels utilized in power
generation results in energy crisis and environmental deterio-
ration around the world [1]. One possible solution is to adopt
clean and renewable energy instead of fossil fuel for power
generation. Wind power is now the fastest growing energy
source around the world because of its zero emission [2]. The
percentage of wind generation in power systems increases with
years. Wind energy has become one of the central research
themes in energy science.
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Concerning real applications, a constant supply of electricity
in some remote areas cannot be guaranteed by power grids. In
these areas, wind energy may be inexhaustible and convenient.
Therefore, wind power has been paid more and more attention
and some control problems rise up in power systems with
wind turbines [3]. An advocacy of wind power is due to its
sustainable and renewable status. However, wind power af-
fected by climate changes is intermittent. Its intermittence also
has impressive effects on operation and control of renewable
power systems.

Consider a power system with wind turbines. The load in the
power system is random and the power output of wind power is
fluctuating. The power-output fluctuation and the load change
would pose a reliability supply challenge. The challenge is
displayed by power imbalance and frequency deviation in the
power system [4]. Consequently, frequency control strategies
must be adopted to overcome the challenge.

Load frequency control (LFC) is one of the most profitable
auxiliary services to guarantee the stable operation of power
systems with the objective of preserving the balance between
power generation and power consumption [5]. Recently, the
LFC problem of renewable power systems has been paid
more and more attention [6], [7]. In order to attack the
generation intermittency of renewable power systems, some
LFC methods have been investigated, such as fuzzy control
[8], [9], predictive control [10], [11], and adaptive control [12],
[13].

Invented by Utkin, the sliding mode control (SMC) is
recognized as a powerful design tool [14]. On the sliding-mode
stage, an SMC system is completely insensitive to parametric
uncertainties and external disturbances under certain matching
conditions, which exhibits better performance than the con-
ventional robust control methods [15]. This property inspires
some researches on SMC for the LFC problem [16]− [22].
However, the SMC-based LFC methods in pervious works
[16]−[22] do not consider the complexity and challenge of
renewable-energy sources. The method of terminal sliding
mode control (T-SMC) [23], [24] guarantee the convergence
of the SMC system within finite time. The T-SMC method
can be considered for the LFC problem of renewable power
systems.

Power systems are inherently nonlinear [25]. The two main
nonlinear factors are the governor dead band (GDB) and the
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generation rate constraint (GRC). The existence of GRC
has adverse effects on the system robustness, the system
performance as well as the system stability [26]. A common
technique to deal with the GRC nonlinearity is to design a
controller for the linearized nominal model; then the controller
is directly imposed on the original nonlinear system. In a
sentence, the linearized model is adopted to achieve the control
design for the original nonlinear system. Although it is avail-
able in most cases, the technique has some potential hazards
because there is no theoretical guarantee on the stability of
the control system. Concerning the applications of SMC on
LFC [16]−[22], some works [16], [17], [21] only consider
linear power systems and other works [18]−[20], [22] adopt
the linear-model-based design. However, a series of drawbacks
may be induced to the linear-model-based control systems
because of lack of theoretical supports.

The methodology of radial basis function neural networks
(RBF NNs) has a universal approximating feature [27]. The
RBF NNs technology has been widely adopted to solve non-
linearities and uncertainties of complex systems [28]. In [20],
RBF NNs are employed to approximate and compensate the
GDB nonlinearity of power systems. However, how to conquer
the GRC nonlinearity by RBF NNs remains untouched and
problematic. To turn the T-SMC into practical accounts on the
LFC problem of renewable power systems, it is urgent to solve
the GRC nonlinearity by the RBF NNs technique.

This paper focuses on the T-SMC method for LFC of
nonlinear power systems with wind turbines. To deal with the
GRC nonlinearity, the linearization method is adopted at first.
Then, a terminal sliding mode controller is designed based on
the linearized nominal system. The uncertainties of the LFC
problem have three components, i.e., the intermittency of wind
power, the uncertainties of power systems and the error of
linearization. The components mix together and worsen the
uncertainties of the LFC problem. To theoretically guarantee
the system stability, the sliding-mode-based neural networks
are designed to suppress the entire uncertainties. Weight
update formulas of the neural networks are derived from the
Lyapunov direct method. The neural-network-based T-SMC
scheme is employed to accomplish the LFC problem. To
illustrate the feasibility and validity of the presented scheme,
some numerical simulations are conducted by a nonlinear
interconnected power system with wind turbines.

The remainder of this paper is organized as follows. Sec-
tion II formulates the system configuration. Section III presents
the T-SMC method, the RBF NNs design and the system
stability. Simulation results are demonstrated in Section VI.
Finally, conclusions are drawn in Section V.

II. SYSTEM CONFIGURATION

A. Component Dynamics

This paper considers the LFC problem of a multi-area
interconnected power system. The power system is composed
of N control areas which are interconnected by tie-lines.

Fig. 1 represents the block diagram of the ith control area
in the multi-area power system. In Fig. 1, variables ∆Pgi(t),
∆Xgi(t) and ∆fi(t) are the incremental changes of generator
output, governor valve position, and frequency, respectively.
∆PLi(t) is the load disturbance, ∆Pci(t) is the control input.
Tgi, Tti and Tpi are the time constants of governor, turbine and
electric system governor, respectively. Bi = 1/Ri + 1/Kpi is
the frequency bias factor where Ri is the adjustment deviation
coefficient and Kpi is the electric system gain. Tij is the
synchronizing power coefficient between area i and area j,
i, j = 1, . . . , N and N is the number of control areas.

Fig. 1. Dynamic model of the ith control area of the multi-area intercon-

nected power system concerning GRC.

According to the LFC objective, not only should the fre-
quency of the control area return to its nominal value, but also
the net interchange through the tie-line should return to the
scheduled values. To achieve the composite goal, a measure,
named area control error (ACE), is introduced. In Fig. 1, the
measure in the ith control area is defined by

ACEi(t) = ∆Ptie,i(t) + Bi∆fi(t) (1)

where ∆Ptie,i(t) is the tie-line active power deviation, deter-
mined by

∆Ṗtie,i(t) = 2π




N∑

j=1,j 6=i

Tij∆fi(t)−∆Vi(t)


 (2)

where ∆Vi(t) is employed to represent the control area
interface, defined by

∆Vi(t) =
N∑

j=1,j 6=i

Tij∆fj(t). (3)

To force the composite measure (1) to zero, the integral of
ACEi(t) is used as an additional state, determined by

∆Ei(t) = KEi

∫
ACEi(t)dt (4)

where KEi is the gain of this additional state.
Define a vector xi(t). The vector is described by xi(t) =

[∆Xgi(t) ∆Pgi(t) ∆fi(t) ∆Ptie,i(t) ∆Ei(t)]T . Then, the
following state equations can be deduced from (1)−(4) and
Fig. 1.

ẋi(t) = Aixi(t) + Biui(t) + Fi∆Pdi(t) (5)
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where ui(t) = ∆Pci(t) is the control input, ∆Pdi(t) =
[∆PLi(t) ∆Vi(t)]T is the disturbance vector. For a nominal
system, the matrices Ai, Bi and Fi in (5) are formulated in
Appendix A. The system model (5) will be employed for the
LFC design of the ith control area in the multi-area power
system.

B. Simplified Wind Turbine Model

The doubly-fed induction generator (DFIG) system has
been proven a proper renewable energy conversion system.
A simplified frequency response model of a DFIG based wind
turbine unit [10] is illustrated in Fig. 2.

Fig. 2. Simplified model of DFIG based wind turbine.

The model of the DFIG-based wind turbine unit can be
described by the following equations.

i̇qr(t) = −
(

1
T1

)
iqr(t) +

(
X2

T1

)
Vqr(t) (6)

ẇ(t) = −
(

X3

2Ht

)
iqr(t) +

(
1

2Ht

)
Tm(t) (7)

Pe(t) = w(t)X3iqr(t) (8)

where Vqr(t) and iqr(t) are the q-axis components of the
rotor voltage and the rotor current, respectively. w(t) is
the rotational speed, Tm(t) is the mechanical power, Ht is
the equivalent inertia constant, Pe(t) is the active power.
Other parameters in Fig. 2 are explained as X2 = 1/Rr,
X3 = Lm/Lss, T1 = L0/wsRs, L0 = Lrr + L2

m/Lss,
and Lss = Ls + Lm, Lrr = Lr + Lm, here Lm is the
magnetizing inductance, Rr and Rs are the rotor and stator
resistances, respectively. Lr and Ls are the rotor and stator
leakage inductances, respectively. Lrr and Lss are the rotor
and stator self-inductances. ws is the synchronous speed.

Linearizing the wind turbine model at a certain operating
point, we can rewrite (8) as

Pe(t) = woptX3iqr(t) (9)

Te(t) = iqs(t) = −Lm

Lss
iqr(t) (10)

where wopt is the rotational speed at the operating point and
Te(t) is the electromagnetic torque.

C. Dynamics for Wind Turbine Load Frequency Control

Define xxxwi(t) = [∆Xgi(t) ∆Pgi(t) ∆fi(t) ∆Ptie,i(t)
∆iqr,i(t) ∆wi(t) ∆Ei(t)]T , uuui(t) = [∆Pci(t) ∆Vqr,i(t)]T

and ∆Pwdi(t) = [∆PLi(t) ∆Vi(t) ∆Tmi(t)]T . Then, the
frequency response model for the ith control area with one
aggregated generator unit and one aggregated wind turbine can
be combined in the following state space model from (1)−(10)
and Fig. 2.

ẋwi(t) = Awixxxwi(t) + Bwiuuuwi(t) + Fwi∆Pwdi(t). (11)

Equation (11) will be employed for the LFC design for wind
turbines in the multi-area power system. The details about
Awi, Bwi and Fwi are available in Appendix A.

Remark 1: Equation (5) presents the mathematical model
for the LFC problem of the conventional generating system in
control area i. Equation (5) does not consider the effects of
wind turbines on the system frequency because the capacity
of the wind turbine unit only shares a small proportion in
the power system. On the contrary, to design a frequency
controller for the wind turbine unit, some variables of the
renewable power system are considered in (11).

D. Analysis About System Models

From (5) and (11), these system models can be described
by a uniform expression. Without loss of generality, the
expression has a form of

ẋ(t) = Axxx(t) + Buuu(t) + F∆P (t). (12)

By considering the parameter uncertainties and the mod-
elling errors, equation (12) can be written as

ẋ(t) = (A′ + ∆A)xxx(t) + (B′ + ∆B)uuu(t)

+ (F ′ + ∆F )∆P (t) (13)

where A′, B′ and F ′ denote the nominal constant matrices,
∆Axxx(t), ∆Buuu(t) and ∆F∆P (t) denote the parameter uncer-
tainties and the modeling errors.

It is noted that the above discussions just consider the un-
certainties existing in the linear power system. Power systems
actually cover the GRC nonlinearity. The existence of GRC
has adverse effects on the system stability. Inherently, the GRC
nonlinearity acts as a limiter to limit the rate of change in the
power generation. Taking the turbine of generating units as an
example, the limiter output remains unchanged while reaching
its top or bottom. But the turbine output keeps increasing or
decreasing at the extreme rate of change. This fact indicates
the nonlinear power system becomes linear before the limiter
output reaches its limit value. Having been triggered by the
two critical points of the limiter, the turbine output is still
changing but the change is at its extreme rates determined by
the limiter. From Fig. 1, these discussions can be formulated
by
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∆Pgi(t) =





− 1
Tgi

∫
δdt, σ(t) < −δ

1
Tgi

∫
σ(t)dt, |σ(t)| ≤ δ

1
Tgi

∫
δdt, σ(t) > δ

(14)

where σ(t) = ∆Xgi(t)∆Pgi(t) and δ > 0 is the maximum
output of the GRC nonlinearity.

As far as the LFC problem of the nonlinear power system
is concerned, the effect of the extreme rates only exists on
the outset because ∆Xgi(t) must change to make ∆Pgi(t)
resist the load disturbance ∆PLi(t). From this perspective,
the effect of the GRC nonlinearity can be treated as a kind
of uncertainties. Different from the uncertainties in (13), this
kind of uncertainties can attenuate their effects in the dynamic
process.

From (13) and (14), the following general model can be
derived for the power system.

ẋxx(t) = A′xxx(t) + B′uuu(t) + F ′∆P (t)

+ ∆Axxx(t) + ∆Buuu(t) + ∆F∆P (t) + φ(t) (15)

where φ(t) denotes the uncertainties due to GRC.
From (15), the LFC design of the nonlinear power system

with wind turbines can be divided into two parts. One is
to design a T-SMC-based load frequency controller for the
nominal system. The other is to consider how to suppress the
system uncertainties.

III. CONTROL DESIGN

A. Mathematical Descriptions of the System for Terminal
Sliding Mode Control

To aggregate all the uncertain terms in (15), ddd(t) is defined
and formulated by

ddd(t) = F ′∆P (t) + ∆Axxx(t) + ∆Buuu(t) + ∆F∆P (t) + φ(t).
(16)

Then, the general system model (15) has a form of

ẋxx(t) = A′xxx(t) + B′uuu(t) + ddd(t). (17)

Assumption 1: The uncertain term ddd(t) in (16) satisfies ddd(t)
= B′H(t) where ‖H(t)‖ ≤ h̄0, ‖ · ‖ denotes the Euclidean
norm and h̄0 is constant but unknown.

According to the principle of matrix controllability decom-
position, we adopt the nonsingular transformation of Z(t) =
[ZZZT

1 (t),ZZZT
2 (t)]T = Txxx(t) [29], [30]. Then, some matrices in

(17) becomes

TA′T−1 =
[

A11 A12

A21 A22

]
, TB′ =

[
0

B2

]

Tddd(t) =
[

0
B2H(t)

]
. (18)

In (18), A11 ∈ R(n−m)×(n−m), A12 ∈ R(n−m)×m, A21 ∈
Rm×(n−m) and A22 ∈ Rm×m. B2 ∈ Rm×m is a nonsingular
matrix. n is the dimension of xxx(t) and m is the dimension of
uuu(t).

According to (18), the following equations (19) can be
derived from (17).

{
ŻZZ1(t) = A11ZZZ1(t) + A12ZZZ2(t)
ŻZZ2(t) = A21ZZZ1(t) + A22ZZZ2(t) + B2uuu(t) + B2H(t)

(19)

where ZZZ1(t) = [z1(t) · · · zn−m(t)]T ∈ Rn−m and ZZZ2(t) =
[zn−m+1(t) · · · zn(t)]T ∈ Rm. In (19), H(t) means the
system uncertainties.

B. Design of Global Fast Terminal Sliding Mode Control

In [24], a kind of sliding surfaces is entitled global fast
terminal sliding surface. However, this kind of surfaces in [24]
is defined in the scalar form such that it cannot be directly
employed for the LFC problem of renewable power systems.
To develop a global fast terminal sliding surface for the LFC
problem, the general sliding surface vector (20) is extended for
multi-variable systems [31]. The extended global fast terminal
sliding surface vector for the nominal part of (19) is formulated
by

sss(t) = C1ZZZ1(t) + C2Z2(t) + C3ZZZ
q
p

1 (t) (20)

where sss(t) ∈ Rm×1, C1 ∈ Rm×(n−m), C2 ∈ Rm×m, C3

∈ Rm×(n−m). Both p and q are positive and odd numbers,
and 2q > p > q. ZZZ

q/p
1 (t) is a vector, defined by ZZZ

q/p
1 (t)

= [z1
q/p(t) z2

q/p(t) · · · zn−m
q/p(t)]T . C2 is non-singular to

guarantee C2B2 invertible. Matrices C2 and C3 are selected
to satisfy the following equations.

A11 −A12C2
−1C1 = −diag{α1, · · · , αn−m} (21)

A12C2
−1C3 = diag{β1, · · · , βn−m}. (22)

In (21) and (22), αi > 0, βi > 0, i = 1, 2, . . . , n−m. When
A12 is row full rank, the right inverse of A12 denoted by A+

12

exists and has a form of

A+
12 = AT

12(A12A
T
12)

−1. (23)

From (21) and (22), C1 and C3 can be selected as follows.

C1 = C2A
+
12 diag{α1, · · · , αn−m} (24)

C3 = C2A
+
12 diag{β1, · · · , βn−m}. (25)

Differentiating sss(t) in (20) with respect to time t and
substituting (19) into the derivative of (20), we get (26).

ṡss(t) = C1ŻZZ1(t) + C2ŻZZ2(t) + C3GŻZZ1(t)

= C1 (A11ZZZ1(t) + A12ZZZ2(t))

+ C2 (A21ZZZ1(t) + A22ZZZ2(t) + B2uuu(t) + B2H(t))

+ C3G (A11ZZZ1(t) + A12ZZZ2(t)) (26)

where G = diag{g1, . . . , gn−m}, gi = (q/p)zi
(q−p)/p, i =

1, 2, . . ., n−m.
When the system trajectory enters the sliding mode stage

and keeps on the sliding surface, ṡss(t) = Om exists, here Om ∈
Rm×m is an m-dimensional vector of zeros. Without regard to
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uncertainties, the equivalent control law of the T-SMC system
can be deduced from ṡss(t) = Om, determined by

uuueq(t) =− (C2B2)−1[(C1A11 + C2A21)ZZZ1(t) + (C1A12

+ C2A22)ZZZ2(t) + C3G(A11ZZZ1(t) + A12ZZZ2(t))].
(27)

Consider (19) and define the global fast terminal sliding
surface (21). Then, the final T-SMC law [31] can be formulated
by

uuu(t) =





uuueq(t)− (h̄0 + η)
(C2B2)

T
sss(t)

‖sssT (t)(C2B2)‖ , sss(t) 6= Om

uuueq(t), sss(t) = Om

(28)

where η > 0.
Remark 2: Since the T-SMC law (28) contains h̄0, the value

of h̄0 must be known in advance to guarantee the system
stability. In other words, the control law (28) is available for
the LFC problem under the condition that the uncertainties
are with a known boundary. Unfortunately, the boundary
value is rather difficult to know in practice. As displayed
in Assumption 1, the LFC system is designed under the
assumption that the uncertainties have an unknown boundary.
Consequently, it is necessary to consider how to deal with the
issue.

C. Design of RBF Neural Networks

To fill the gap between the system stability and the boundary
value of uncertainties, RBF NNs are employed because such
a kind of neural networks owns the ability to approximate
complex nonlinear mapping directly from input-output data
with a simple topological structure. RBF NNs are a kind of
three-layer feed-forward networks, where the mapping from
the input layer to the output layer is inherently nonlinear but
the mapping from the hidden layer to the output layer is linear.

Fig. 3 displays the designed RBF NNs. Concerning the LFC
problem, each element of the state vector xxx(t) in (17) is em-
ployed as an input element, where γ = 1, . . . , n. Accordingly,
the network output y is defined as the estimated value of the
system uncertainties. In other words, the designed RBF NNs
have n inputs and 1 output. Illustrated in Fig. 3, there are l

neurons in the hidden layer.

Fig. 3. Structure of RBF NNs.

From Fig. 3, the output of the RBF NNs is determined by
y = ˆ̄h0(xxx, ωωω). Then, the network output can be calculated by

ˆ̄h0 (xxx, ωωω) = ω̂ωωThhh(xxx). (29)

In (29), ω̂ωω ∈ Rl is the weight vector of the RBF NNs, hhh(xxx) ∈
Rl is the Gaussian function vector and the λth element hλ(xxx)
of the vector hhh(xxx) is defined by

hλ(xxx) = exp
(
−‖xxx− cλ||2

2b2
λ

)
(30)

where λ = 1, 2, . . . , l, cλ ∈ Rn is the center vector of the
λth Gaussian function, bλ is a scalar, indicating the width
of the λth Gaussian function. Both cλ and bλ are predefined
parameters.

Adopting the RBF approximation technology, the control
law (28) can be rearranged by

uuu(t) =





uuueq(t)− (ˆ̄h0 + η)
(C2B2)

T
sss(t)

‖sssT (t)(C2B2)‖ , sss(t) 6= Om

uuueq(t), sss(t) = Om.

(31)

Remark 3: The term h(t) depicts the system uncertainties.
Not only is h(t) hard to be formulated, but also its boundary
value is difficult to be obtained. To guarantee the network
output can match the change of uncertainties, each element
of the weight vector ωωω has to be renewed by an update law.
It is necessary to obtain the update law of the weight vector.
On the other hand, the update law makes a difference to the
system stability. Consequently, this topic will be investigated
in the sense of Lyapunov.

D. Stability Analysis

Assumption 2: There exists an optimal weight vector ωωω∗

such that |ωωω∗Thhh(xxx)− h̄0| satisfies

|ωωω∗Thhh(xxx)− h̄0| = ε(x) < ε1. (32)

Assumption 3: The boundary value h̄0 minus the Euclidean
norm of the system uncertainties satisfies

h̄0 − ‖H(t)‖ > ε0 > ε1. (33)

Theorem 1: Take Assumptions 1−3 into account, consider
the system model (17), define the global fast terminal sliding
surface (20), and adopt the control law (31). Then, the T-SMC-
based LFC system is of asymptotic stability if and only if the
update law of the network weight vector has a form of

˙̂ω = ξ‖sssT (C2B2)‖hhh(xxx) (34)

where ξ is a constant and satisfies

ξ = ε0 − ε1 > 0. (35)

Proof: Consider the candidate Lyapunov function

V =
1
2
sssTsss +

1
2
ξ−1ω̃̃ω̃ωT ω̃̃ω̃ω (36)

where ω̃ is determined by

ω̃̃ω̃ω = ω∗ω∗ω∗ − ω̂̂ω̂ω. (37)
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Differentiate V with respect to time t in (36). The derivative
of V can be formulated by

V̇ = sssT ṡss− ξ−1ω̃̃ω̃ωT ˙̂ω̂ω̂ω. (38)

When sss(t) 6= Om, ‖sssT (C2B2)‖ 6= 0 because C2B2 is
non-singular. In (38), replace ṡss by (26) and take (31) into
consideration. Then, (38) becomes

V̇ = sssT ṡss− ξ−1ω̃ωωT ˙̂ωωω

= sssT [C1(A11ZZZ1 + A12ZZZ2) + C2(A21ZZZ1 + A22ZZZ2

+ B2u + B2H(t)) + C3G(A11ZZZ1 + A12ZZZ2)]

− ξ−1ω̃ωωT ˙̂ωωω

= sssT (C2B2)[−(ˆ̄h0 + η)
(C2B2)

T
sss

‖sssT (C2B2)‖ + H(t)]

− ξ−1ω̃ωωT ˙̂ωωω

≤− ‖sssT (C2B2)‖(ˆ̄h0 + η) + ‖sssT (C2B2)‖ · ‖H(t)‖
− ξ−1ω̃ωωT ˙̂ωωω

=− ‖sssT (C2B2)‖[(ˆ̄h0 + η) + h̄0 − h̄0]

+ ‖sssT (C2B2)‖ · ‖H(t)‖ − ξ−1ω̃ωωT ˙̂ωωω

=− ‖sssT (C2B2)‖(ˆ̄h0 + η − h̄0)

− ‖sssT (C2B2)‖(h̄0 − ‖H(t)‖)− ξ−1ω̃ωωT ˙̂ωωω

=− ‖sssT (C2B2)‖[ω̂ωωThhh(xxx) + η − (ω∗Thhh(xxx)− ε(xxx))]

− ‖sssT (C2B2)‖(h̄0 − ‖H(t)‖)
− ‖sssT (C2B2)‖(ωωω∗T − ω̂ωωT )hhh(xxx)

=− η‖sssT (C2B2)‖ − ‖sssT (C2B2)‖ε(xxx)

− ‖sssT (C2B2)‖(h̄0 − ‖H(t)‖)
≤− η‖sssT (C2B2)‖+ ‖sssT (C2B2)‖[|ε(xxx)|
− (h̄0 − ‖H(t)‖)]. (39)

Taking Assumptions 2 and 3 into account, we can conclude
that the inequality |ε(xxx)| − (h̄0 − ‖H(t)‖) < ε1 − ε0 exists.
Then, (39) becomes

V̇ <− η‖sssT (C2B2)‖ − (ε0 − ε1)‖sssT (C2B2)‖
=− η‖sssT (C2B2)‖ − ξ‖sssT (C2B2)‖
= (−η − ξ)‖sssT (C2B2)‖
≤ (−η − ξ)‖C2B2‖ · ‖sss‖ ≤ 0. (40)

In (40), it is obvious that V̇ < 0 at sss(t) 6= Om and V̇ = 0
at sss(t) = Om.

From (36) and (40), we have V ≥ 0 and V̇ ≤ 0. Further,
(41) can be deduced from (36).

‖sss‖ =
√

2V
1
2 . (41)

Define ρ =
√

2(η+ξ)‖C2B2‖ and substitute (41) into (40).
Then, (40) can be rearranged by

V̇ < −ρV
1
2 . (42)

Integrating both sides in (42) yields
∫ 0

V0

V − 1
2 dV < −ρ

∫ τ

0

dt. (43)

The time τ can be calculated by

τ <
2
ρ
V0

1
2 . (44)

In the sense of Lyapunov, V will reach zero from the state
of V0 in the finite time τ . Meantime, the global fast terminal
sliding surface sss(t) reaches zero. This also indicates that the
state variables of the proposed power system will enter the
sliding mode stage in a finite time.

On the sliding surface, there is

sss = C1ZZZ1 + C2ZZZ2 + C3ZZZ
q
p

1 = Om. (45)

Since C2 is nonsingular, (46) can be obtained

ZZZ2 = −C2
−1C1ZZZ1 − C2

−1C3ZZZ
q
p

1 . (46)

Substituting (46) into (19) yields

ŻZZ1 = A11ZZZ1 −A12C2
−1C1ZZZ1 −A12C2

−1C3ZZZ
q
p

1 . (47)

By selecting C1, C2 and C3 in (24) and (25), the derivative
of ZZZ1 can have the form of

ŻZZ1 =




ż1

ż2

...
żn−m




=− diag{α1 · · · αn−m}ZZZ1 − diag{β1 · · · βn−m}ZZZ1

q
p

=




−α1z1 − β1z1

q
p

−α2z2 − β2z2

q
p

...
−αn−mzn−m − βn−mzn−m

q
p




. (48)

From (48), each element in both ZZZ1 and Z
q/p
1 will rapidly

converge to zero in a finite time. Further, ZZZ2 is the linear
combination of ZZZ1 and ZZZ

q/p
1 in (46) such that each element

in ZZZ2 will converge to zero in a finite time as well as ZZZ1. Since
ZZZ is defined by the form of ZZZ = [ZZZT

1 ZZZT
2 ]T , each element in

ZZZ and x will definitely converge to zero in a finite time.
Consequently, the closed-loop LFC control system is

asymptotically stable in the sense of Lyapunov. In this regard,
not only can the designed update law (34) guarantee the
convergence of the RBF NNs, but also the whole LFC system
can earn the asymptotic stability by such a control scheme. ¥

Remark 4: From (19), uuueq in (27) can be rewritten as

uuueq(t) =− (C2B2)−1[(C1A11 + C2A21)ZZZ1(t)

+ (C1A12 + C2A22)ZZZ2(t) + C3GŻZZ1]. (49)

In (49), the ith element in GŻZZ1 is (q/p)zi
(q−p)/pżi. When

zi = 0 and żi 6= 0, there will be a singular condition and
an infinite control input. Due to żi 6= 0, the state of zi = 0
cannot be kept unchanged. The singular point (zi = 0, żi 6= 0)
is not a stable state and occurs rarely. Therefore, zi has an
assignment of a pretty small value when it reaches the singular
point to avoid the singularity problem during the calculation.
As a result, this may cause a pretty big control input.

Remark 5: An inherent drawback of the sliding mode
control technique is chattering [14]. To reduce the chattering,
the
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Fig. 4. Block diagram of the considered two-area power system.

smooth processing should be adopted for the relay character-
istics in (31) [32]. The amendment has the form of

uuu(t) =





uuueq(t)− (ˆ̄h0 + η)
(C2B2)

T
sss(t)

‖sssT (t)(C2B2)‖+ δ
, sss(t) 6= Om

uuueq(t), sss(t) = Om

(50)

where δ is a small positive constant.
Remark 6: According to the designed control scheme,

the GRC nonlinearity is transformed into a part of system
uncertainties. The RBF NNs can be treated as a compensator to
approximate and compensate the entire system uncertainties.
The compensator and the controller cooperate to overcome
the LFC problem for the nonlinear power system with wind
turbines.

Remark 7: The generating unit with GRC in Fig. 1 and
the wind turbine in Fig. 2 simultaneously exist in a control
area. Both of them can affect the frequency of the considered
control area. Hence, two load frequency controllers and their
compensators in one control area should be designed to
achieve the LFC task according to (5) and (11), respectively.

IV. SIMULATION RESULTS

Consider the LFC problem of renewable power systems. An
interconnected power system with wind turbines is employed

to illustrate the effectiveness and feasibility of the proposed T-
SMC scheme. The power system is composed of two control
areas. Each control area has an aggregated generating unit with
GRC in Fig. 1 and an aggregated wind turbine unit in Fig. 2.
As mentioned above, the generating unit and the wind turbine
mean all generator units and all wind turbines in the control
area are aggregated together. The proposed control scheme
will be carried out by the LFC solution of such a nonlinear
interconnected power system, where the system schematic is
illustrated in Fig. 4.

Some parameters and data from the interconnected power
system [10] are listed in Table I. The power system consists
of two 800 MVA-scale control areas. Wind turbine param-
eters [10] are listed in Table II, where the wind speed
vwind = 11 m/s, the rotational speed vr = 1.17 m/s, Xm

is the magnetizing reactance, (wr)base = 1.15 rad/s. The
wind turbine parameters originate from the 247 MW operating
point, where the turbine power composed of 200 units of
2 MW wind turbines is 400 MVA-scale. The gains of the
two additional states in the two control areas are selected as
KE1 = KE2 = 1. According to the listed parameters, the
nominal models of the interconnected power system in Fig. 4
can be obtained. Subsequently, the models can be employed
for the LFC design.

As mentioned above, some controller parameters are pre-
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defined. Concerning the T-SMC-based controllers in Areas 1
and 2, the

TABLE I
PARAMETERS AND DATA OF TWO CONTROL AREAS

Area D 2H R Tg Tt Tij B

Area 1 0.015 0.1667 3.00 0.08 0.40 0.20 0.425

Area 2 0.016 0.2017 2.73 0.06 0.44 0.20 0.425

TABLE II
WIND TURBINE PARAMETERS AT 247 MW

OPERATING POINT (p.u)

Rr Rs Lr Ls Lm Ht

0.00552 0.00491 0.1 0.09273 3.9654 4.5

transformation matrices Tr (r = 1, . . . , 4) for each controller
design are specified by

T1 = T3 =




0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0




T2 = T4 =




0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0




.

For Controllers 1 and 3, C1 = C3 = [ 1 2 3 4 ], C2 = 1.
For the other two controllers in Fig. 4, their parameters are
determined by

C1 = C3 =
[

1.1 1.2 1.3 1.4 1.5
1.1 1.2 1.3 1.4 1.5

]

C2 =
[

1 0
0 1

]
.

Other controller parameters are determined by p = 9, q = 7,
η = 0.1 and δ = 0.04.

Concerning the designed RBF NNs, some network parame-
ters should also be set up. For RBF NNs 1 and 3, place 6 neu-
rons in their hidden layers, select the initial weights between
the hidden and output layers as [ 0.1 0.1 0.1 0.1 0.1 0.1 ]T ,
and determine the widths of the Gaussian function vector
as [ 0.2 0.2 0.2 0.2 0.2 0.2 ]T . For RBF NNs 2 and
4, place 8 neurons in their hidden layers, select their ini-
tial weights as [ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ]T and
determine the widths of the Gaussian function vectors as
[ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 ]T . For the four RBF NNs, all
their centers take random numbers between −1 and 1. Other
parameters for the four RBF NNs are defined by ε0 = 0.002
and ε1 = 0.001.

To show the performance of the presented method, two
step load disturbances PL1 = PL2 = 1 % are simultaneously
applied to the interconnected power system at t = 5 s.
Fig. 5 illustrates the comparisons of frequency deviations, area
control errors and deviations of the tie-line active power, where
the blue solid lines mean the LFC system has RBF NNs and
the red dashed lines mean the LFC system has no RBF NNs.
Under the condition of no RBF NNs, the boundary of system
uncertainties is assumed to be known such that the control law
(50) is directly adopted. The other controller parameters are
kept unchanged.

From Fig. 5, ∆f , ACE and ∆Ptie are damped to zero after
disturbances with small oscillations in a finite time. Without
doubt, the system state changes of the LFC system with RBF
NNs are a little smoother and the settling times are slightly
shorter. Anyway, the control performances of the two control
methods can just make a little difference on the aspect of these
state variables.

Fig. 6 illustrates the control inputs in the two control areas,
where the red solid lines indicates the LFC system without
RBF NNs and the blue solid lines indicates the LFC system
with RBF NNs. To guarantee the system stability, the LFC
system without RBF NNs needs to predefine a large h̄0

since the LFC system suffers from the severe chattering
phenomenon. On the other hand, the LFC system with RBF
NNs can adaptively approximate the boundary of the system
uncertainties such that the curves of the control inputs are
much smoother. In this sense, the designed RBF NNs con-
tribute to a significant reduction of the chattering phenomenon.
Further, the outputs of the designed RBF NNs are illustrated
in Fig. 7. As proven in Theorem 1, not only can the update law
(34) make the networks convergent, but also the LFC control
system possesses the asymptotic stability.

To demonstrate the control performance of the presented
control scheme, the comparisons between the presented
scheme and the SMC method with RBF NNs are shown in
Fig. 8. In Fig. 8, the RBF NNs parameters in the two LFC
control systems make no difference. The control performance
is just decided by the two control methods.

Compared with the results of the SMC method with RBF
NNs, the performance of the presented control scheme is
better without doubt. Especially, the overshoot of the presented
method in Fig. 8 is zero which shows that the presented control
scheme is more robust against load disturbances in power
systems with wind turbines.

V. CONCLUSIONS

This article has addressed the LFC problem for renewable
power systems in the presence of GRC. The control scheme is
designed by means of T-SMC. To suppress the uncertainties of
the LFC problem, RBF NNs are adopted. The theoretical anal-
ysis in the sense of Lyapunov proves that the T-SMC-based
LFC system is asymptotically stable. The presented control
scheme has solved the LFC problem of an interconnected
renewable power system composed of two control areas.
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Fig. 5. Simulation results of the interconnected power system with and without RBF NNs. (a) Frequency deviation ∆f1 in Area 1. (b) Frequency deviation

∆f2 in Area 2. (c) Area control error ACE1 in Area 1. (d) Area control error ACE2 in Area 2. (e) Deviation of tie-line active power ∆Ptie.

Fig. 6. Simulation results of control inputs. (a) Control inputs in Area 1. (b) Control inputs in Area 2.
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Fig. 7. Simulation results of RBF NN outputs. (a) RBF NN outputs in Area 1. (b) RBF NN outputs in Area 2.

Fig. 8. Comparisons between T-SMC with RBF NNs and SMC with RBF NNs. (a) Frequency deviation ∆f1. (b) Frequency deviation ∆f2. (c) Area control

error ACE1. (d) Area control error ACE2. (e) Deviation of tie-line active power ∆Ptie.
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Some numerical simulation results have demonstrated the
performance of the presented method against uncertainties of
nonlinear power systems with renewable sources.

APPENDIX PARAMETER MATRICES

Ai =




− 1
Tgi

0 − 1
Ri·Tgi

0 0
1

Tti
− 1

Tti
0 0 0

0 Kpi

Tpi
− 1

Tpi
−Kpi

Tpi
0

0 0 2π
N∑

j=1,j 6=i

Tij 0 0

0 0 KEiBi KEi 0




Bi =




1
Tgi

0
0
0
0




, Fi =




0 0
0 0

−Kpi

Tpi
0

0 −2π

0 0




Ξ =
KpiX3∆wopt

Tpi

Awi =




−1
Tgi

0 −1
RiTgi

0 0 0 0
1

Tti

−1
Tti

0 0 0 0 0
0 Kpi

Tpi

−1
Tpi

−Kpi

Tpi
Ξ 0 0

0 0 2π
N∑

j=1,j 6=i

Tij 0 0 0 0

0 0 0 0 −1
T1

0 0
0 0 0 0 −X3

2Hti
0 0

0 0 KEiBi KEi 0 0 0




Bwi =




1
Tgi

0
0 0
0 0
0 0
0 X2

T1

0 0
0 0




Fwi =




0 0 0
0 0 0

− Tpi

Kpi
0 0

0 −2π 0
0 0 0
0 0 1

2Hti

0 0 0




.
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