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Explicit Symplectic Geometric Algorithms for
Quaternion Kinematical Differential Equation

Hong-Yan Zhang, Zi-Hao Wang, Lu-Sha Zhou, Qian-Nan Xue, Long Ma, and Yi-Fan Niu

Abstract—Solving quaternion kinematical differential equa-
tions (QKDE) is one of the most significant problems in the au-
tomation, navigation, aerospace and aeronautics literatures. Most
existing approaches for this problem neither preserve the norm
of quaternions nor avoid errors accumulated in the sense of long
term time. We present explicit symplectic geometric algorithms
to deal with the quaternion kinematical differential equation
by modelling its time-invariant and time-varying versions with
Hamiltonian systems and adopting a three-step strategy. Firstly,
a generalized Euler’s formula and Cayley-Euler formula are
proved and used to construct symplectic single-step transition
operators via the centered implicit Euler scheme for autonomous
Hamiltonian system. Secondly, the symplecticity, orthogonality
and invertibility of the symplectic transition operators are proved
rigorously. Finally, the explicit symplectic geometric algorithm
for the time-varying quaternion kinematical differential equa-
tion, i.e., a non-autonomous and non-linear Hamiltonian system
essentially, is designed with the theorems proved. Our novel
algorithms have simple structures, linear time complexity and
constant space complexity of computation. The correctness and
efficiencies of the proposed algorithms are verified and validated
via numerical simulations.

Index Terms—Linear time-varying system, navigation system,
quaternion kinematical differential equation (QKDE), real-time
computation, symplectic method.

I. INTRODUCTION

QUATERNIONS, invented by the Irish mathematician W.
R. Hamilton in 1843, have been extensively utilized in

physics [1], [2] aerospace and aeronautical technologies [3]−
[12], robotics and automation [13]−[17], human motion cap-
ture [18], computer graphics and games [19]−[21], molecular
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dynamics [22], and flight simulation [23]−[26]. Quaternions
have no inherent geometrical singularity as Euler angles when
parameterizing the 3-dimensional special orthogonal group
manifold SO(3,R) with local coordinates and they are useful
for real-time computation since only simple multiplications
and additions are needed instead of trigonometric relations.
Almost all of the researches available about the applications
of quaternions focus on these two merits and the fundamental
quaternion kinematical differential equation (QKDE) [1], [3],
[8]. In [1], Robinson presented the following QKDE





dq
dt

=
1
2
AAA(ωωω(t)) · q, t > t0

q(t0) = q0

(1)

where t0 is the initial time, ωωω = [ω1(t), ω2(t), ω3(t)]
T is the

angular velocity vector, q = [e0, e1, e2, e3]
T is the matrix

representation of the quaternion q with scalar part e0 as well
as vector part [e1, e2, e3]

T , and

AAA = AAA(ωωω(t)) =
[
0 −ωωωT

ωωω −[ωωω]×

]
= −AAAT

[ωωω]× =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 = −([ωωω]×)T . (2)

Formally, (1) is a linear ordinary differential equation
(ODE) and its numerical solution should be easily determined
in practical engineering applications. However, as Wie and
Barbar [3] pointed out, the coefficients ω1, ω2, ω3, or equiv-
alently the angular rate vector ωωω = [ω1, ω2, ω3]

T , are time-
varying and the matrix AAA has the repeated eigenvalues

±j‖ωωω‖ = ±j
√

ω2
1 + ω2

2 + ω2
3

where ‖·‖ denotes the `2-norm. This implies that the linear
time-varying system, i.e., the QKDE described by (1), is
critically (neutrally) stable and the numerical integration is
sensitive to the computational errors. Therefore, it is necessary
to find a robust and long time precise integration method
for solving (1). Many researchers have studied this problem
with the traditional finite difference method since 1970s.
Hrastar [27], Cunningham et al. [28] and Wie and Barbar [3]
used the Taylor series method. Miller [29] tried the rotation
vector concept. Mayo [30] adopted the Runge-Kutta [31] and
the state transition matrix method. Wang and Zhang [32]
compared the Runge-Kutta scheme with symplectic difference
scheme, and Funda et al. [14] used the periodic normalization
to unit magnitude. However, even for the time-invariant ωωω, the
traditional numerical schemes for QKDE are sensitive to the
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accumulative computational errors in the sense of long time
term.

In the past 30 years, the symplectic geometric algorithms
(SGA) were originally proposed by Feng [33] and Ruth
[34] independently and developed systematically by other
researchers [35]−[39]. The advantage of SGA is that it can
be used to solve the Hamiltonian system efficiently with a
non-dissipative numerical scheme which avoids accumulative
computational errors. For the ODE of time-varying system,
the Gauss-Legendre (G-L) difference scheme [40], [41], an
accurate and implicit Runge-Kutta method, is an implicit
symplectic geometric algorithm (ISGA) essentially. However,
it needs an extra iterative process to solve the numerical
solution (NS). Its computational complexity is O(n2) [42] and
thus, it is not appropriate for real-time applications.

We solve (1) via explicit symplectic geometric algo-
rithms (ESGA) which overcomes the disadvantages of tradi-
tional non-symplectic difference schemes and symplectic G-
L method. Firstly, we consider the autonomous QKDE (A-
QKDE) with constant parameters ω1, ω2 and ω3. The A-QKDE
can be modelled with autonomous Hamiltonian system and
solved by the SGA. Secondly, we discuss the non-autonomous
QKDE (NA-QKDE) where ω1(t), ω2(t), ω3(t) depend on time
explicitly and design efficient difference scheme with symplec-
tic method.

The main purpose of this paper is to propose ESGAs for
solving the general NA-QKDE while preserving long time
precision and the norms of quaternions automatically with
linear time computation complexity. The contents of this
paper are organized logically. The preliminaries of ESGA are
presented in Section II. Section III deals with the ESGA for
the A-QKDE. In Section IV we cope with the ESGA for
NA-QKDE. The simulation results are presented in Section
V. Finally, Section VI gives the summary and conclusions.

II. PRELIMINARIES

A. Hamiltonian System

W. R. Hamilton introduced the canonical differential equa-
tions [43], [44]

dpi

dt
= −∂H

∂qi
,

dqi

dt
=

∂H

∂pi
, i = 1, 2, . . . , N

for problems of geometrical optics, where pi are the general-
ized momentums, qi are the generalized displacements and H
= H(p1, . . . , pN , q1, . . . , qN ) is the Hamiltonian, viz., the total
energy of the system. Let ppp = [p1, . . . , pN ]T ∈ RN×1, qqq =
[q1, . . . , qN ]T ∈ RN×1, and zzz = [p1, . . . , pN , q1, . . . , qN ]T =
[pppT , qqqT ]T ∈ R2N×1, then H = H(ppp,qqq) = H(zzz) can be
specified by zzz in the 2N -dimensional phase space. Since the
gradient of H is

Hzzz =
[

∂H

∂p1
, . . . ,

∂H

∂pN
,
∂H

∂q1
, . . . ,

∂H

∂qN

]T

∈ R2N×1.

Then, the canonical equation is equivalent to

dzzz

dt
= JJJ2N

−1 ·Hzzz(zzz), JJJ2N =
[

OOON IIIN

−IIIN OOON

]
(3)

where IIIN is the N×N identical matrix, OOON is the N×N zero
matrix and JJJ2N is the 2N th order standard symplectic matrix
[33], [37]. For simplicity, the subscripts in IIIN , III2N and JJJ2N

may be omitted. Any system which can be described by (3)
is called a Hamiltonian system. There are some fundamental
properties for the canonical equation of Hamiltonian system
[43], [45]−[47]:

1) it is invariant under the symplectic transform (phase
flow);

2) the evolution of the system is the evolution of symplectic
transform;

3) the symplectic symmetry and the total energy of the
system can be preserved simultaneously and automatically.

B. Transition Matrix
The SGA was motivated by the three fundamental properties

1)−3). Ruth [34] and Feng [33] emphasized two key points
in their pioneering works:

a) SGA is a kind of difference scheme which preserves the
symplectic structure of Hamiltonian system;

b) the single-step transition matrix is a symplectic transform
(matrix) which preserves the symplectic structure of the dif-
ference equation (discrete version) of the continuous form of
(3).

Let τ be the time step and zzz[k] = zzz(t0 +kτ) be the sample
value at the discrete time tk = t0 + kτ . With the initial
condition

zzz[0] = [p1(t0), . . . , pN (t0), q1(t0), . . . , qN (t0)]
T (4)

the symplectic difference scheme (SDS) for (3) is given by

zzz[k + 1] = gggτzzz[k], k = 0, 1, 2, . . .

GGGτ =
∂zzz[k + 1]

∂zzz[k]
=

∂(gggτzzz[k])
∂zzz[k]

∈ R2N×2N (5)

where gggτ : R2N×1 → R2N×1 is the transition operator, also
named the transition mapping, and GGGτ is the transition matrix
(Jacobi matrix) of gggτ at zzz[k] such that GGGτ is symplectic, viz.,

GGGT
τ JJJGGGτ = JJJ. (6)

Equivalently, we have GGGτ ∈ Sp(2N,R) ⊂ GL(2N,R) ⊂
R2N×2N , in which Sp(2N,R) is the symplectic transform
group and GL(2N,R) is the general linear transform group
[48]−[50]. When designing SGA, the key problem is to
determine the gggτ or its Jacobi matrix GGGτ since both of them
can be used to construct the SDS of interest. In this paper, we
will find the symplectic matrix GGGτ and we always have gggτ =
GGGτ since (1) is a linear ODE.

For the general non-linear and non-separable Hamiltonian
system, the centered Euler implicit scheme (CEIS) is a widely
used SGA with second order precision. It is described by [37]

ppp[k + 1]− ppp[k]
τ

= −Hqqq(z̄zzk)

qqq[k + 1]− qqq[k]
τ

= Hppp(z̄zzk) (7)

in which the midpoint z̄zzk is defined by

z̄zzk =
zzz[k + 1] + zzz[k]

2
. (8)
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The CEIS can be used to find the transition matrix GGGτ . Let

BBB = JJJ−1Hzzzzzz(z̄zzk) (9)

where Hzzzzzz(·) = (∂2H(·)
∂zi∂zj

)2N×2N is the Hessel matrix at the
midpoint z̄zzk, and

φ(λ) =
1 + λ

1− λ
= (1 + λ)(1− λ)−1 (10)

be the Cayley transform. Then, for small τ such that III − τ
2BBB

is non-singular, we have [37]

GGGτ = φ
(τ

2
BBB

)
=

[
III +

τ

2
BBB

]
·
[
III − τ

2
BBB

]−1

. (11)

Note that although (11) is an approximate result in the sense
of approximate conservation [33] for the general non-linear
Hamiltonian system (linear Hamiltonian system requires that
the Hessel matrix Hzzzzzz(·) is symmetric), it could be a precise
solution for some special cases.

III. SYMPLECTIC ALGORITHM FOR A-QKDE

A. A-QKDE and Autonomous Hamiltonian System

When the matrix AAA in (1) is time-invariant, or equivalently
the parameters ω1, ω2 and ω3 are constants, we can model (1)
with the autonomous Hamiltonian system. Putting N = 2, ppp
= [p1, p2]

T = [e0, e1]
T , qqq = [q1, q2]

T = [e2, e3]
T , q = [pppT ,

qqqT ]T ≡ zzz, we can obtain

dzzz

dt
= JJJ−1Hzzz(zzz) =

1
2
AAA(ωωω)zzz (12)

by (1) and (2). We remark here that the notation zzz is usually
used in the literatures about SGA while notation q is used
in references about quaternions. The equivalence shows that
q and zzz can be used alternatively if necessary. From (12) we
can find that JJJ−1Hzzz(zzz) = 1

2AAAzzz. Therefore

AAA = 2JJJ−1Hzzzzzz(zzz)

Hzzzzzz(zzz) =
1
2
JJJAAA

BBB = JJJ−1Hzzzzzz(zzz) =
1
2
AAA (13)

according to (9). Note that JJJAAA 6= AAAJJJ , so the Hessel matrix
Hzzzzzz(zzz) is not symmetric, which means that the Hamiltonian
system here is nonlinear by definition [37]. Obviously, the A-
QKDE is an autonomous Hamiltonian system and the SGA
can be adopted.

B. Symplectic Transition Matrix

We now prove some interesting lemmas and theorems for
constructing the SDS for A-QKDE.

Lemma 1 (Generalized Euler’s formula): Suppose matrix MMM
∈ Rn×n is skew-symmetric, i.e., MMMT = −MMM , and there exists
a positive constant γ such that MMM2 = −γ2III . Let M̂MM = γ−1MMM ,
then M̂MM

2
= −III . For any x ∈ R, we have

exp(xMMM) = cos(xγ)III + sin(xγ)M̂MM. (14)

Proof:

exp(xMMM) =
∞∑

k=0

(xMMM)k

k!

=
∞∑

k=0

(xMMM)2k

(2k)!
+

∞∑

k=0

(xMMM)2k+1

(2k + 1)!

=
∞∑

k=0

(−γ2)kIII
x2k

(2k)!
+

∞∑

k=0

(−γ2)kMMM
x2k+1

(2k + 1)!

= III
∞∑

k=0

(−1)k (xγ)2k

(2k)!
+

MMM

γ

∞∑

k=0

(−1)k (xγ)2k+1

(2k + 1)!

= cos(xγ)III + M̂MM sin(xγ).

¥
Lemma 2 (Cayley-Euler formula): Suppose matrix MMM ∈

Rn×n is skew-symmetric, i.e., MMMT = −MMM , and there exists a
positive constant γ such that MMM2 = −γ2III . Let M̂MM = γ−1MMM ,
then M̂MM

2
= −III . Let φ(λ) be the Cayley transformation, then

for any x ∈ R the Cayley-Euler formula

φ(xMMM) =
III + xMMM

III − xMMM

=
1

1 + α
[(1− α)III + 2xMMM ]

= cos θ(x, γ)III + sin θ(x, γ)M̂MM

= exp(θ(x, γ)MMM) (15)

holds, in which θ = θ(x, γ) = 2 · arctan(xγ) and α = x2γ2.
Furthermore, φ(xMMM) is an orthogonal matrix.

Proof: It is trivial that M̂MM
T

= −M̂MM and M̂MM
2

= −III . For
any x ∈ R, we find that (III − xMMM)(III + xMMM) = (1 + x2γ2)III .
In consequence (III − xMMM)−1 = 1

1+x2γ2 (III + xMMM). Hence the
Cayley transformation φ(xMMM) can be simplified as following

φ(xMMM) = (III − xMMM)−1(III + xMMM)

=
1

1 + α
[(1− α)III + 2xMMM ] (16)

where α = x2γ2. Let tan(θ/2) = xγ, then by the trigonomet-
ric identity, MMM = γM̂MM and Lemma 1, we immediately have

φ(xMMM) =
1

1 + x2γ2
[(1− x2γ2)III + 2xγM̂MM ]

= cos θ(x, γ)III + sin θ(x, γ)M̂MM

= exp(θ(x, γ)MMM). (17)

Moreover,

[φ(xMMM)]T · φ(xMMM)

= [cos θ(x, γ)III + sin θ(x, γ)M̂MM ]
T

· [cos θ(x, γ)III + sin θ(x, γ)M̂MM ]

= cos2 θ(x, γ)III − sin2 θ(x, γ)M̂MM
2

= III.

Similarly, we can obtain φ(xMMM) · [φ(xMMM)]T = III . Hence
φ(xMMM) is orthogonal by definition. ¥

Theorem 1: For any time step τ and time-invariant vector
ωωω, the transition matrix GGGq

τ for the A-QKDE is
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GGGq
τ =

1
1 + α

[
(1− α)III +

τ

2
AAA

]

= cos θ(ωωω, τ) · III + sin θ(ωωω, τ) · ÂAA
= exp(θ(ωωω, τ)AAA) (18)

in which α = τ2‖ωωω‖2/16, θ = 2 arctan(τ‖ωωω‖/4), ÂAA = AAA/

‖ωωω‖ and ÂAA
2

= −III .
Proof: With the help of (11) and (13), the transition matrix

will be GGGq
τ = φ

(
τ
2BBBzzz

)
= φ

(
τ
4AAA

)
. Let x = τ/4, MMM = AAA,

γ = ‖ωωω‖, then α = x2γ2 = ‖ωωω‖2τ2/16. Thus the theorem
follows from Lemma 2 directly. ¥

Theorem 2: For any ωωω ∈ R3×1 and τ ∈ R, the transition
matrix GGGq

τ is an orthogonal transformation and an invertible
symplectic transformation with second order precision, i.e.,

[GGGq
τ ]TJJJGGGq

τ = JJJ, [GGGq
τ ]−1 = GGGq

−τ = [GGGq
τ ]T . (19)

Proof: For a constant vector ωωω, we can find the function θ
= 2 arctan(τ‖ωωω‖/4) is an odd function of time step τ . By
utilizing ÂAA

2
= −III and ÂAA

T
= −ÂAA, we immediately obtain

[GGGq
τ ]T = [cos θ(ωωω, τ)III + sin θ(ωωω, τ)ÂAA]

T

= cos θ(ωωω, τ)III − sin θ(ωωω, τ)ÂAA

= cos(−θ(ωωω, τ))III + sin(−θ(ωωω, τ))ÂAA

= cos θ(ωωω,−τ))III + sin θ(ωωω,−τ)ÂAA

= GGGq
−τ

which implies that the transition matrix is invertible. Moreover,
GGGq

τ is orthogonal by Lemma 2. In consequence, [GGGq
τ ]T = GGGq

−τ

= (GGGq
τ )−1. Furthermore, simple algebraic operation implies

that

JJJÂAA− ÂAAJJJ =
1
‖ωωω‖ (JJJAAA−AAAJJJ) = OOO

ÂAAJJJÂAA =
1

‖ωωω2‖AAAJJJAAA = −JJJ

and ÂAA
−1

= −ÂAA. Therefore,

[GGGq
τ ]TJJJ [GGGq

τ ] = (cos θIII + sin θÂAA)
T
JJJ(cos θIII + sin θÂAA)

= (cos θIII − sin θÂAA)JJJ(cos θIII + sin θÂAA)

= cos2 θJJJ − sin2 θÂAAJJJÂAA + cos θ sin θ(JJJÂAA− ÂAAJJJ)

= JJJ.

Hence GGGq
τ is a symplectic matrix. Since the GGGq

τ is con-
structed from CEIS directly, it must be a second order preci-
sion scheme. ¥

C. Comparison With Analytic Solution

Fortunately, the analytic solution (AS) for A-QKDE can be
found without difficulty. In fact for any t ∈ [t0, tf ] where t0
and tf denote the initial and final time respectively, we have

q(t) = exp
(

1
2
AAA · (t− t0)

)
· q(t0), t ∈ [t0, tf ]. (20)

Let x = (t − t0)/2 and ÂAA = AAA/‖ωωω‖, then AAA2 = −‖ωωω‖2III
implies that

exp (AAAx) = cos
(‖ωωω‖(t− t0)

2

)
III + sin

(‖ωωω‖(t− t0)
2

)
ÂAA

by Lemma 1. Thus for t − t0 = τ , the AS to the transition
matrix for the A-QKDE is

GGGq
τ,AS = III cos

‖ωωω‖τ
2

+ ÂAA sin
‖ωωω‖τ

2
∀τ ∈ R. (21)

At the same time, for sufficiently small τ in (18) we have

GGGq
τ = III cos

(
2 arctan

‖ωωω‖τ
4

)
+ ÂAA sin

(
2 arctan

‖ωωω‖τ
4

)

∼ III cos
‖ωωω‖τ

2
+ ÂAA sin

‖ωωω‖τ
2

(22)

for sufficiently small x = ‖ωωωτ‖ since

f1(x) = cos
x

2
− cos

(
2 arctan

x

4

)

=− x4

192
+

43x6

92 160
− 157x8

5 160 960

+
14 173x10

7431 782 400
+ O(x12)

f2(x) = sin
x

2
− sin

(
2 arctan

x

4

)

=
x3

96
− 13x5

7680
+

311x7

2 580 480
− 2833x9

371 589 120
+ O(x11).

Let r = maxx∈R+{|f1(x)|, |f2(x)|}, then we have r < 1.25
× 10−4 for x ≤ 0.2 and r < 1.57 × 10−8 for x ≤ 0.01.
Therefore, the GGGq

τ,AS can be approximated by GGGq
τ with an

acceptable precision when time step τ ≤ 1/(5‖ωωω‖).

D. Explicit Symplectic Geometric Algorithm for A-QKDE
The ESGA for A-QKDE based on CEIS, ESGA-I for

brevity, is given in Algorithm 1 by the explicit expression
of GGGq

τ obtained.

Algorithm 1 Explicit Symplectic Geometric Algorithm for A-QKDE
(ESGA-I)
Require: The time-invariant vector ωωω ∈ R3×1, time step τ and the initial

quaternion q0 at initial time t0.

Ensure: Numerical solution to the A-QKDE dq
dt

= 1
2
AAA(ωωω)q for t ≥ t0

with second order SDS.
1: Set matrix AAA with vector ωωω = [ω1, ω2, ω3]T via (2).
2: Set parameter α with ωωω and τ , viz. α = 1

16
τ2‖ωωω‖2 = 1

16
τ2(ω2

1

+ ω2
2 + ω2

3).
3: Compute the transition matrix: GGGqτ = 1

1+α

[
(1− α)III + τ

2
AAA

]
.

4: Set the initial condition q[0] = q(t0) = q0.
5: Iterate: q[k + 1] = GGGqτq[k], k = 0, 1, 2, . . . .

Suppose that the time consumed for the multiplication and
addition of real numbers are δ1 and δ2, respectively, the
function invoking time is ignored and there are n iterations in
Step 5. Table I shows that the total time consumed (without
optimization) is 20(2δ1 + δ2) + (16δ1 + 12δ2)n = O(n).
Therefore, the time complexity is linear. Moreover, we have to
store ω1, ω2, ω3,AAA, τ, α,GGGq

τ , k and q[k]. Note that all of the
q[k] share a common storage and only 43 real numbers should
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be stored in this algorithm. Obviously, the space complexity
is constant, i.e., O(1).

TABLE I
TIME AND SPACE CONSUMPTIONS OF ESGA-I

Step Time for ∗ Time for + Real numbers to be stored

0 - - t0, τ, ω1, ω2, ω3

1 - - AAA ∈ R4×4

2 6δ1 2δ2 α

3 34δ1 18δ2 GGGqτ ∈ R4×4

4 - - q[0] ∈ R4×1

5 16nδ1 12nδ2 k,q[k]

IV. SYMPLECTIC GEOMETRIC METHOD FOR NA-QKDE

A. Time-dependent Parameters and NA-QKDE

For the time-varying vector ωωω = ωωω(t), (1) implies żzz =
JJJ−1Hzzz(zzz) = 1

2AAA(ωωω(t))zzz, where H = H(p1, p2, q1, q2, t)
= H(e0, e1, e2, e3, t). Hence the NA-QKDE is a non-
autonomous Hamiltonian system essentially and the corre-
sponding SGA can be obtained via the concept of extended
phase space [37]. Let p3 = h, q3 = t, where h is the negative
of the total energy. Let zzz = [p1, p2, h, q1, q2, t]T = [pppT , h, qqqT ,
t]T ∈ R(2N+2)×1, K(z̃zz) = h + H(p1, p2, q1, q2, t) = h +
H(ppp, qqq, t) = h + H(q, t), then we have the time-centered
Euler implicit scheme (T-CEIS) with fourth order [37],

zzz[k + 1]− zzz[k]
τ

= JJJ−1Hzzz(z̄zzk)− τ2

24
JJJ−1

· ∇zzz

{
[Hzzz(z̄zzk)]TJJJ−1Hzzzzzz(z̄zzk)JJJ−1Hzzz(z̄zzk)

}
. (23)

Equation (23) shows that for the time-varying problems,
H∗(z̄zzk) is replaced by H∗(z̄zzk, t̄k) where ∗ may be ppp, qqq or t.
In order to guarantee the duality of the phase space, we take
zzz = [pppT , qqqT ]T . The symplectic scheme for the NA-QKDE as
(23) can be simplified as

zzz[k + 1]− zzz[k]
τ

=
1
2
AAAkz̄zzk − τ2Ωk‖ωωωk‖2

96
JJJz̄zzk (24)

where t̄k = t[k] + τ/2, ωωωk = ωωω(t̄k), AAAk = AAA(ωωωk) and

Ωk = ω2(t̄k). (25)

By taking the similar procedure as we do in finding the
transition matrix for SDS of the A-QKDE, we can obtain

GGGq
τ (k + 1|k) =

[
III − τ

2
BBBk

]−1 [
III +

τ

2
BBBk

]
(26)

where BBBk is a skew-symmetric matrix such that

BBBk =
1
2
AAAk − τ2Ωk‖ωωωk‖2

96
JJJ = −BBBT

k . (27)

According to Lemma 2, there exists a series of γk such that

BBB2
k = −γ2

kIII. (28)

Theorem 3: For the NA-QKDE dq
dt = 1

2AAA[ωωω(t)]q, let
βk = − τ2

96Ωk‖ωωωk‖2, γ2
k = 1

4‖ωωωk‖2−βkΩk+β2
k , αk = τ2

4 γ2
k =

1
16τ2‖ωωωk‖2(1+ τ2Ω2

k

24 + τ4Ω2
k‖ωωωk‖2
2304 ), B̂BBk = 1

γk
BBBk, then for k =

0, 1, 2, . . ., the transition matrix GGGq
τ (k+1|k) : zzz[k] 7→ zzz[k+1]

will be

GGGq
τ (k + 1|k) =

1
1 + αk

[(1− αk)III + τBBBk]

= cos θ (ωωωk, τ)III + sin θ (ωωωk, τ) B̂BB(ωωωk) (29)

such that

[GGGq
τ (k + 1|k)]T · JJJ · [GGGq

τ (k + 1|k)] = JJJ (30)

where θ = 2 arctan
[

τ‖ωωωk‖
4

√
1 + τ2

24Ω2
k + τ4

2304Ω2
k‖ωωωk‖2

]
.

We remark that this SDS is a fourth order scheme according
to [37]. In addition, since ωωω(t) is time-dependent and ωωω(t[k]−
τ/2) 6= ωωω(t[k]+τ/2) for positive τ in general, we can deduce
that GGGq

−τ (k + 1|k) 6= [GGGq
τ (k + 1|k)]−1 although GGGq

τ (k + 1|k)
is also a symplectic and orthogonal transformation.

B. Explicit Symplectic Geometric Scheme for NA-QKDE

The ESGA for NA-QKDE based on T-CEIS, ESGA-II
for brevity, is presented in Algorithm 2. With the similar
complexity calculations for Algorithm 1, we can find that the
time complexity and space complexity of Algorithm 2 are also
O(n) and O(1), respectively.

Algorithm 2 Explicit Symplectic Geometric Algorithm for NA-
QKDE (ESGA-II)
Require: The time-varying vector ωωω(t) ∈ R3×1, initial time t0, initial

quaternion q0 and time step τ .

Ensure: Numerical solution to the NA-QKDE dq
dt

= 1
2
AAA(ωωω(t))q for

t ≥ t0 with fourth order SDS.

1: Set the initial condition q[0] = q(t0) = q0.

2: set t̄k = t0 + (k + 1/2)τ .

3: Set matrix AAAk with vector ωωωk = [ω1(t̄k), ω2(t̄k), ω3(t̄k)]T

according to (2) and Ωk = ω2(t̄k) by (25).

4: Calculate the norm of ωωωk:

‖ωωωk‖2 = [ω1(t̄k)]2 + [ω2(t̄k)]2 + [ω3(t̄k)]2.

5: Set parameters βk and αk:

βk = − τ2

96
Ωk‖ωωωk‖2

αk = 1
4
τ2( 1

4
‖ωωωk‖2 − Ωkβk + β2

k).

6: Set matrix BBBk with ωωωk and τ according to (27).

7: Compute the transition matrix:

GGGqτ (k + 1|k) = 1
1+αk

[(1− αk)III + τBBBk].

8: Iterate: q[k + 1] = GGGqτ (k + 1|k)q[k], k = 0, 1, 2, . . . .

We remark here that ωωωk = ωωω(t̄k) = ωωω(t[k] + τ/2)
relates the fractional interval sampling, which will increase
the complexity of the hardware implementation. However, if
the sampling rate fs = 1/τ is large enough, the ωωω(t) will vary
slowly in each short time interval [t[k], t[k+1]] and the linear
interpolation can be considered here. This is to say that for t
∈ [t[k], t[k + 1]]

ωωω(t) ≈ ωωω(t[k]) +
ωωω(t[k + 1])−ωωω(t[k])

τ
t. (31)

Hence
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ωωω(t̄k) ≈ ωωω(t[k]) +
ωωω(t[k + 1])−ωωω(t[k])

τ
t̄k (32)

with acceptable precision. In this way the fractional interval
sampling can be avoided and the complexity of the hardware
implementation can be reduced.

V. NUMERICAL SIMULATION

A. Key Issues for Verification and Validation

Although the algorithms are designed according to the
proved lemmas and theorems, it is still necessary to verify
them with concrete examples by numerical simulation. Unfor-
tunately, each quaternion has four components, thus it is not
convenient for visualization. However, it is still possible to
check the algorithms proposed with the following facts:

1) the norm can be used as a necessary condition for
validating the correctness of the algorithms proposed since
the transition matrices GGGq

τ are orthogonal and the norm of the
quaternions should be preserved as ‖q(t)‖ = 1;

2) the relation of stability, accumulative errors and time step
of ESGA can be compared with other numerical methods;

3) the asymptotic behavior can be identified clearly when
ωωω(t) approaches to a constant vector (thus the NA-QKDE may
degenerate to A-QKDE asymptotically);

4) for some special cases, we can compare the AS and NS
conveniently;

5) the time complexity of ESGA and ISGA can be compared
for the same NA-QKDE and configuration of parameters.

For A-QKDE, the ωωω is time-invariant and ω = ‖ωωω‖ is a
constant. Since the eigen-values of matrix AAA(ωωω) are ±jω, then
the general solution to A-QKDE must be

ei(t) = ci cos(ωt + ϕi), t ∈ R, i = 0, 1, 2, 3 (33)

in which the amplitudes ci and phases ϕi can be determined
by the initial condition.

For NA-QKDE, if we choose the functions ω2(t) and ω3(t)
such that for sufficient large t, ω2(t) → 0 and ω3(t) → 0,
then (1) shows that there exists t∗ ∈ R such that

d

dt

[
e0

e1

]
=

[
0 − 1

2ω1
1
2ω1 0

] [
e0

e1

]
(34)

d

dt

[
e2

e3

]
=

[
0 1

2ω1

− 1
2ω1 0

] [
e2

e3

]
(35)

for t > t∗ since q = [e0, e1, e2, e3]
T . Hence e2

0(t) + e2
1(t) =

e2
0(0) + e2

1(0) and e2
2(t) + e2

3(t) = e2
2(0) + e2

3(0) asymptot-
ically. If ω1(t) → a asymptotically (where a is a constant),
then we have

d2ei(t)
dt2

+ δ2
i ei(t) = 0, t ≥ t∗, i = 0, 1, 2, 3 (36)

where δi = a/2. In other words, each ei(t) can be described
by (33) asymptotically.

Without loss of generality, we can set the initial condition
as q(0) = [1, 0, 0, 0]T for the verification, thus we just need
to consider e0(t) and e1(t). Let x = τ/2, t̄k = t[k] + τ/2, γ
= ω1(t̄k)/2, MMM = −γJJJ2, M̂MM = −JJJ2 and tan(θ/2) = xγ =
τω1(t̄k)/4, then Lemma 2 implies that

GGGe0e1
τ (k + 1|k) = φ(xMMM) = cos θIII2 − sin θJJJ2 (37)

where θ = 2arctan(ω1(t̄k)τ/4). Obviously, GGGe0e1
τ (k + 1|k)

is a symplectic matrix by (6).

B. Numerical Examples
We now demonstrate the intuitive ideas and show the

performance of ESGA with concrete examples. All of the
numerical experiments in this subsection are implemented in
MATLAB and run on a desktop PC equipped with Intel R©

CoreTM i7-3770 CPU @3.4 GHz and 4 GB RAM.
1) Numerical Solution vs. Analytical Solution: Fig. 1 il-

lustrates the performance of ESGA-II with an AS. We set
the parameters as ω0 = 2π, β = π/80, initial state q[0] =
[cos(β/2), 0, sin(β/2), 0] and

ωωω(t) = [− ω0(1− cos β),

− ω0 sinβ sin(ω0t), ω0 sinβ cos(ω0t)]T

Fig. 1. Absolute errors of NS by Algorithm 2 (SGA-NA-QKDE) with ω0 =

2π, β = π/80, τ = 0.01 s, t0 = 0, tf = 1000 s.
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such that the AS is

q(t) =[e0(t), e1(t), e2(t), e3(t)]
T

=
[
cos

(
β

2

)
, 0, sin

(
β

2

)
cos(ω0t), sin

(
β

2

)
sin(ω0t)

]T

.

The absolute value of error between the NS and AS for the
ith component and fixed time step is defined by

Ei(t|τ) = |eAS
i (t)− eNS

i (t)|, i ∈ {0, 1, 2, 3}. (38)

Ei(t|τ) is computed with ESGA-II for each ei(t), see Fig. 1.
We find that all these errors of NS are stable and small when
the time step τ = 0.01 second (a low data sampling rate) and
time duration is 1000 seconds. This implies that the accuracy
and stability of SGA remain well for NA-QKDE.

2) Asymptotic Performance — Connection of A-QKDE and
NA-QKDE: Fig. 2 demonstrates the asymptotic performance
of ESGA for QKDE. We find that for different ωωω(t), we have
‖q(t) = 1‖ for any t and there are no accumulated errors.
On the other hand, the solutions to QKDE will have different
properties for different ωωω(t):

a) In Fig. 2 (a), each ei(t) is a cosine function since ωi is a
constant according to (33).

b) In Fig. 2 (b), e0(t) and e1(t) vary like cosine curves
asymptotically because ω1(t) → 0 asymptotically. Moreover,
it is trivial that e2(t) = e3(t) ≡ 0 since ω2(t) = ω3(t) ≡ 0
and e2(0) = e3(0) = 0 by (35).

c) In Fig. 2 (c), ω1(t) → 2, ω2(t) → 0, ω3(t) → 0 when t →
∞. It is easy to find that each ei(t) varies periodically when t
> 10 by (36). We remark that at t = 0, ω2(0) 6= 0, ω3(t) 6= 0,
which leads to positive feedbacks for e2(t) and e3(t) and the
increasing of their amplitudes.

d) In Fig. 2 (d), ωωω(t) has no asymptotic behavior but it is
periodic. Although each ek(t) varies independently, we still
have q(t) ≡ 1.

3) Stability, Accumulative Errors and Time Step: Fig. 3
shows the precision and stability with the time step. We find
that the four-stage explicit Runge-Kutta (RK4) method works
well only when the time step is small and the time duration
is relatively short (about 15 s), otherwise the norm cannot be
kept well. Furthermore, the Euler-Backward (EUB) method
always leads to serious accumulative errors. Fortunately, both
ESGA and ISGA work well and there is no computational
damp since the norm ‖q‖ remains constant.

4) Computational Complexity — ESGA vs. ISGA (G-L
Method): Fig. 4 represents the time complexity of ESGA for
NA-QKDE in comparison with that of ISGA, i.e., G-L method.
We solved the (1) with the same parameters ω(t) and q[0] as
that in Fig. 1. For each fixed time step τ and component ei(t),
the maximum error is defined by

Ei
max(τ) = max

t∈[t0,tf ]
|eAS

i (t)− eNS
i (t)|. (39)

The maximum errors and computing time of the two meth-
ods are calculated with different time step τ . Although the
precision of ESGA is worse than that of ISGA for the same
time step, the time complexity of ESGA is far lower than
that of G-L method. For example, the time consumed in G-L
method is about 10 times of our ESGA as shown in the figure

for τ = 0.01. Actually, the computing time of ESGA is almost
less than 1 second for most cases in our experimental setup,
however it is about 7 s for the G-L method. This implies that
the ESGA is much better than ISGA if the time consumption
is a key issue for hardware or software implementation. The
linear time complexity O(n) of our algorithms is essential
for the real-time applications such as navigation and control
system.

Fig. 2. NS to QKDE for different ωωω(t) and q[0] = [1, 0, 0, 0]T .

VI. CONCLUSIONS

In this paper we proposed a key idea of solving the QKDE
with symplectic method: each QKDE can be described by an
autonomous or non-autonomous Hamiltonian system and the
CEIS or T-CEIS can be used to design ESGA for QKDE. The
generalized Euler’s formula and Cayley-Euler formula for the
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Fig. 3. Performances of SGA, RK4 and EUB for NA-QKDE with periodic
ωωω(t) = [sin(10t)− 2, 2 sin(t) + 1.4, 4− 0.2 cos(3t)]T .

Fig. 4. Maximum errors E0
max(τ) and E2

max(τ), and computing time of
ESGA-II and ISGA (G-L method) with ω0 = 2π, β = π/80, t0 = 0, tf =

500 s.

symplectic transition matrix play a key role in designing
ESGAs with first and second order precision. The correctness
and efficiencies of the ESGAs presented are verified and

demonstrated by asymptotic analysis and comparison with AS
and NS.

Compared with the traditional difference scheme such as
RK4 and EUB, our ESGA-I for A-QKDE and EGSA-II for
NA-QKDE are symplectic and can avoid the accumulative
errors in the sense of long time term. On the other hand,
our explicit symplectic method is better than the implicit
symplectic method because of its linear time complexity and
potential applications for real-time systems.

As part of future work, we will investigate the high-
order precision ESGA for QKDE, the robustness of ESGA-II
perturbed by noise, the applications of ESGA to more general
linear time-varying system and its combination with precise-
integration method. Additionally, we will also design second
order precision symplectic-precise integrator to solve the linear
quadratic regulator problem and the matrix Ricatti equation
since they play an important role in automation.
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