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On “Over-Sized” High-Gain Practical Observers
for Nonlinear Systems

Daniele Carnevale, Corrado Possieri, and Antonio Tornambe

Abstract—In this paper, it is shown that the performances
of a class of high-gain practical observers can be improved by
estimating the time derivatives of the output up to an order that
is greater than the dimension of the system, which is assumed
to be in observability form and, possibly, time-varying. Such
an improvement is achieved without increasing the gain of the
observers, thus allowing their use in a wide variety of control
and identification applications.

Index Terms—TFiltering properties, nonlinear systems, observ-
ability, observer design.

I. INTRODUCTION

problem found in several control and identification ap-

plications is the reconstruction of the unmeasurable state
variables by the measures of the accessible ones [1]—[9].
This task has been extensively studied for both linear and
nonlinear systems. For the formers, a rather standard solution
is given by the Luenberger observer and the Kalman filter
[10], [11]. On the other hand, when dealing with nonlinear
systems, the problem of designing an observer is much more
challenging. Many attempts have been made to provide a gen-
eral framework that allows the structured design of observers.
For instance, in [5], [12], [13], the observability problem is
addressed by considering observers yielding error dynamics
that, possibly after some coordinates transformation, become
linear and spectrally assignable. Another technique that is
widely used in industrial and manufacturing processes is the
extended Kalman filter, whose design is based on a local
linearization of the system around a reference trajectory [14].
A remarkable observer design technique has been proposed
in [15], where Lyapunov-like conditions have been given for
the existence of a nonlinear observer yielding asymptotically
stable error dynamics (for more recent procedures allowing
the structured design of observers, see [16], [17]).

The observer proposed in this paper belongs to the class
of high-gain practical observers. Assuming that the system
is in observability form and that the time derivatives of
the output are bounded, such observers provide estimates of
the state of the system yielding arbitrarily small estimation
error with arbitrarily fast decay rate. The use of high-gains
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is a classical tool that has been extensively employed to
compensate nonlinearities in the system: for instance in [18]
a high-gain feedback stabilizing control algorithm is proposed
for a class of nonlinear systems, in [19]—[22] it is shown how
high-gain observers can be exploited to estimate the state of
a nonlinear system, while in [23] it is shown how high-gain
observers can be used in nonlinear feedback control.

The main objective of this paper is to show that, if the
high-gain practical observer is designed to estimate the time
derivatives of the output up to an order that is greater than
the dimension of the state of the system (thus leading to
the adjective over-sized), then the estimation error can be
made smaller without increasing the gain. Thanks to their
appealing properties (especially the fact that they do not
require excessively large values of the observer gain), these
observers have been already proved useful in several control
and identification applications [24]—[28]. The performances
of over-sized and normal-sized high-gain practical observers
are compared by estimating the vertical velocity of an electron
beam by measures collected at the Frascati Tokamak upgrade
(FTU) facility.

II. OBSERVABILITY FOR NONLINEAR SYSTEM

Consider the single-output, nonlinear system

&= f(t, ) (la)
y = h(z) (1b)
where f : R x RY — RN and h : RV — RY are in C* for
some sufficiently large k € Z, k > 0, z(t) € RY denotes the
state of system (1), and y(¢) € R denotes its output. Let ¢(t, )
denote the solution of system (1) at time ¢t € R, ¢ > 0, starting
at z, i.e., ¢(0,7) = x for all x € RY. Assume that ¢(t, z)
exists and is unique forallt € R, ¢ > 0, and x € RN, System
(1) is observable if any pair of different states z,& € RY is
distinguishable, i.e., for each z,¢ € RY, there exists t € R,
t > 0, such that h(¢(t,z)) # h(e(t,£)).
In this paper, single-output, (possibly, time varying) non-
linear systems that can be written in the following canonical
observability form are considered:

Yo = WY1 (2a)
UN—1 = YN (2b)
gn = P(t,Ye,n) (2¢)

Yy = Yo (2d)

YeN = [ %0 yn 17,0 : Rx RN — R is C* for
some sufficiently large k € Z, k > 0, and y n(¢) is assumed
to exist V¢ > 0. By construction, system (2) is observable [29].
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The goal of this paper is to design an observer for system
(2). Such a goal can be pursued by using classical high-gain
practical observers (see, for instance, [20] and Section III
where the properties of such a class of observers are recalled).
One of the main goals of this paper is to show that the
performances of such observers can be improved by estimat-
ing, through another high-gain observer, more than N time
derivatives of the output (i.e., “oversizing” its state), without
necessarily decreasing ¢, as usual in high-gain observer design,
that has several undesirable effects [4].

III. NORMAL-SIZED HIGH-GAIN
“PRACTICAL” OBSERVERS

In this section, some results about the standard normal-sized
high-gain practical observers introduced in [20] are revised.

Let the polynomial AN*1 + AN + .- 4 EnA + Byl
be Hurwitz and let 0 < & < 1 be a sufficiently small
parameter. Under the assumptions of Theorems 2 and 3 of
[20] (essentially, boundedness of p(t, ye n(t)) as a function
of t), a high-gain practical observer for (2) is given by

N K1 N
Jo = i+t ?(yo — 7o) (3a)
-1 = In + (yo — o) (3b)
hY - fiN+1 ~
IN = N (Yo — 9o) (3¢)
where Je n = [ o gn |7 is an estimate of y, y.
Define the estimation error ye N = Ye,N — Ye,N, Whose
dynamics are given by
yLe,N - Alge,N + Blﬁ(ta ye,N) (4)
where
—= 1 0 0
Y S P
—E 0 -1 0
—4E 0 - 0 1

The following two lemmas and theorem, reported here for
completeness, state that the output of the high-gain observer
given in (3) is a practical estimate of the state of system (2).

Lemma 1 [20]: Let system (4) be glven There exists an
£-dependent matrix E: := diag {1,¢,...,&}, such that

1. _ _
Ay = —E-'AFE., B = iEglr
g g
where
R 10 0 0
~R2 0 1 0 0
A= Do , = :
—Fn 0 0 1 0
—FEn41 0 0 0 gN+1

additionally, one has that
_ 1 _
exp (A17) = E- ' exp (:A T) E:
3

_ 1
L exp (gAT)F VT > 0.

V>0

exp (AlT) Bl =

[T
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Lemmg 2 [20]: Let A be the matrix defined in Lemma 1
and let P be the solution of the Lyapunov equation

ATP+ PA=—1. 3)

Then, setting P- = EX PE:, one has that

ATP: + P—A1 ——E E:

BTP. = I‘TPE—

where EX E- is a positive definite diagonal matrix.

Theorem 1 [20]: Consider the error dynamics given in (4).
If there exists p € R, 1 > 0, such that [p(t, ye, v (t))| < p, for
all times t, then there exists a time 7" > 0 such that

Je(t) € {Ge 5 Pge < 4PN 2| PP}y Ve T (6)

where - = Ezj=[ 1 &J2 -+ £

IV. OVER-SI1ZED HIGH-GAIN OBSERVERS

Consider now the following system:

b = +2 (yo—§o> (7a)
vor = v+ Sy - &) (7b)
v = fvpt N+1(0—§0) (7¢)
vin = g o = &) (7d)
Jen = [Iny1 On )€ (7e)

where k;, ¢ = 1,..., N+ h, are chosen so that the polynomial
ANFRHL L ANFR o 4 kv g is Hurwitz, I, denotes
the /-dimensional identity matrix, O, denotes the ¢-dimensional
zero matrix and 0 < € < 1 is a sufficiently small parameter
whose role is the same as of the parameter € employed in (3).
The goal of this section is to show that the signal g, n is an
estimate of the signal y. y and that the £, norm, over some
suitably defined interval Z, of the estimation error y. n =
Ye,N — Ye,~ 18 lower than the one of ¢ n. By (2) and (7), the
dynamics of the estimation error ¢ y are given by

Ye,n = Azfie,n + Ba(p(t, Ye,n—1) — Ent1)

where
-2 1 0 0
_fzziv}ll 0O --- 0 1

and £y 41 is the output of the following linear system

¢ = As¢ + Bsiio
Envy1 = Cs¢
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where C3 =[ 1 0 0 0],¢(t) €R" and
0 1 0 TNT
TNT
A= - - O, Bs=| °
0 0 1 :
0 0 0 N

Hence, by defining Co :=[10 --- 0] and ) = [geTN (T}T,

one has that

7 =0n+ Ap(Ye,n-1) (8a)
Jeon=[Int1 On In (8b)
| Ba - Ay —ByCs
where A = [ 0 and © = [ BsC, As

The following two lemmas provide some properties of the
matrices © and A defining the dynamics of system (8).
Lemma 3: Let system (8) be given. There exists an e-

dependent matrix E. := diag{1,¢,...,eV "}, such that
1 1
0= -E'9F., A= -E-'V 9)
€ €
R D) [ BoelNH! .
wherefb.—[q)3 @4],\11_{ 0 , with
[ —k 1 0 0
—Ka 0 1 0
@ = z z
—-kny 0 0 1
L —KN+1 o0 --- 0
o 0 --- 0
0 O 0
Dy =
| -1 0 --- 0
[ knyi2 O O --- 0
KN+3 o 0 - 0
e
RN+h O O O
L AN+hyr O 0 - 0
01 --- 0
dy= | ot
00 --- 1
00 -~ 0

Additionally, one has that

exp (©7) = E-texp <1<I> T> E. (10a)
5

exp(OT)A = éE;l exp (ibe) ¥ (10b)
for all 7 > 0.

Proof: The expressions in (9) follow directly from the defi-
nition of the matrices ®;, ¢ = 1,...,4, and of the matrix F..
The expressions in (10) follows directly from the definition of
the matrix exponential exp(A7) := > 7 | Ak Z—T [ |

Lemma 4: All the eigenvalues of the matrix ® of (9), where
Ri,©=0,..., N+h-+1, are the coefficients given in (7), have
negative real part.

Proof: By construction, ® has the same characteristic poly-
nomial of the companion matrix of the polynomial AV +h+1 4
RAANTh 4+ BEnipA + REnyni1, which is, by definition,
Hurwitz. Hence, all the eigenvalues of the matrix ® have
negative real part. |

Since, by Lemma 4, the matrix ® is Hurwitz, then there
exists a symmetric and positive definite solution P to the
Lyapunov equation [30]

TP+ PO =1 (11)

Thus, letting P. = ET PE., one has that
TP+ PO = —%EEEE (12a)
ATP. = é\IJTPEE (12b)

where ET E. is a positive-definite diagonal matrix.

The following theorem and corollary state that . y is a
practical estimate of the signal y. n (i.e., the error . n can
be made arbitrarily small by choosing ¢ sufficiently small).

Theorem 2: Consider the error dynamics given in (8). Let P
be the solution of the Lyapunov equation (11). If there exists
a constant 1 > 0 such that |p(¢, ye n(t))] < p, for all times
t > 0, then there exists a time 7' > 0 such that

Ne(t) € (e« nf Pe < 4p”NH2|[PPY ve>T (13)
where 1. = E.n.
Proof: Let P. = ET PE.. Consider the Lyapunov function

V(n) =n"P

which is positive-definite, because the matrix P is positive-
definite for all e. Thus, computing the time derivative of V(7))
along the solutions of (8), one has that

V(n)= 0" Pen+n" Py
= (On+ Ap)T Poy + ' P-(©n + Ap)
= nT (0T P. + P.O)n + 2pAT Pn.

Hence, by (12a), one has that
. 1 2 _
V(T/) = —5773775 + EP\IJTPTIE

where 7). := E.n. Hence, under the assumption that |p| < p,
and by considering that ||¥|| = ¢V *1, then

: 1
V() < = (el = 2™ P[] {In-]).

Hence, for any 7. such that ||n.|[>2pue™¥ T1|| P||, one has that
V < 0. Thus, since V() = n? Pon = nT ET PE.p = T P,
then V(1) < [[n|[?||P||. Thus, since V is negative definite
for each 7. such that ||n:|| > 2ueN*1||P||, there exists a time
T > to, such that (13) holds [31]. |

Corollary 1: Let the assumptions of Theorem 2 hold. The
estimation error §. n(t) can be made arbitrarily small, for all
times t > T, where T is a sufficiently large time.

Proof: Let V be the Lyapunov function used in the proof
of Theorem 2. Consider that, by the definition of the vector

Me>

el = [l | 7 ||z 1Bt a9
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where E = diag{1,¢,...,e™}. Since E. is nonsingular, one
has that 7. = 0 if and only if » = 0. Thus, by considering
that, by (13), there is a sufficiently large 7" such that

In-()]] < AN 122N 2| PP wt>T

where A = Apin P, there exists a time T such that ||ge, v (¢)]| <
4N pu2e?N 2| | P||3,Vt > T. Therefore, the estimation error
Je,n (t) can be made arbitrarily small, by decreasing e. ]

In the remainder of this section, the estimates ¢. y and
Ye,Nn Of Yo v are compared. To carry out such a comparison,
the following assumption is made.

Assumption 1: Let the coefficients kq,...,kny and
K1,...,KN+nr be chosen so that the matrices P and P,
obtained by solving (5) and (11), respectively, are such that
[|P]] = ||P||, AminP = Amin P, and let & = ¢.

Assumption 1 is made in order to guarantee that the “gain”
of the high-gain observer given in (3) is the same “gain” of
the high-gain observer given in (7). The following proposition
and corollary show that the error g, y obtained by using the
over-sized observer (7) is lower than the error . n, obtained
by using the normal-sized observer (7), under Assumption 1.

Proposition 1: Let Assumption 1 hold, and let the assump-
tions of Theorems 1 and 2 hold. Let g, n(f) be the state of
system (4) at time ¢ and let g, n (t) be the output of system (8)
at time ¢, respectively. Then, there exists a sufficiently large
time 7', and a positive real constant M, such that g n(t) < M
and g n(t) < M, forall t > T.

Proof: Letting A = AminP = AminP, by Theorem 1,
one has that there exists a time 7; such that ||gz(t)|] <
4N p2E2NH2)|PJ3, Wt > Ti; on the other hand, by The-
orem 2, there exists a time 75 such that ||n.(¢)]] <
4N p2e?N+2| | PJ|3, Wt > Ty. Moreover, letting E. be defined
in (14), by Assumption 1, one has that ||E.|| = [|EZ]|.
Hence, letting 7' = max{T}, T}, by considering that ||gz|| =
||Ezge,n|| and that, by the proof of Corollary 1, ||n:]| >
||E-e.n||, there exists a sufficiently large time 7', and a
positive real constant M, such that ||g. n(¢)]] < M and
Gen (O] < M, Ve > T.

Corollary 2: Let the assumptions of Proposition 1 hold. If,
additionally, there does not exist a compact time interval 7
such that (¢, ye, (¢)) = 0, for almost all times ¢ € Z, then

/ e (r)]Pdr < M2|T| — 6,
T

for some 6; >0 and all t > T

Proof: If there does not exist a time interval Z such that
D(t, Yen (t)) = 0, Vt € Z, then by the dynamics of system (7),
there does not exist a time interval Z, such that yo(t) = &y (¢),
for all times ¢ € Z. Therefore, by (7d), there does not exist
a time interval Z such that {x4p,(¢) = 0, for all times ¢ € Z.
Hence, by considering that |[n.(t)|| = ||Ecgen|| + 5(C(t)),
where (-) is a positive definite bounded function, and that
there exists no time interval Z such that {(¢t) = 0, for all
times ¢ € Z, then, by the proof of Proposition 1, one has that

/II?Je,NIIQ(T)dKMQIZI —/II5(T)|IdTéM2|II—51 (15)
A A
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forall t > T. This proves the existence of a smaller upper-
bound of the expression in the left-hand side of (15)
with respect to normal-sized observers, suggesting that the
over-sized observer achieves improved performance with
respect to the index [ ||fe,n|[*(T)d7, as also shown in
Section VI. |

Remark 1: Note that if p(t, ye.n) = D(Ye,N), D is linear with
respect to Y.,y and it is zero for some compact time interval
T 2 |1, 7], = > 7 > T, then it vanishes identically for
all ¢ > 7, since y. n(t) is an analytic function of ¢. This
would necessarily require that the observer implements an
exact copy of the plant (null estimation error injection). In the
case of normal-sized observer this implies that (y. n(t)) = 0,
i.e., the plant is a pure chain of NV + 1 integrators (with no
input). On the other hand, since we assumed that the over-
sized observer has a state dimension larger than the plant, this
contradicts the fact that the observer would implement a copy
of the plant, and then such Z cannot exist, yielding
01 >0 in (15).

Remark 2: The main advantage in the use of the over-sized
observer (7) relies on the fact that, usually, high-gain practical
observers yield estimates with larger errors in the higher order
derivatives. Therefore, if one estimates time derivatives up to
an order that is greater than the dimension of the system, the
estimation error is gathered on the higher order derivatives
(which are neglected for estimation purposes), thus leading to
a smaller error in the estimation of the state of system (2), as
confirmed theoretically by Proposition 1 and Corollary 2.

V. THE LINEAR TIME-INVARIANT CASE

In this section, the filtering properties of the normal-sized
and of the over-sized high-gain practical observers given in
(3) and in (7), respectively, are discussed.

Consider the error dynamics given in (4) and (8). By
considering p(t, ye, v (t)) as a time-dependent input function,
systems (4) and (8) are linear and time-invariant, whence the
transfer matrices, relating the input p(t) := p(¢, ye,n (t)) with
Ye, N and e, v, respectively, can be computed for such systems.

Consider the LTI system

&(t) = Az(t) + Bu(t), (16a)

y(t) =Cx(t). (16b)
The transfer matrix H (s) of system (16) is given by H(s) =
C(sI — A)~!B. If the initial state of system (16) is 2(0) = 0,
then, letting u(s) = Z[u(t)], the Laplace transform y(s) of
the output y(t) of system (16) is given by

y(s) = H(s)u(s).

Therefore, letting p(s)=.Z[p(t)], Ci=1Iy, Co=[ Iy 0],
and assuming that g. x(0) = 0 and n(0) = 0, the Laplace

transform of the errors g. n(t) and g, n(t) can be obtained
as

x(0) = o

Jen(s)=Ci(sI — A1) "' Bip(s)
Je.n(8)=Co(sI — ©) 1 Ap(s)
respectively. Given A € R"*", (s — A)~! can be computed

by using the following Algorithm 1, where tr(-) and det(:)
denote the trace and determinant operator, respectively.

(17a)
(17b)
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By using such an algorithm, an explicit expression of the
transfer matrices of systems (4) and (8) can be obtained.

Algorithm 1 [32]: Computation of the Matrix (sI — A)_1

Input: A matrix A € R"*",

Output: The matrix (s/ — A)~!

1: Compute d = det(sI — A).

2: Define o, = 1 and R,, = 1.

3: for k =n—1 to 0 do

4. Compute a;: = (n — i)~ tr (AR;41).
5. Compute R; = o1 + AR;41.

6: end for

7: Compute (sI — A)~
8: return (s] — A)~!

1_ -1 i—1p.
=d Y 'R,

Lemma 5: Let systems (4) and (8) be given. Letting ko =
ko = 1, the (th entry [Hyi(s)]g, £ = 1,...,N + 1, of the
transfer matrix H;(s) of system (4) is given by

-1 .
§N+2—€ Z R] (gs)é—l—]
=0

[H1(9)]e = N (18)
(Es)NFL + 3 Rj(es)N+1—d
Jj=1
whereas the (th entry [Ha(s)]e, £ = 1,...,N + 1, of the
transfer matrix H(s) of system (8) is given by
=1
EAP+24l(ES)h E: Kj(ss)gflfj
i=0
[Ha(s)]e = N (19)
(es)N+h+1 4 Z ioj(es)N+h+1-j
j=1

Proof: By using Algorithm 1, with A; € RIN+TDX(N+1) g
input, to compute (sI — A;)~!, one has that ay = k1&g~ !
and Ry = A; + ki 'I. Assuming that, for a fixed 4,
ani1—(i—1) = Ki—16- Y and that Ry (;—1) equals

- 0 0 0 1 0 - 0 A
R Ry
75—2 0 0 = r - 0
Rit1 R R2 Rl
-1 _?f 0 % o0
Ri—1 Fi—2
* * 0 Zi—1 zi—2 0
* * 0 0 Z= - 0
EN EN—1
—ZN T N1 * 0 0 0
EN+1 EN
—INFT TN * 0 0 *
EN41
0 —NT1 * 0 0 *
EN Ri—2
0 0 - N 0 0 i3
EN41 Ri—1
L 0 0 e 0 0 - —i=1 4

then, by Steps 4 and 5 of Algorithm 1, ay4+1—; = R;€" and
RpN41—; is given by the formula above, with (¢—1) substituted

by i. Hence, by induction, the matrices Ry11—4, t=1,..., N,
are given by the expression above, with (¢ — 1) substituted by
1. Therefore, letting k¢ :=1, by (17a) and Step 7 of Algorithm
1 and by considering that det (sI — A;) = sV *1 4
SN SN+ the fth entry [Hy(s)]e, £ =1,...,N +1,
of the transfer matrix Hi(s) of system (4) is given by

-1 _
¥ a1
13
_ =0
[Hl(s)][ - N+1 . ] .
sNHL 4 S Bl g1
i=1

To prove that [Hz(s)]¢ is given by (19), define the matrix
| Iy O
e[

which is trivially nonsingular. Consider now the matrix
© = TOT~!. By using Algorithm 1, with input © €
]R(N+h+1)x(N+h+1), to compute (sI — é)_l, by the same
reasoning of above, one has that the matrix Ry+p+1—i,

1=1,..., N + h, of Algorithm 1 is given by
- 0 0 1 v 0 A
Rig1 "
_Eiil 0 o0
Rit2 K
_Eii2 0 E% 0
* 0 s 0
€
* 0 0 0
Rniht1-i =
EN-+h
_ENLL * 0 0
KN+h+1
7€N1—h11 * 0 *
0 * 0o - *
KN4h Ki1
0 e = N_':_'h 0 - 51%71
EN+h+1 K
0 e — Nihljrrl 0 .- Ez ]

Therefore, by (17b) and by Step 7 of Algorithm 1
and by considering that det(s] — ©)= det(s] — ©) =
N+h+1+zN+h+l Kj N+h+1 —J andthatC’Q(sI—@)_lA:

g]

CyT—1(sI — ©)~ITA, the (thentry [Hy(s)]e, £ =1,..., N+
1, of Hy(s) is given by
sh Z Ky gl—1—j
[Ha(s))e = N+h+1 -
sN+h+1 4 5 EigN+htl—j
=1
where kg = 1. [ |

The transfer functions given in (18) and (19) can be used
to wholly characterize the filtering properties of the observers
given in (3) and (7).

Remark 3: The “extra” parameters in Hz(s) can be tuned to
make the amplitude of Hs(s) smaller than H;(s), at least in
some frequency range, while maintaining the same estimation
error convergence (poles of H;(s) and Hy(s) within a desired
region). Therefore, the amplitude of the steady-state error
induced by p(t) is reduced using over-sized observers.
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The optimization could be performed either on the ¢th entry
of the transfer function Hs(s) or on the overall response
to p(t), i.e., minimizing the Hs/Hoo norm of Hy(s) with
standard minimization tools (possibly scaled through a shaping
function to allow a frequency dependent minimization).

VI. SIMULATION AND EXPERIMENTAL RESULTS

We now present two applications in which it is very impor-
tant to provide the first derivative of the signals as accurate
as possible. The first case is a numerical simulation by which
we can show the improved performances of the proposed over-
sized observer. Consider the second order LTI system

kw?
Pls) = $2 4 20wy, + w2

with £k = 1.8, A = 1.8, and w,, = 27/0.16. The transfer
function P(s) has been identified by experimental data in the
Frascati Tokamak upgrade (FTU), a fusion reactor, in order
to approximate the plasma current I,(s) ~ P(s)u(s) induced
by the control input u(t) (voltage to the central solenoid coil
coupled with the plasma current, see [33] and [34] for further
details). As in general plasma operation, the (normalized) input
is picked as u(t) = 1 —exp(—t) to maintain a constant plasma
current I,. In the real plant the input u(t) is provided by
a standard PID regulator that is fed with the tracking error
I veference — Ip and its derivative ijeference — fp (usually
I'meference = 0). The initial conditions of the plant are selected
equal to O for simplicity. The high-gain observers given in Sec-
tions IIT and IV have been used to estimate y = fp. In order to
compare the two high-gain observers, a numerical constrained
minimization has been carried out in order to determine
(Rl,Rg) € [—500,500] and (Iil,lig,li3) S [—500,500] such
that, letting N = 1, h = 1, and € = £ = 0.05, the Hy gain
of the transfer functions [H1(s)]2 and [Hz(s)]2 (given in (18)
and (19), respectively), are minimized, while the roots of the
polynomials A2 + &1\ + Ko and A2 4 k1A% + Ko\ + k3 have
real part smaller than —2. The results of such minimizations
are

[ R Re |7 =[7.07 49.99 "
[ F1 Re Rs |  =[ 2138 221.81 499.99

(20a)

1" (20b)
that correspond to Ha gains 0.0841 and 0.0633, respectively.
The Bode diagrams of the two optimized transfer functions of
the high-gain observers are reported in Fig. 1: the Ho gain of
the over-sized observer is lower than the normal one. In partic-
ular, for w lower than 2 x 102, one has |H;(1w)| < |Ha2(1w)|.

These numerical computations corroborate the theoretical
results given in this paper; in fact, they suggest again that, by
allowing an “over-sizing” of the high-gain observer given in
[20], improved performances can be achieved.

Fig. 2 depicts the results of such a numerical simulation by
showing the difference between the analytical time derivative
of the output § and its estimates obtained by using the normal-
sized (with N = 1) and over-sized (with N = 1 and
h = 1) high-gain observers (3) and (7), respectively, where
€ = &= 0.05 and the k;’s and «;’s are given in (20).
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The performances of the high-gain observer have improved
by allowing its “over-sizing”. As a matter of fact, one has that
the estimation error resulting from the use of the over-sized
high-gain practical observer is lower than the error obtained
by employing the normal-sized one.

— [H,)],
—40 [Hz (S)]2
)
T
2 —60
2
2 §
gh ~
o .
= —80
90
45
i
= 0
[}
3
= 45
-90
10° 10! 10? 10° 10
Angular frequency (rad/s)
Fig. 1. Bode plots of [H1(s)]2 and [Ha(s)]2.
— 99
) y-4
E 1
g 10
g
5
g 0
g
= 10
0 0.2 0.4 0.6 0.8 1
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Fig.2. Results of the numerical simulation.

The two observers corresponding to the k;’s and «;’s given
in (20) and € = & = 0.05 have then been compared in a real
experiment data. In this second case, we estimate the derivative
of the runaway electron beams vertical position for which LTI
models do not give satisfactory reconstruction, then we have
only shown numerical results (in the previous case an analytic
expression for y has been provided to compare the observers).

The measured plasma vertical position is first filtered with
a first-order low-pass filter with cutoff frequency 100 Hz and
is then fed to the normal-sized (with N = 1) and over-
sized (with N = 1 and h = 1) high-gain observers (3)
and (7), where ¢ = £ = 0.05 and the &;’s and ~;’s are the
ones given in (20). Fig.3 depicts the filtered vertical position
and the estimated velocities that have been obtained in such
a numerical simulation. The over-sized high-gain observer
seems to perform! better in estimating the derivative of the
filtered signal y (depicted in the same figure for completeness).

Note that the estimate of the vertical velocity, used by the
feedback system to stabilize the runaway electron beam, is of
crucial importance in order to avoid damages to the plant [35].

1 In this case, since the analytical model is not available, only qualitative

comparison can be achieved.
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Fig.3. Filtered position and estimated velocities: §1 has been obtained by

using a normal-sized high-gain observer, whereas &1 has been obtained by
using an over-sized observer.

VII. CONCLUSIONS

In this paper, over-sized high—gain practical observers have
been studied. It has been shown that, if one estimates the time
derivatives of the output up to an order that is greater than
the dimension of the system and takes into account just the
first N ones, then the estimation error decreases. The filtering
properties of normal-sized and of the over-sized observers with
respect to the unmodeled dynamics p(t) have been character-
ized by means of the corresponding transfer functions. Finally,
the performances of the over-sized and normal-sized high-gain
observers have been compared, analytically on an estimated
model of the plasma current for FTU, and numerically for
the estimation of the vertical velocity of a runaway electrons
beam. It is worth noticing that such an over-sizing leads to
an observer with an increased number of states and that the
estimation error is fed back to the observer dynamics with
(linear) gains that may be greater than the ones of the normal-
sized observer. However, since such gains affect just the higher
order dynamics of the observer, the undesirable effects of
lowering the value of ¢ are avoided.
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