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Stabilization of Uncertain Systems With Markovian
Modes of Time Delay and Quantization Density

Jufeng Wang and Chunfeng Liu

Abstract—This work studies the stabilization of a class of
control systems that use communication networks as signal trans-
mission medium. The lateral motion of independently actuated
four-wheel vehicle is modeled as an uncertain-linear system. Time
delay and quantization density are modeled as Markov chains.
The networked control systems (NCSs) with plants being lateral
motion are first transformed to switched linear systems with
uncertain parameters. Sufficient and necessary conditions for
the stochastic stability of closed-loop networked control systems
are then established. By solving the matrix inequalities, this
work presents an output-feedback controller that depends on
the modes of time delay and quantization density. The controller
performance is illustrated via a vehicular lateral motion system.

Index Terms—Networked control system (NCS), quantization,
stabilization, time delay, vehicle lateral motion.

I. INTRODUCTION

FOUR-wheel independently actuated vehicles in which
each wheel is independently actuated by an in-wheel

motor, have attracted increasing research efforts in recent years
due to their actuation flexibility and fast speed. As is well
known, stability is an important problem to be considered in
system analysis and design. To ensure the stability of vehicle
lateral motion, the study on lateral motion control has been
actively conducted since effective lateral motion control can
prevent unintended vehicle behavior.

In [1], through an analytical method, a vehicle lateral-plane
motion stability control approach is presented. In [2], a control
law combined with a stabilization algorithm of the yaw motion
is given based on a robot dynamic model. To maintain lateral
stability, there are various controllers proposed, such as a
sliding mode controller [3], a state observer [4] and an output
constrained controller [5]. Nevertheless, the results in them
cannot be applied to the networked control systems (NCSs)
whose plants, controllers and actuators are located at different
places, and signals are transmitted from one place to another
through communication networks.
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With the very rapid advances in communication network,
NCSs have gained wide applications in modern vehicles [6]−
[8]. Compared to the traditional control systems, NCSs have
many advantages such as system flexibility and reduced cost.
Despite such advantages, the use of communication networks
makes the system analysis more complicated.

Owing to bandwidth limitation, data cannot be sent with
infinite precision in communication networks. To reduce net-
work congestion, quantizers are always used in a signal
transmission process. In [9]−[11], the stabilization of linear
time-invariant systems with quantization is investigated. Nev-
ertheless, time delay is not taken into account.

In practice, time delay always occurs since sampling data
is transmitted through a network, and it may cause system
instability. Therefore, the stabilization problem of NCSs with
time delay has attracted much research [12]−[16]. In many
cases, time delay is random and can be modeled as Markov
chains [17]−[22]. In [17], the state-feedback controller’s gain
is constant. This controller is called a mode-independent
controller in our paper. In [18]−[22], a feedback controller
that depends on time delay is designed. We call such con-
troller that depends on physical variables, e.g., time delay and
quantization density, as a mode-dependent controller.

Compared to NCSs with only time delay or quantization,
it is more difficult to analyze those with both time delay
and quantization. In [23]−[28], the latter are studied, but
their feedback controllers are all static and controlled plants
are all deterministic systems. As is well known, the stability
condition of a system with mode-dependent controller is less
conservative than that of a system with a mode-independent
controller. Meanwhile, due to interference, the parameters of
vehicle lateral dynamics, e.g., longitudinal speed and cornering
stiffness coefficients, are subject to change. Such change may
destroy the stability of otherwise stable closed-loop lateral-
motion systems. If only a deterministic model of a vehicle
lateral dynamics is considered in system analysis, the resultant
system may exhibit a high degree of vulnerability. Accord-
ingly, in this paper, we model the vehicle lateral dynamics as
an uncertain system.

It should be pointed out, the stabilization problem of
NCSs with time delay and quantization has not been fully
investigated, and most of the results in the existing literature
are focused on sufficient conditions for the stability of NCSs.
It is worth mentioning that sufficient and necessary conditions
for the stability of NCSs have been studied in [18]−[20].
However, the plant studied in the literature mentioned above
is a deterministic system or a Markovian jump linear system.
Moreover, the controller design considers time delay only but
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not quantization. Therefore, the results cannot be directly
applied to our case where the plant is an uncertain lateral
motion system having time delay and quantization error. To
the authors’ best knowledge, the stabilization of vehicle lateral
motion with time delay and quantization has not been fully
investigated, especially the sufficient and necessary conditions
for the stability of uncertain lateral motion systems having
time delay and quantization density with Markovian charac-
terization. This fact motivates the present study.

This work for the first time studies the stabilization of
vehicle lateral motion subject to both quantization and time
delay. The lateral motion of independently actuated four-wheel
vehicle is modelled as an uncertain system. To incorporate
the correlation between the current time delay (quantization
density) and time delay (quantization density) in the next
transmission, the quantization density and time delay are
modeled as two homogeneous Markov chains. The sufficient
and necessary conditions for the stochastic stability of net-
worked vehicle lateral motion are derived under an output-
feedback controller that depends on the modes of time delay
and quantization density. A practical lateral motion example
is presented to demonstrate the effectiveness of the proposed
controller.

II. NETWORKED CONTROL SYSTEM MODEL

The structure of our concerned NCS is shown in Fig. 1.
Its plant is vehicle lateral dynamics shown in Fig. 2 [22].
A two-degree-of-freedom model is adopted to describe the
plant. With the fact that side slip angle, steering angle and
lateral acceleration are small, the tire lateral force Fyf (Fyr)
is approximately linear with the tire slip angle αf (αr), and
the state-space model of the lateral motion control can be
approximately written as [4], [22]

ẋ(t) = A1x(t) + B1u(t)
y(t) = C1x(t) (1)

Fig. 1. The structure of NCS.

Fig. 2. Vehicle lateral dynamics.

where

x =
[

β
γ

]
, u =

[
δ

Mz

]

A1 =

[ −2(Cf +Cr)
mV

−2(Cf lf−CrLr)
mV 2 − 1

−2(Cf lf−Crlr)
Iz

−2(Cf l2f +Crl2r)

IzV

]

B1 =

[
2Cf

mV 0
2Cf lf

Iz

1
Iz

]
.

Here, y(t) is the output of the plant, C1 is a constant matrix
of appropriate dimensions, γ is the yaw-rate, m is the vehicle
mass, V is the longitudinal speed, Mz is the yaw moment, δ
is the front wheel steering angle, Cf and Cr are the cornering
stiffness of each front tire and rear tire, Iz is the vehicle yaw
inertia, and lf and lr are the distances from the front and rear
axles to the center of gravity.

In the NCS, the sensor, controller and actuator are all time-
driven. With a sampling period T , the continuous state-space
model (1) can be transformed into a discrete one as follows
[29]:

x(k + 1) = Ax(k) + B(k)u(k)
y(k) = Cx(k) (2)

where

A = eA1T , B =
∫ T

0

eAtdt ·B1, C = C1.

From the process of modeling, we know that model (2)
well describes the actual vehicle lateral dynamics, and is
affected by parametric uncertainties (e.g., the uncertainties on
the longitudinal speed and cornering stiffness coefficients).
In order to consider the model approximation and model
parameter uncertainty, we modify the discrete-linear system
(2) into a discrete-uncertain system described by

x(k + 1) = [A + ∆A(k)]x(k) + [B + ∆B(k)]u(k)
y(k) = Cx(k) (3)

where ∆A(k) and ∆B(k) are unknown matrices representing
the time-varying norm-bounded uncertainties that satisfy the
following condition

[∆A(k) ∆B(k)] = MJ(k)[Y1 Y2]

where M , Y1 and Y2 are known real constant matrices with
appropriate dimensions, and J(k) is the unknown time-varying
matrix function subject to J(k)T J(k) ≤ I . In Fig. 1, τk

represents the sensor-to-controller delay, and q(·, σk) stands
for the quantizer with quantization density ρσk

, 0 < ρσk
< 1,

σk ∈ N+
η = {1, 2, . . . , η}. η ∈ N+ = {1, 2, . . .}. Let N =

{0, 1, 2, . . .}, the set of natural numbers, and the value of σk

corresponds to that of ρσk
. To ease the network congestion,

the quantization density is designed to be a function of
the network load which is related to the network induced
delay [30]. Considering the correlation between the current
time delay (quantization density) and time delay (quantiza-
tion density) in the next transmission, τk and σk (ρσk

) are
modeled as two homogeneous Markov chains that take values
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in Nτ = {0, 1, . . . , τ}, τ ∈ N and N+
η ({ρ1, ρ2, . . . , ρη}),

respectively. Their transition probability matrices are Γ = [λlh]
and Ξ = [αij ], respectively. τk and σk (ρσk

) jump from modes
l to h and from modes i (ρi) to j (ρj) with probabilities λlh

and αij , respectively

λlh = Pr(τk+1 = h|τk = l)
αij = Pr(σk+1 = j|σk = i)

= Pr(ρσk+1 = ρj |ρσk
= ρi) (4)

where λlh, αij ≥ 0 and
τ∑

h=0

λlh = 1,

η∑

j=1

αij = 1. (5)

The quantizer q(y, j) is proposed as follows:

q(y, j) = [q1(y1, j), q2(y2, j), . . . , qp(yp, j)]T .

Let the quantization density ρ in [23] equal ρj . We can
then describe the corresponding set of quantization levels of
quantizer q(y, j) as follows:

Uj =
{
± uuu

(j)
i : uuu

(j)
i = ρi

juuu0, uuu0 > 0,

i = 0,±1,±2, . . .
}⋃ {

0
}

.

The corresponding ql(yl, j) is defined as follows:

ql(yl, j) =





uuu
(j)
i , if 1

1+δj
uuu

(j)
i < yl ≤ 1

1−δj
uuu

(j)
i

0, if yl = 0
−ql(−yl, j), if yl < 0

(6)

with δj = (1− ρj)/(1 + ρj).
From (6), q(y(k), j) can be rewritten as

q(y(k), j) = (I + H(j))y(k)

where H(j) is an uncertain diagonal matrix satisfying

HT (j)H(j) ≤ δ2
j I.

Considering the time delay, we have

ỹ(k) = q (y(k − τk), σk−τk
)

= (I + H(σk−τk
))Cx(k − τk). (7)

Define

X(k) =
[

xT (k) xT (k − 1) . . . xT (k − τ)
]T

(8)

then, we have

X(k + 1) = ÃX(k) + B̃u(k)

ỹ(k) = (I + H(σk−τk
)) C̃(τk)X(k) (9)

where

Ã =




A + ∆A(k) 0 . . . 0 0
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0




B̃ =




B + ∆B(k)
0
...
0
0




C̃(τk) = [ 0 . . . 0 C 0 . . . 0 ] (10)

C is the (1 + τk)th block of C̃(τk).
A two-mode-dependent output-feedback controller is de-

signed as

z(k + 1) = D(τk, σk−τk
)z(k) + E(τk, σk−τk

)ỹ(k)

u(k) = F (τk, σk−τk
)z(k) + G(τk, σk−τk

)ỹ(k) (11)

where z(k) ∈ Rn, D(τk, σk−τk
), E(τk, σk−τk

), F (τk, σk−τk
)

and G(τk, σk−τk
) are appropriately dimensioned matrices.

From (9), it is easy to see that

z(k + 1) = D(τk, σk−τk
)z(k) + E(τk, σk−τk

)

× (I + H(σk−τk
)) C̃(τk)X(k)

u(k) = F (τk, σk−τk
)z(k) + G(τk, σk−τk

)

× (I + H(σk−τk
)) C̃(τk)X(k). (12)

Define

ξ(k) =
[

XT (k) zT (k)
]T

. (13)

Combining (9) and (12) leads to the following closed-loop
system

ξ(k + 1) =
[
Ā + B̄K(τk, σk−τk

)C̄(τk, σk−τk
)
]
ξ(k) (14)

where

Ā =
[

Ã 0
0 0

]
, B̄ =

[
B̃ 0
0 I

]

C̄(τk, σk−τk
) =

[
(I + H(σk−τk

)) C̃(τk) 0
0 I

]

=
[

C̃(τk) 0
0 I

]

+
[

I
0

]
H(σk−τk

)
(
C̃(τk) 0

)

= Ĉ(τk) +
[

I
0

]
H(σk−τk

)×
(
C̃(τk) 0

)

K(τk, σk−τk
) =

[
G(τk, σk−τk

) F (τk, σk−τk
)

E(τk, σk−τk
) D(τk, σk−τk

)

]
. (15)

Note that matrices Ā and B̄ are of the following form

Ā = Aa + M̃J(k)Ỹ1

B̄ = Bb + M̃J(k)Ỹ2

where

Aa =




A 0 . . . 0 0 0
I 0 . . . 0 0 0
0 I . . . 0 0 0
...

...
. . . 0 0 0

0 0 . . . I 0 0
0 0 0 0 0 0




, Bb =




B 0
0 0
...

...
0 0
0 0
0 I



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M̃ =




M
0
...
0


 , Ỹ1 =

[
Y1 0 . . . 0

]
, Ỹ2 =

[
Y2 0

]
.

Definition 1 [19]: The closed-loop system in (14) is stochas-
tically stable if given every initial condition ξ0 = ξ(0), σ−τ0

∈ N+
η and τ0 ∈ Nτ , there exists a symmetric and positive

definite matrix W such that the following holds:

E
{ ∞∑

k=0

‖ξ(k)‖2|ξ0, σ−τ0 , τ0

}
< ξT

0 Wξ0. (16)

Lemma 1 [31]: Given matrices Q, H and E of appropriate
dimensions with Q being symmetrical, Q+HFE+ET FT HT

< 0 for all F satisfying FT F ≤ I , if and only if there exists
some scalar ε > 0, such that

Q + εHHT + ε−1ET E < 0.

III. MAIN RESULTS

The following theorem gives sufficient and necessary con-
ditions for the stochastic stability of closed-loop networked
lateral motion system under the proposed controller (11).
Its proof is motivated by the proof in [19] and is given in
Appendix.

Theorem 1: Closed-loop system (14) is stochastically stable
if and only if there exists a symmetric and positive definite
matrix P (l, i) such that

L(l, i) =

{
τ∑

h=0

η∑

j=1

λlhΞ1+l−h
ij × [Ā + B̄K(l, i)C̄(l, i)]T

× P (h, j)× [Ā + B̄K(l, i)C̄(l, i)]− P (l, i)

}

< 0 (17)

holds for all l ∈ Nτ and i ∈ N+
η .

Based on the results in Theorem 1, the controller design
techniques are given in Theorem 2.

Theorem 2: The system in (14) is stochastically stable if and
only if there exist positive scalars ει,ς(l, i), γι,ς(l, i), ει,ς(l, i)
(ι = 0, 1, . . . , τ , ς = 1, 2, . . . , η), a symmetric and positive
definite matrix P (l, i) and a matrix K(l, i) of appropriate
dimensions, such that (18) (show at the bottom of this page)
holds where

Z̄(l, i) = [ Z̄T
0 Z̄T

1 . . . Z̄T
τ ]T

Z̄h = [ Z̄T
h,1 Z̄T

h,2 . . . Z̄T
h,η ]T

Z̄h,j = (λlhΞ1+l−h
ij )

1
2 × [Aa + BbK(l, i)Ĉ(l)]

Ẑ(l, i) = [ ẐT
0 ẐT

1 . . . ẐT
τ ]T

Ẑh = [ ẐT
h,1 ẐT

h,2 . . . ẐT
h,η ]T

Ẑh,j = (λlhΞ1+l−h
ij )

1
2 × [Ỹ1 + Ỹ2K(l, i)Ĉ(l)]

W (l, i) = [ WT
0 WT

1 . . . WT
τ ]T

Wh = [ WT
h,1 WT

h,2 . . . WT
h,η ]T

Wh,j = γh,j(l, i)δi(λlhΞ1+l−h
ij )

1
2 × [C̃(l) 0]

W̄ (l, i) = [ W̄T
0 W̄T

1 . . . W̄T
τ ]T

W̄h = [ W̄T
h,1 W̄T

h,2 . . . W̄T
h,η ]T

W̄h,j = εh,j(l, i)δi(λlhΞ1+l−h
ij )

1
2 × [C̃(l) 0]

T = diag{T0 T1 . . . Tτ}
Th = diag{Th,1 Th,2 . . . Th,η}
Th,j = [P (h, j)]−1

M̆(l, i) = diag
{

ε0,1(l, i)M̃M̃T

ε0,2(l, i)M̃M̃T . . . ετ,η(l, i)M̃M̃T
}

ε̂(l, i) = diag{ε0,1(l, i)I ε0,2(l, i)I . . . ετ,η(l, i)I}
γ̂(l, i) = diag{γ0,1(l, i)I γ0,2(l, i)I . . . γτ,η(l, i)I}
ε̂(l, i) = diag{ε0,1(l, i)I ε0,2(l, i)I . . . ετ,η(l, i)I}

V T (l, i)

=




BbK(l,i)
[

I
0

]
0 . . . 0

0 BbK(l,i)
[

I
0

]
. . . 0

...
...

. . .
...

0 0 . . . BbK(l,i)
[

I
0

]




LT (l, i)

=




Ỹ2K(l,i)
[

I
0

]
0 . . . 0

0 Ỹ2K(l,i)
[

I
0

]
. . . 0

...
...

. . .
...

0 0 . . . Ỹ2K(l,i)
[

I
0

]




(19)

for all l ∈ Nτ and i ∈ N+
η .




−P (l, i) Z̄T (l, i) ẐT (l, i) WT (l, i) W̄T (l, i) 0 0
Z̄(l, i) −T + M̆ 0 0 0 V T (l, i) 0
Ẑ(l, i) 0 −ε̂(l, i) 0 0 0 LT (l, i)
W (l, i) 0 0 −γ̂(l, i) 0 0 0
W̄ (l, i) 0 0 0 −ε̂(l, i) 0 0

0 V (l, i) 0 0 0 −γ̂(l, i) 0
0 0 L(l, i) 0 0 0 −ε̂(l, i)




< 0 (18)
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Proof: By applying the Schur complement, we obtain that
(17) is equivalent to the following inequality:

[ −P (l, i) ST (l, i)
S(l, i) −T

]
< 0 (20)

for all l ∈ Nτ and i ∈ N+
η , with

S(l, i) = [ ST
0 (l, i) ST

1 (l, i) . . . ST
τ (l, i) ]T

Sh(l, i) = [ ST
h,1(l, i) ST

h,2(l, i) . . . ST
h,η(l, i) ]T

Sh,j(l, i) = (λlhΞ1+l−h
ij )

1
2 × [Ā + B̄K(l, i)C̄(l, i)]. (21)

From Lemma 1 and the Schur complement, it is found that
the inequality (20) holds if and only if there exist positive
scalars ει,ς(l, i) (ι = 0, 1, . . . , τ, ς = 1, 2, η), such that




−P (l, i) ∗ ∗ ∗
S̄(l, i) −T ∗ ∗
Ŝ(l, i) 0 −ε̂(l, i) ∗

0 M̂(l, i) 0 −ε̂(l, i)


 < 0 (22)

where

S̄(l, i) = [ S̄T
0 S̄T

1 . . . S̄T
τ ]T

S̄h = [ S̄T
h,1 S̄T

h,2 . . . S̄T
h,η ]T

S̄h,j = (λlhΞ1+l−h
ij )

1
2 × [Aa + BbK(l, i)C̄(l, i)]

Ŝ(l, i) = [ ŜT
0 ŜT

1 . . . ŜT
τ ]T

Ŝh = [ ŜT
h,1 ŜT

h,2 . . . ŜT
h,η ]T

Ŝh,j = (λlhΞ1+l−h
ij )

1
2 × [Ỹ1 + Ỹ2K(l, i)C̄(l, i)]

M̂T (l, i)

=




ε0,1(l, i)M̃ 0 . . . 0
0 ε0,2(l, i)M̃ . . . 0
...

...
. . .

...
0 0 . . . ετ,η(l, i)M̃


 .

According to the Schur complement, (22) can be rewritten
as



−P (l, i) ∗ ∗
S̄(l, i) −T + M̆(l, i) ∗
Ŝ(l, i) 0 −ε̂(l, i)


 < 0. (23)

By using Lemma 1 and the Schur complement, we conclude
that (23) is equivalent to (18). From Theorem 1, we complete
the proof. ¥

The conditions in Theorem 2 form a set of linear matrix
inequalities with some inversion constraints. K(l, i) can be
solved by an iterative linear matrix inequality approach which
is called as the cone complementarity linearization algorithm
whose detail can be found in [32]. Accordingly, D(l, i),
E(l, i), F (l, i) and G(l, i) can be obtained from (15). Next,
we give an example to show the performance of the proposed
controller.

IV. NUMERICAL EXAMPLE

Consider a vehicle lateral motion system in (3) with the
following parameters [22]

m = 800 kg, Iz = 728.6 kg.m2, lf = 0.85m
lr = 1.04m, Cf = Cr = 10 000 N/rad, V = 100 km/h.

The parameters of unknown matrices ∆A(k) and ∆B(k)
are assumed as

M =
[

0.01
0.01

]
, Y1 = [ 0.2 0.1 ]

Y2 = [ 0.1 0.1 ]. (24)

The sampling period of the sensor, controller and actuator
is set as T = 0.01 s. The network time delay is supposed to
be τk ∈ {0, 1}, that means time delay in a practical vehicle
control system is 0T = 0 s and 1T = 0.01 s, and its transition
probability matrix is given as

Γ =
[

0.5 0.5
0.4 0.6

]
.

The quantizer parameters are set as

δ1 = 0.02, and δ2 = 0.04.

Thus we have two different quantization density values ρ1

and ρ2. The transition probability matrix of σk (ρσk
) is

Ξ =
[

0.42 0.58
0.41 0.59

]
.

The output matrix is

C =
[

1 0
0 1

]
.

The controller design in [19] considers neither quantization
in the network environment, nor uncertainty of the system
model parameters. Therefore, the approach of the controller
design cannot be applied to our case.

By using Theorem 2, we obtain

G01 =
[ −0.9726 −0.1533
−0.7554 −0.7954

]

G02 =
[ −1.0882 −0.2297
−0.9278 −1.2981

]

G11 =
[ −0.3967 −0.0488
−0.2973 −0.7077

]

G12 =
[ −0.3296 −0.0365
−0.3029 −0.7083

]
(25)

F (0, 1) = F (0, 2) = F (1, 1) = F (1, 2) = E(0, 1)
=E(0, 2) = E(1, 1) = E(1, 2) = D(0, 1)

=D(0, 2) = D(1, 1) = D(1, 2) =
[

0 0
0 0

]
.

Suppose that the initial conditions are x(0) = [3, 2], τ0 = 0
and σ0 = 1. One of the possible realizations of the random
modes σk and τk is shown in Figs. 3 and 4, and the realization
of the unknown time-varying matrix J(k) is set to sin(k).
Under them, the corresponding state trajectories of the closed-
loop system are shown in Fig. 5. We can clearly see that the
closed-loop system is stochastically stable.
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Fig. 3. Random mode σk .

Fig. 4. Random mode τk .

Fig. 5. State trajectories of the closed-loop system.

V. CONCLUSION

The stabilization problem of uncertain-linear vehicle-lateral-
motion systems over networks is challenging. This work
adopts Markov chains to model the stochastic changes of
quantization density and time delay modes. These modes
are simultaneously incorporated into the output feedback

controller design. By constructing a Lyapunov function and
Schur complement, this work derives sufficient and necessary
conditions of stochastic stability of a given networked vehicle-
lateral-motion control system in the form of a set of linear
matrix inequalities with some inversion constraints. The cone
complementarity linearization algorithm is employed to obtain
the desired two-mode-dependent controller. The future work
should address the complexity issues when a system or Markov
model is of large scale.

APPENDIX

Proof:
Sufficiency: Construct the following Lyapunov function

V (ξ(k), k) = ξT (k)P (τk, σk−τk
) ξ(k).

Then

E {4V (ξ(k), k)}
= E {V (ξ(k + 1), k + 1)|ξ(k), τk, σk−τk

} − V (ξ(k), k)

= E{
ξT(k + 1)P (τk+1, σk+1−τk+1)ξ(k + 1)|ξ(k), τk, σk−τk

}

− {
ξT (k)P (τk, σk−τk

)ξ(k)
}

.

Let

τk = l, τk+1 = h, σk−τk
= i, σk+1−τk+1 = j. (26)

Then, the probability transition matrices are

τk → τk+1 : Γ, σk−τk
→ σk+1−τk+1 : Ξ1+l−h (27)

and

E {4V (ξ(k), k)}

= ξT (k)

{
τ∑

h=0

η∑

j=1

λlhΞ1+l−h
ij × [Ā + B̄K(l, i)C̄(l, i)]T

× P (h, j)× [Ā + B̄K(l, i)C̄(l, i)]− P (l, i)

}
ξ(k)

= ξT (k)L(l, i)ξ(k).

Thus if L(l, i) < 0, then

E {4V (ξ(k), k)} ≤ −λmin(−L(l, i))ξT (k)ξ(k)

≤ −α‖ξ(k)‖2 (28)

where α = inf{λmin(−L(l, i)} > 0.
It follows from (28) that for any n ≥ 1,

E {V (ξ(n + 1), n + 1)} − E {V (ξ(0), 0)}

≤ −αE
(

n∑
t=0

‖ξ(t)‖2
)

.

Furthermore, we have

E
(

n∑
t=0

‖ξ(t)‖2
)
≤ 1

α

(
E{ V (ξ(0), 0)}

− E {V (ξ(n + 1), n + 1)}
)

≤ 1
α
E{V (ξ(0), 0)}

≤ 1
α

ξT (0)P (τ0, σ−τ0) ξ(0). (29)
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By using Definition 1, the closed-loop system in (14) is
stochastically stable.

Necessity: Assume that Q(τk, σk−τk
) is a symmetric and

positive definite matrix and P̃ (T − t, τt, σt−τt) is a symmetric
matrix. Define

ξT (t)P̃ (T − t, τt, σt−τt
)ξ(t)

= E
{

T∑

k=t

ξT (k)Q(τk, σk−τk
)ξ(k)|ξt, τt, σt−τt

}
. (30)

Since Q(τk, σk−τk
) > 0, as T increases, ξT (t)P̃ (T − t, τt,

σt−τt
)ξ(t) increases. From (16), ξT (t)P̃ (T − t, τt, σt−τt

)ξ(t)
is upper bounded. Furthermore, its limit exists and can be
expressed as

ξT (t)P (l, i)ξ(t)

= lim
T→∞

ξT (t)P̃ (T − t, τt = l, σt−τt = i)ξ(t)

= lim
T→∞

E
{

T∑

k=t

ξT (k)Q(τk, σk−τk
)ξ(k)|ξt, τt = lσt−τt = i

}

(31)

where P (l, i) is a symmetric matrix.
Thus, we have

P (l, i) = lim
T→∞

P̃ (T − t, τt = l, σt−τt
= i). (32)

From (31), we obtain P (l, i) > 0 since Q(τk, σk−τk
) > 0.

From (30), we have

E
{

ξT (t)P̃ (T − t, τt, σt−τt
)ξ(t)

− ξT (t + 1)× P̃ (T − t− 1, τt+1, σt+1−τt+1)

× ξ(t + 1)|ξt, τt = l, σt−τt
= i

}
= ξT (t)Q(l, i)ξ(t).

(33)

From (14), we have

E
{

ξT (t)P̃ (T − t, τt, σt−τt
)ξ(t)

− ξT (t + 1)× P̃ (T − t− 1, τt+1, σt+1−τt+1)

× ξ(t + 1)|ξt, τt = l, σt−τt
= i

}

= ξT (t)

{
P̃ (T − t, l, i)−

τ∑

h=0

η∑

j=1

λlhΞ1+l−h
ij

× [Ā + B̄K(l, i)C̄(l, i)]T × P̃ (T − t− 1, h, j)

× [Ā + B̄K(l, i)C̄(l, i)]

}
ξ(t). (34)

It is easy to obtain from (33) and (34) that

ξT (t)

{
P̃ (T − t, l, i)−

τ∑

h=0

η∑

j=1

λlhΞ1+l−h
ij

× [Ā + B̄K(l, i)C̄(l, i)]T × P̃ (T − t− 1, h, j)

× [Ā + B̄K(l, i)C̄(l, i)]

}
ξ(t)

= ξT (t)Q(l, i)ξ(t). (35)

Letting T → ∞ in (35) and noticing (32), we prove that
(17) holds. ¥
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