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A Model Predictive Scheduling Algorithm in
Real-Time Control Systems

Mengya Kang, Chenglin Wen, and Chenxi Wu

Abstract—The ineffective utilization of power resources has
attracted much attention in current years. This paper proposes
a real-time distributed load scheduling algorithm considering
constraints of power supply. Firstly, an objective function is
designed based on the constraint, and a base load forecasting
model is established when aggregating renewable generation
and non-deferrable load into a power system, which aims to
transform the problem of deferrable loads scheduling into a
distributed optimal control problem. Then, to optimize the
objective function, a real-time scheduling algorithm is presented
to solve the proposed control problem. At every time step, the
purpose is to minimize the variance of differences between power
supply and aggregate load, which can thus ensure the effective
utilization of power resources. Finally, simulation examples are
provided to illustrate the effectiveness of the proposed algorithm.

Index Terms—Deferrable loads scheduling, electric vehicles
(EVs), optimal control, power supply, real-time distributed con-
trol.

I. INTRODUCTION

IN recent years, with the emergence of deferrable loads
and development of renewable generation, power grids

have attracted a widespread attention. Renewable generation
capacity keeps growing at the rate of 10 %−60 % every year
since 2004. By the end of 2014, the consumption of renewable
energy accounts for 22.8 % of the global energy consumption
around the world [1]. Power systems would undergo a dramatic
transformation over the next few decades, and conventional
coal and nuclear generation are being substituted by renewable
generation represented by wind and solar generation. However,
renewable generation prediction is arduous, for instance, the
wind generation prediction would cause a root-mean-square of
about 18 % of the nameplate capacity looking 24 hours ahead
[2]. Meanwhile, the industry of deferrable loads represented
by electric vehicles (EVs) becomes more and more popular.
Deferrable loads refer to the loads whose power consumption
can be transferred among different time slots, including EVs
and some industrial and commercial loads. Specifically, in
a scheduling cycle, the total power consumption is fixed
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while the power consumption characteristics are flexible, and
it’s adjustable to consume power energy at different times.
Researches demonstrate that, in 2020, 2030 and 2050, the
proportion of EVs in total U.S. car will rise to 35 %, 51 %
and 62 %, respectively [3]. The number of deferrable loads
has being dramatically increased with the growing popularity
of EVs and smart appliances [4].

As a supplement to the power generation scheduling, de-
ferrable loads scheduling can adjust load curves, balance
intermittent energy fluctuations and provide auxiliary services,
and also be conducive to enrich regulating means of power
scheduling operation. Besides, reference [5] uses wind gen-
eration as a background, and proposes a flexible scheduling
method with security constraints, which can minimize the
scheduling cost. A new and efficient hybrid optimization
algorithm is proposed in [6] to realize the optimal allocation
of the distributed generation system. Besides, a new real-time
load modeling method is presented in [7] to minimize the
influence of load variation, which is based on a strong tracking
filter and a dominant parameter technique to achieve the goal
of real-time load modeling.

However, deferrable loads scheduling has been confronted
with several new challenges. For example, aggregate load
would increase as the result of EVs charging, and it has the
potential to amplify peak load or create another new peaks [8].
In addition, the challenges could certainly add uncertainties
of demand side, reduce the lifespan of power distribution
circuits and transformers [9], and cause power loss and voltage
change [10]. If the control of deferrable loads scheduling
is not reasonable enough, even a 10 % penetration of EVs
could arouse an unexpected variation in voltage profiles [11].
Previous researches manifest that these challenges would be
mitigated if we take smart charging strategies. The strategy
that dispatches EVs to consume power energy in times of load-
valley can effectively narrow the differences between peak and
valley load, flat the load curve, and also be beneficial to reduce
the operating cost of power companies [12]. In addition, the
energy stored in EVs can become auxiliary resources to adjust
load curves [13], or be a compensation of random fluctuations
in renewable generation [14].

Specifically, “smart” charging strategies usually adopt dis-
tributed control methods, and studies on load control mainly
cover two categories. References [15]−[17] investigate direct
load control, where power consumption of each load are
determined by a centralized load service entity. However, these
strategies require a centralized structure to collect all informa-
tion of all electric vehicles and optimize over the charging
profiles of all electric vehicles, hence incur prohibitive com-
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munication and computation requirements. Besides, the price-
based control is researched in [18]−[20], but does not provide
strategies for setting the price.

In addition, considering uncertainties in renewable genera-
tion and deferrable loads arrivals, several algorithms for real-
time distributed load control have been proposed. References
[21]−[23] evaluate algorithms with simulation. References
[24] and [25] provide analytic performance guarantee. Ref-
erence [26] explores real-time distributed load control with
proposing valley filling (VF) algorithm to minimize the vari-
ance of aggregate load.

However, the real-time algorithms mentioned above only
can be used in deferrable load scheduling when ignoring
the constraint of power supply, which can be a ideal case
where power supply resource is absolutely sufficient [27].
Given the power supply constraint, this paper develops existing
algorithms to propose deferrable loads control scheduling
(DLCS) algorithm to schedule deferrable loads, and a real-
time control system will be investigated with the power supply
constraint to make full use of power supply resources.

Summarizing the discussions made so far and consider-
ing the constraint of power supply, it is of both theoretical
significance and practical importance to design a real-time
distributed control algorithm with the proposed constrained
conditions. This appears to be a challenging task with three
essential difficulties identified as follows: 1) How to construct
an effective objective function under the constraint of power
supply? 2) Considering the independence and randomness of
deferrable loads arrivals, and the unavailable future deferrable
loads information, how to model and forecast electric load? 3)
On the basis of 1) and 2), how to design an effective algorithm
to optimize the objective function? It is, therefore, the main
motivation of this paper to provide satisfactory answers to the
three questions mentioned above and also propose a design
scheme of real-time scheduling algorithm.

In the context of imprecise predictions about both future
renewable generation and deferrable loads, this paper aims to
investigate the real-time control problem for deferrable loads
scheduling with power supply constraint based on the previous
work. In order to guarantee the effective utilization of power
resources, the main contributions of this paper are outlined
as follows: 1) the objective function of the optimal scheduling
problem is designed as the variance of the differences between
power supply and aggregate load; 2) a mathematical model is
established to forecast electric load considering the random-
ness in renewable generation, and pseudo load is introduced
to represent future deferrable load; 3) DLCS algorithm is
proposed to optimize the objective function and we provide
the detail steps of the algorithm; 4) the effectiveness of the
proposed algorithm is illustrated by simulation experiments.

The rest of this paper is organized as follows: In
Section II, we establish mathematical models and transform
the real-time scheduling problem with power supply constraint
into an optimal control problem. Section III mainly proposes
a real-time distributed control algorithm for deferrable loads
scheduling according to the control problem and then presents
the detailed steps of the algorithm. Simulation results are
applied to illustrate the effectiveness of the proposed algorithm

in Section IV. Finally, we conclude this paper and give some
discussions on future works in Section V.

II. PROBLEM DESCRIPTION

Consider a discrete-time model over a finite time horizon,
we divide the scheduling cycle into T slots of equal length
labeled 1, 2, . . . , T . Model objects include renewable gener-
ation, non-deferrable load and deferrable load. Furthermore,
deferrable loads arrivals are independent and random over
time. At the time of decision making, only imprecise pre-
dictions about future renewable generation and future load are
available.

This section aims to make power consumption schedules
for each deferrable load under the constraint of power supply.
Accordingly, the power supply curve can be as close as pos-
sible to the load curve, and power resources provided by the
electricity market can be fully utilized. Ignoring power losses,
it can be achieved by optimizing (minimizing) the variance of
the differences between power supply and aggregate load.

The objective function is designed as:

D (s) =
1
T

T∑
τ=t





[
m (τ)− s (τ)

]
−

T∑
k=t

[
m (k)− s (k)

]

T − t + 1





2

(1)
where t = 1, 2, . . . , T , D (s) is the variance of differences
between power supply and aggregate load. m = {m (t)}T

t=1

denotes the power supply schedule, which can be obtained
by predicting the consumption curve in power markets. s =
{s (τ)}T

τ=t is aggregate load schedule and it will be described
in detail at a later stage. The aggregate load curve can be
obtained by deferrable loads scheduling. s = {s (τ)}T

τ=t can
be obtained by minimizing D (s), and the load curve will be
the most close one to the power supply curve at this time.

Besides, in (1), the objective function D(s) can be replaced
by a function f (d) =

∑T
t=1 F (d (t)), where F : R → R is

strictly convex.

A. Model Overview

Non-deferrable load and renewable generation are denoted
by u = {u(τ)}T

τ=1 and g = {g(τ)}T
τ=1, respectively. Define

base load b = {b(τ)}T
τ=1 as b = u − g. It is arduous to

predict renewable generation, including wind and solar power
generation, because of the impact of random fluctuations. So
in this section, b = {b(τ)}T

τ=1 is considered as a stochastic
process, and we use a causal filter based model to establish a
stochastic model [26]. The structure of the model is shown in
Fig. 1.

At time t, the prediction bt of base load can be modeled
as the sum of its expectation b =

{
b (τ)

}T

τ=1
and a random

deviation δb = {δb (τ)}T
τ=1, where the sequence b can be

obtained from historical data and weather report. The sequence
δb can be modeled as an uncorrelated sequence of identically
distributed random variables x = {x (τ)}T

τ=1 passing through
a causal filter. In addition, the mean of x is 0, the variance is
σ2.



KANG et al.: A MODEL PREDICTIVE SCHEDULING ALGORITHM IN REAL-TIME CONTROL SYSTEMS 473

Fig. 1. Structure of the prediction model of base load.

Let f = {f (τ)}∞τ=−∞ denote the impulse response of the
causal filter, where f (0) = 1, f (τ) = 0 (τ < 0), then:

δb (τ) =
T∑

s=1

x (s)f (τ − s) , τ = 1, 2, . . . , T. (2)

Define the prediction of b as:

bt (τ) = b (τ) +
t∑

s=1

x (s)f (τ − s) , τ = 1, 2, . . . , T. (3)

Considering the causality of the filter, it is obvious that

f (t) =
{

f (t) , t > 0
0, t ≤ 0 . Consequently, bt (τ) = b (τ) for

τ = 1, 2, . . . , t.
The causal filter is considered with a finite but flat impulse

response, i.e., there exist ∆ > 0 such that:

f (t) =
{

1, 0 ≤ t ≤ ∆
0, otherwise. (4)

Assumption 1: EVs represent deferrable loads. The sum of
EVs that arrive over the scheduling cycle is N , the total power
consumption of each EV before a deadline is certain. But the
arrival time is uncertain, independent and random.

Based on Assumption 1, for a total of N deferrable loads,
label them 1, 2, . . . , N . Consider that load n + 1 arrives no
earlier than load n for n = 1, 2, . . . , N − 1. Define N (t) as
the number of deferrable loads that arrive before or at time t,
which satisfies N (0) = 0, N (T ) = N (t = 1, 2, . . . , T , and
N is a constant number).

Definition 1: At time t, vn (t) denotes the power consump-
tion of deferrable load n. vn (t) and vn (t) are defined as the
upper and lower bounds, respectively, i.e,

vn (t) ≤ vn (t) ≤ vn (t) , n = 1, . . . , N ; t = 1, . . . , T. (5)

Then vn = {vn (1) , . . . , vn (T )} is the schedule of de-
ferrable load n, i.e., its power consumption profile.

Remark 1: The stepped electricity price for residents is an
effective system to make full use of the price leverage. Besides,

it is also beneficial to guide residents for the reasonable use
of power and energy saving [26]. While an EV plugs in with
Level II charging, its charging power must be within [0, 3.3]
kW, i.e., vn (t) = 0, vn = 3.3. Therefore, it is obvious that
the charging power is 0 kW if there is no EV plugs in, i.e.,
vn (t) = 0, vn (t) = 0.

During the scheduling cycle, Vn denotes the total power
demand of EV n, which implies that

T∑
t=1

vn (t) = Vn , n = 1, 2, . . . , N. (6)

Let c (t) denote the total power request of all the deferrable
loads that arrive at time t (t = 1, 2, . . . , T ), the c (t) is defined
as the following:

c (t) =
N(t)∑

n=N(t−1)+1

Vn , t = 1, 2, . . . , T. (7)

Assume that c = {c (t)}T
t=1 is an independent and iden-

tically distributed random sequence, the mean is λ and the
variance is s2. Define C (t) as the total power demand after
time t, then,

C(t) =
T∑

τ=t+1

c(τ) , t = 1, 2, . . . , T. (8)

It is worth noting that only information about deferrable
load 1 to N(t) is available at time t, which include vn(t),
vn(t), Vn. Information about future deferrable load N (t) +
1, . . . , N is unavailable and thus we use a pseudo deferrable
load to represent the future load.

Definition 2: a = {a(τ)}T
τ=t is the power consumption of

pseudo load, fix a(t) = 0. a and a are defined as the upper
and lower bounds respectively. Then it subjects to:

a (τ) ≤ a (τ) ≤ a (τ) , τ = t, t + 1, . . . , T (9)

T∑
τ=t

a(τ) = E {C(t)} , t = 1, 2, . . . , T. (10)

Note that a(t) = a(t) = 0 while a (t) = 0. The upper and
lower bounds can be obtained according to historical data. For
the sake of simplicity, it is assumed that a (τ) = 0, a (τ) = ∞
(τ = t + 1, t + 2, . . . , T ).

B. Real-time Distributed Optimal Control Problem

Definition 3: Aggregate load s = {s (τ)}T
τ=t is defined as:

s (τ) = bt (τ) +
N(t)∑
n=1

vn (τ) + a (τ) , τ = t, t + 1, . . . , T .

(11)
According to the objective function designed in (1) and

the constrains listed above, the load scheduling problem with
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power supply constraint can be formulated as the following
optimal control problem:

min
a,s,vn

1
T

T∑
τ=t





[
m (τ)− s (τ)

]
−

T∑
k=t

[
m (k)− s (k)

]

T − t + 1





2

(12)

s.t.





b (t) = g (t)− u (t) , 1 ≤ t ≤ T

s (τ) = bt (τ) +
N(t)∑
n=1

vn (τ) + a (τ) , t ≤ τ ≤ T

vn (t) ≤ vn (t) ≤ vn (t) , n ≤ N (t)
T∑

τ=t
vn (τ) = Vn (t) , n ≤ N (t)

a (τ) ≤ a (τ) ≤ a (τ)
T∑

τ=t
a (τ) = E {C (t)}

where Vn(t) = Vn−
∑t−1

τ=1 vn (τ) is the total power consump-
tion at or after time t.

Remark 2: In [26], the objective function is designed as
the variance of aggregate load, and the aim of scheduling is
to realize “valley-filling” to minimize the fluctuations in the
load curve. However, it is not fit for this paper as not consider
the constraint of power supply. Besides, the objective function
of this paper is designed as the variance of the differences
between power supply and aggregate load.

As m = {m (t)}T
t=1 is available, the designed objective

function is considered as a function of aggregate load s in
fact. The fluctuations of the differences will be minimum when
D (s) achieves the minimum, and the load curve will be the
most close one to the power supply curve. On this condition,
the load is higher when the power supply is sufficient and the
load is lower when the power supply is scarce.

According to [28], it can be seen that the optimal solution of
the real-time control problem will not change when objective
function D (s) is replaced by f (s) =

∑T
t=1 F [s (t)], where

F : R → R is strictly convex. Therefore, it’s reasonable that
we choose D (s) as the objective function.

Moreover, if predictions of base load are exact and all
deferrable loads arrive at the beginning of a scheduling cycle,
i.e., bt = b, N (t) = N (t = 1, 2, . . . , T ), then the real-time
optimal control reduces to a static optimal control, which has
been studied in our previous work.

III. ALGORITHM DESCRIPTION

In order to solve the problem in (12), this section will
propose a distributed optimization algorithm: DLCS algorithm,
which is iterative until converging to an optimal solution.
During each iteration step, a centralized coordinator guides
deferrable loads to update their power consumption schedules
by means of generating a control signal.

Remark 3: DLCS algorithm is a real-time distributed load
control algorithm for deferrable loads scheduling. In addition,
a real-time algorithm means that deferrable loads arrive over

time and only predictions about future renewable generation
and load are available at the time of decision making, and a
distributed algorithm means that all EVs can formulate their
own charging profiles under the guidance of a centralized
coordinator. The power company can become a centralized
coordinator in practice.

At time t, the detailed steps of DLCS algorithm are pre-
sented as follows:

1) Set i = 0. For load n = 1, 2, . . . , N (t), the power
consumption schedule v(i) is initialized as follows:

vn
(0)(τ)=

{
v
(I)
n (τ), n ≤ N(t− 1)

0, N(t− 1) < n ≤ N (t)
(13)

where v
(I)
n is the schedule of load n in the iteration I of the

previous time slot (t− 1).
2) For load N (t)+1 , . . . , N , the pseudo load schedule{

a(i)(τ)
}T

τ=t
can be obtained by minimizing the differences

between power supply and aggregate load as follows:

min
a(τ)

T∑
τ=t



m (τ)−

[
bt(τ) +

N(t)∑
n=1

v(i)
n (τ) + a(τ)

]




2

(14)

s.t.





a (τ) ≤ a (τ) ≤ a (τ) , τ ≥ t
T∑

τ=t
a(τ) = E {C(t)} .

3) The mean of the differences between power supply and
aggregate load can be chosen as the control signal c(i):

c(i)(τ)=
1

N(t)



m (τ)−

[
bt(τ)+

N(t)∑
n=1

v(i)
n (τ)+a(i)(τ)

]


 .

(15)
4) For load n = 1, 2, . . . , N (t), v

(i+1)
n is updated by

solving:

min
vn(τ)

T∑
τ=t

{
c(i) (τ) ·

[m (τ)− (bt (τ)− a (τ))
N (t)

− vn (τ)
]}

+
T∑

τ=t

{
1
2

[
vn (τ)− v(i)

n (τ)
]2

}
(16)

s.t.





vn (τ) ≤ vn (τ) ≤ vn (τ) , τ ≥ t
T∑

τ=t
vn (τ) = Vn (t) .

5) Set i = i + 1. If i < I , then return to 2), else continue
6).

6) Update Vn(t + 1) = Vn(t) − vn(t). For load
1, 2, . . . , N (t), the algorithm outputs their final schedules
as vn(t) = v

(I)
n (t). Where the superscripts in brackets de-

note the round of iteration and we set I as the maximum
iterations. Final outputs are power consumption schedules
vn = {vn (t) , vn (t + 1) , . . . , vn (T )} of each load n (n =
1, 2, . . . , N (t)).

Remark 4: Reference [26] has proposed a load scheduling
algorithm aiming to realize “valley-filling”, and the conver-
gence of its outputs has been proven in the paper. Similarly, it
can be proved that, with power supply constraint, the schedules
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of the deferrable loads obtained by DLCS algorithm converge
to the optimal solutions of the optimal control problem.

Fig. 2 manifests the information flow between the central-
ized coordinator and the deferrable loads. According to the
control signal c sent by the coordinator, each deferrable load
updates its power consumption schedule independently, and
delivers the updated vn back to the coordinator. Then the
coordinator alters c to match with the received vn. Iterations
will not stop until achieving convergence.

Fig. 2. Information flow in DLCS algorithm.

IV. SIMULATION RESULTS

This section illustrates the effectiveness of the DLCS algo-
rithm through MATLAB simulation experiments. The schedul-
ing cycle is set from 20:00 on the first day to 20:00 on the next
day, the length of a time slot is set as 1 hour, and T = 24. We
choose 100 households to participate in the experiments, and
assume that 20 EVs are available for scheduling, then N = 20.

The traces of non-deferrable load come from the average
residential load in the service area of Southern California
Edison in 2012 [29], we take the mean of 366 days at
every time slot and consider the traces are available at the
beginning of the time horizon. The traces of renewable gener-
ation come from the 10-minute historical data for total wind
power generation of the Alberta Electric System Operator
from 2004 to 2009 [30]. In addition, base load is defined as
the differences between power supply and aggregate load, the
traces of non-deferrable load are precise and thus we consider
that the uncertainties in base load only come from renewable
generation.

Wind generation is used to represent renewable generation.
Uncertainties in wind power generation can be denoted by the
error of wind power predictions. Probability distribution of
the wind power prediction error includes normal distribution,
Weibull distribution, piecewise exponential distribution, and so
on. In addition, it presents time-varying features [31]. Without
loss of generality, this paper uses normal distribution as the
distribution model of wind power prediction error. Assume
that the prediction error satisfies normal distribution, then the
variance is determined by the prediction time scale.

Assumption 2: At time t (1 ≤ t ≤ T ), w (τ) denotes the
wind generation of prediction time τ (τ > t). The prediction
error can be constructed as the sum of a Gauss random
sequence xs (τ), the mean is 0, and the variance is set as
[26]:

E
{
x2

s(τ)
}

=
σ2

τ − s + 1
, 1 ≤ s ≤ τ ≤ T (17)

then the wind power prediction is:

wt(τ) = w(τ) +
τ∑

s=t+1

xs(τ) , 0 ≤ t ≤ τ ≤ T. (18)

(E{w0(T )− w(T )}2)1/2 is the root-mean-square predic-
tion error and it takes 0 %−22.5 % of the nameplate wind
generation capacity in the next 24 hours [32]. It only depends
on how far ahead the prediction is according to (18). Looking
24 time slots, the normalized wind prediction error curve is
manifested in Fig. 3, where it can be found that the prediction
time interval is shorter, the error is smaller.

Fig. 3. Root-mean-square prediction error over time.

For the sake of simplicity, we assume that all EVs are
absolutely identical, and each one requires to consume 10 kWh
power energy in total and the charging power must within
[0, 3.3] kW. In addition, the arrival process of the deferrable
loads begins at 20:00 on the first day and ends at 12:00 on
the next day. After the deadline all EVs have already arrived.
In the simulations, the charging behavior of EVs is applied
to represent the power consumption behavior of deferrable
loads, and the charging curve of EVs is the power consumption
schedule of deferrable loads.

Assumption 3: The arrival of each EV is random. At time t
(t = 1, 2, . . . , T ), the prediction of future deferrable load total
energy demand E {C (t)} can be denoted as a product of the
arrival rate p and the length of the rest of the arrival process
(T0 − t) [26]. T0 is the deadline of EVs arrival, and we take
T0=16, then:

E {C(t)} = p ∗ (T0 − t), t = 1, 2, . . . , T0. (19)

Furthermore, t > T0 means the deferrable load arrival
process has ended, i.e., E {C (t)} = 0.

Experiments demonstrate that DLCS algorithm converges
fairly fast, and iterations will stop after 15 rounds. The
algorithm proposed in [26], denoted as VF algorithm, would
be optimal when ignoring the constraint of power supply.
Simulation results obtain the power consumption schedules
of deferrable loads at every time slot. We compare the load
curves of DLCS algorithm with VF algorithm in the case that
t = 4 (0:00), t = 8 (4:00) and t = 12 (8:00), respectively.
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Fig. 4. Comparison between DLCS algorithm and VF algorithm (t = 4).

Fig. 5. Comparison between DLCS algorithm and VF algorithm (t = 8).

Figs. 4(a), 5(a) and 6(a) display the scheduling results of
DLCS algorithm and VF algorithm with scheduling time t
taking different values. On the one hand, as the aim of VF
algorithm for deferrable loads scheduling is to minimize the
variance of aggregate load, it is worth noting that the aggregate
load s of VF algorithm in three time periods (1:00−8:00 in
Fig. 4(a), 4:00−9:00 in Fig. 5(a) and 8:00−8:40 in Fig. 6(a))
have already exceeded the power supply m. It would lead
to over-demand in power systems. On the other hand, the
three figures manifest that aggregate load of DLCS algorithm
is invariably lower than power supply except for individual
time points (18:00−20:00 in Fig. 5(a)) and accordingly DLCS
algorithm can avoid the over-load effectively. In summary,
compared with VF algorithm, the aggregate load curve ob-
tained by DLCS algorithm is more close to the power supply
curve, and it has a stronger potential to track the power supply
curve.

At different scheduling time slots, Figs. 4(b), 5(b), 6(b)

present two curves of the absolute differences between power
supply m and aggregate load s, and these curves are obtained
by the two different algorithms respectively. These figures
demonstrate that the differences of DLCS algorithm always
keep in a lower level and have smaller fluctuations when com-
pared with VF algorithm. The amount of remaining unused
power energy obtained by DLCS algorithm is smaller as well,
and it is beneficial to avoid the waste of resources.

The above conclusion can be verified from Table I which
demonstrates the mean and the variance of absolute differences
obtained by the two algorithms at different time slots. From
the comparison between the third and fourth columns, it can
be found that the mean and the variance of DLCS algorithm
are invariably smaller than VF algorithm. It shows that DLCS
algorithm has a higher utilization of power resources. All of
the above simulation results manifest that, it’s more effective to
use DLCS algorithm for real-time deferrable loads scheduling
control under the constraint of power supply.
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Fig. 6. Comparison between DLCS algorithm and VF algorithm (t = 12).

TABLE I
COMPARISON BETWEEN THE TWO ALGORITHMS

Scheduling time
Absolute differences

between m and s
DLCS algorithm VF algorithm

t = 4
Mean 3.0708 3.3571

Variance 10.7703 13.2016

t = 8
Mean 2.4179 3.5337

Variance 9.3558 15.0871

t = 12
Mean 1.2191 3.6889

Variance 2.0641 15.3374

V. CONCLUSIONS AND FUTURE WORKS

To conclude, this paper has studied the real-time distributed
control for deferrable loads scheduling problem considering
the constraint of power supply. By designing the objective opti-
mization function with power supply constraint, and establish-
ing a load forecasting model with uncertainties, we transform
the load scheduling problem into an optimal control problem,
and propose DLCS algorithm to handle this problem. The aim
of scheduling is to make aggregate load curve approach to
power supply curve as far as possible. In addition, detailed
steps of DLCS algorithm have also been presented in the
paper. The effectiveness of DLCS algorithm has been verified
compared with the existing VF algorithm in the simulation
results. Besides, as VF algorithm only can be available in
the ideal condition without being restrained by power supply,
DLCS algorithm has overcome this limitation and obtained
a stronger practicality. And the utilization of power supply
resources is more reasonable by choosing DLCS algorithm
for real-time scheduling.

However, DLCS algorithm also has its limitation. For exam-
ple, it only focuses on optimization effect of the aggregate load
curve, and ignores the potential impact that deferrable loads
scheduling may incurs on power flow and voltage of power
systems. Since there are different types of deferrable loads,
it should consider that various loads require different power

consumptions. Besides, in this paper, we only view the de-
ferrable loads as one kind of power consumption components.
However, some certain deferrable loads, such as EVs, can
become energy storing devices. They can consume and store
energy in load-valley, and then release energy in load-peak to
regulate load curves. In a word, under the constraint of power
supply, the real-time distributed optimal control for deferrable
loads scheduling is worth of making a further research.
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