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An Adaptive RBF Neural Network Control Method
for a Class of Nonlinear Systems

Hongjun Yang and Jinkun Liu

Abstract—This paper focuses on designing an adaptive radial
basis function neural network (RBFNN) control method for
a class of nonlinear systems with unknown parameters and
bounded disturbances. The problems raised by the unknown
functions and external disturbances in the nonlinear system are
overcome by RBFNN, combined with the single parameter direct
adaptive control method. The novel adaptive control method
is designed to reduce the amount of computations effectively.
The uniform ultimate boundedness of the closed-loop system is
guaranteed by the proposed controller. A coupled motor drives
(CMD) system, which satisfies the structure of nonlinear system,
is taken for simulation to confirm the effectiveness of the method.
Simulations show that the developed adaptive controller has
favorable performance on tracking desired signal and verify the
stability of the closed-loop system.

Index Terms—Adaptive control, neural network (NN), nonlin-
ear system, radial basis function.

I. INTRODUCTION

ADAPTIVE control has been successfully used for de-
signing controllers for uncertain dynamic systems. The

principal theory in adaptive control utilizes output feedback in
the model-free unknown system [1], [2]: direct and indirect.
Direct adaptive control, which we use in this study, intends
that the parameters of the controller are directly regulated to
reduce the output error between the desired model and the
controlled plant. A direct adaptive control scheme for tracking
the end effector of a two-link flexible-joint manipulator has
been developed in [3]. In [4], a direct adaptive neural control is
proposed for a class of uncertain non-affine nonlinear systems
with unknown non-symmetric input saturation. The apparent
advantage of direct adaptive control is the high computational
efficiency. With direct approach [5], [6], the controllers compel
the feedback system to track as closely as possible a desired
signal with unknown parameters dynamics. In addition, the
approaches given in [7] and [8] introduce indirect adaptive
control scheme for underwater vehicle-manipulator systems
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(UVMSs) and the synchronization of chaotic systems sepa-
rately.

Neural networks (NNs) are well known for their ability
to approximate uncertainties in model-uncertain systems with
complex and unknown functions. Many NN controllers are
used with adaptive control technique [9]−[11]. The main
performance of the scheme is that controller does not depend
on the accurate structural information and model parame-
ters for the plants. To design a neural network controller,
multivariable feedback linearization is employed in [12] to
convert the nonlinear model to linear one. To solve the control
problem with uncertain parameters, neural network control
combined with sliding mode control [13], model predictive
control [14], back stepping control [15], and iterative adaptive
dynamic programming algorithm [16] have been developed for
a large class of nonlinear systems. Radial basis function neural
networks (RBFNNs) have been successfully used in variety of
applications widely and accepted to be an effective method
for solving many control problems with dynamic uncertainty
[17]. A RBFNN is employed to adaptively learn an upper
bound of uncertain dynamics of a battery equivalent circuit
model in real time [18]. In [19], a RBFNN approach with
a fusion of multiple signal candidates in precision motion
control is studied. The authors in [20] have studied the robust
Mars atmospheric entry guidance design based on RBFNNs
and second-order sliding mode control. A new approach that
combines fuzzy control with RBFNNs is proposed in [21]
to improve the single neuron proportional-integral-derivative
(PID) control technology.

In this paper, we focus on developing an adaptive RBFNN
control method for a class of unknown single-input single-
output (SISO) nonlinear systems with bounded external dis-
turbances. In [22], an adaptive controller has been proposed for
a class of unknown nonlinear systems using high-order neural
networks, which avoids singularity problem and guarantees
regional stability of the closed-loop system. However, the form
of system in it may be a little conservative. Based on [22],
we propose a novel adaptive RBFNN control whose main
contributions are summarized as follows:

1) We propose a single parameter adaptive (SPA) control
method to reduce the amount of NN computations. The
method can make the number of online adaptive parameters
drop to only one, shortening the time on operation. With this
method, the adaptive controller is designed concisely.

2) The SPA control method can be applied to the system
with more complex and indeterminate dynamic model, com-
pared with [22]. Thus, the SPA method is more general.

The uniform ultimate boundedness of the closed-loop



458 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018

system is guaranteed by the proposed controller. The dynamic
model of coupled motor drives (CMD) system [23], which is
commonly used in industrial robots, exactly satisfies the struc-
ture of the nonlinear systems in this study. It is finally taken for
simulation to confirm the performance of the proposed control
scheme. The distinct simulations illustrate the effectiveness of
the proposed scheme and guarantee the stability of the closed-
loop system.

The paper is organized as follows. Section II presents the
dynamic model of the SISO nonlinear system and control
objective. Then, desired control design is proposed in Section
III. In Section IV, a SPA RBFNN controller is proposed. The
performance of trajectory tracking and the system’s stability
are all proved. Simulations for the CMD system are given in
Section V to show the effectiveness of the developed scheme.
Section VI concludes the paper.

II. SYSTEM DESCRIPTION

Consider the SISO nonlinear system in the presence of
external disturbance described by:

ẋ1 = x2

ẋ2 = f1 (x1, x2, x3)
ẋ3 = x4

ẋ4 = f2 (x) + f3(x)u + d(t)
y = x1 (1)

where x = [x1 x2 x3 x4]
T ∈ R4 and y ∈ R denote the

state vector and output respectively. u ∈ R represents control
input; f1 (x1, x2, x3), f2 (x) and f3 (x) are unknown nonlinear
smooth functions; d (t) is the external disturbance bounded by
a positive constant d0, i.e., |d (t)| ≤ d0. Since all physical
quantities are in limited region, the state x belongs to a
compact subset Φ ∈ R4.

Define the desired trajectory vector yd, the tracking error e
and an error function s as

yd =
[

xd ẋd ẍd
...
xd

]T
(2)

e = [e1 e2 e3 e4]
T = [e1 ė1 ë1

...
e 1]

T

=
[

x1 − xd x2 − ẋd f1 − ẍd ḟ1 − ...
xd

]T
(3)

s = c1e1 + c2e2 + c3e3 + e4 (4)

where ci > 0, i = 1, 2, 3 are appropriately chosen such that
polynomial λ3 + c3λ

2 + c2λ + c1 is Hurwitz, i.e., e → 0 as s
→ 0. The desired trajectory vector yd ∈ Φd ⊂ R4 is assumed
known and continuous. ẋd, ẍd,

...
xd represent first, second, and

third order time derivative of xd, respectively. The objective
is to force x1 to follow xd.

From (1), (3) and (4), the time derivative of s can be written
as

ṡ = c1ė1 + c2ė2 + c3ė3 + ė4

= c1 (x2 − ẋd) + c2 (f1 − ẍd)

+ c3

(
∂f1

∂x1
x2 +

∂f1

∂x2
f1 +

∂f1

∂x3
x4 − ...

xd

)

+
d

dt

(
∂f1

∂x1
x2

)
+

d

dt

(
∂f1

∂x2
f1

)
+

d

dt

(
∂f1

∂x3

)
x4

+
∂f1

∂x3
[f2 (x) + f3 (x) u + d (t)]− ...

xd

= v + f4 (x) u + d (t) (5)

where

f1 = f1 (x1, x2, x3)

f4 (x) =
∂f1

∂x3
f3 (x)

v = c1 (x2 − ẋd) + c2 (f1 − ẍd)

+ c3

(
∂f1

∂x1
x2 +

∂f1

∂x2
f1 +

∂f1

∂x3
x4 − ...

xd

)

+
d

dt

(
∂f1

∂x1
x2

)
+

d

dt

(
∂f1

∂x2
f1

)
+

d

dt

(
∂f1

∂x3

)
x4

+
∂f1

∂x3
f2 (x)− ....

x d.

Assumption 1: The sign of f4 (x) is known and f4 (x) 6= 0,
∀x ∈ Φ. Without loss of generality, we could assume f4 (x) >
0 because of the sign of f4 (x) being known.

Assumption 2: There is a smooth function f̄4 (x) such that
|f4 (x)| ≤ f̄4 (x), and f̄4 (x) is bounded as f̄4 (x) ≤ f̄4 ∈ R.

III. DESIRED CONTROLLER DESIGN

In order to design the desired controller ū, we first assume
that f1 (x1, x2, x3), f2 (x) and f3 (x) are known, and the
system is ideal and has no disturbance, i.e., d (t) = 0.

Theorem 1: Considering (1), Assumptions 1 and 2, and d (t)
= 0, the desired controller is designed by

ū = − 1
f4 (x)

{
v +

[
1
ε

+
1

εf4 (x)
− ḟ4 (x)

2f4 (x)

]
s

}
(6)

where ε is a positive parameter. Thus, we obtain the result of
limt→∞ ‖e (t)‖ = 0.

Proof: Setting u = û and substituting (6) into (5), we obtain

ṡ = −
(

1
ε

+
1

εf4 (x)
− ḟ4 (x)

2f4 (x)

)
s

= −
(

1
ε

+
1

εf4 (x)

)
s +

ḟ4 (x)
2f4 (x)

s. (7)

Choosing a Lyapunov function as V = 1
2f4(x)s

2, we get the
time derivative of it as follows:

V̇ =
1

f4 (x)
sṡ− ḟ4 (x)

2f2
4 (x)

s2

=
1

f4 (x)
s

[
−

(
1
ε

+
1

εf4 (x)

)
s +

ḟ4 (x)
2f4 (x)

s

]
− ḟ4 (x)

2f2
4 (x)

s2

= −
(

1
εf4 (x)

+
1

εf2
4 (x)

)
s2 ≤ 0 (8)

Because of f4 (x) > 0 and stability theorem, the result V̇ ≤
0 indicates that limt→∞ |s| = 0, then we have limt→∞ ‖e (t)‖
= 0. ¥

According to (8), we come to the conclusion that the
convergence rate of the tracking error e is closely relevant
to the parameter ε. We change (6) into another form, where
the desired controller ū can be regarded as a function of the
following variable:
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ū = ū(α)

α =
[

xT s s
ε v

]T ∈ Φα ⊂ R7 (9)

and compact subset Φα is defined as

Φα =
{(

xT s s
ε v

) |x ∈ Φ ; yd ∈ Φd

}
. (10)

RBFNNs will be used to design the desired controller ū in
the following way. Since nonlinear smooth functions f1(x1,
x2, x3), f2(x) and f3(x) are unknown, the ideal controller ū
is not available. The reason why s/ε is also chosen in RBFNN
as input when s belongs to it is that it will make s and s/ε
differ largely when ε is very small.

Since ū in (9) is continuous on Φα, there exists an ideal
RBFNN weight vector W̄ as follows:

ū (α) = W̄T h (α) + µε, α ∈ Φα (11)

where µε is the RBFNN approximation error such that |µε| ≤
µ0, µ0 > 0, and the radial-basis function vector h (α) which
denotes the output of hidden layer is given by

h = [h1 h2 . . . hj . . . hm]T , j = 1, 2, . . . , m (12)

hj = exp

(
−‖α−Aj‖2

(bj)
2

)
, α ∈ Φα (13)

where α ∈ R7 is the input vector, and in this study the number
of input neural nets in the input layer is seven; m denotes
the number of hidden neural nets in the hidden layer; hj is
Gaussian function; Aj = [aj , aj , . . . , aj ]

T ∈ R7; a ∈ Rm and
b ∈ Rm represent the center of the receptive field and the
width of Gaussian function respectively. The ideal RBFNN
weight vector W̄ is bounded as

∥∥W̄
∥∥

F
≤ wmax, wmax > 0.

To improve the computational procedure, we define a pos-
itive constant as follows:

φ =
∥∥W̄

∥∥2

F
. (14)

Since ‖W̄‖F ≤ wmax, φ is obviously bounded. Let φ̂ be
the estimate of φ, and φ̃ = φ̂−φ. The norm of ideal RBFNN
weight vector W̄ will be estimated via φ̂ in following design,
which is the main contribution of this paper.

IV. ACTUAL CONTROLLER DESIGN

In this section, we propose a single parameter adaptive
(SPA) control method. The main contribution is that the
number of online adaptive parameters is decreased to only one
parameter φ̂, instead of a vector W̄ , thus shortening the time
on operation. The adaptive controller is designed as follows:

u = −1
2
sφ̂hT h. (15)

The adaptive law will be given later. Substituting (15) into
(5), we have

ṡ = v + f4 (x)
(
−1

2
sφ̂hT h

)
+ d (t) . (16)

Adding and subtracting f4 (x) ū (α) on the right-hand side
of (16) and from (11), respectively, we obtain

ṡ = v + f4 (x)
(
−1

2
sφ̂hT h− W̄T h− µε

)

+ f4 (x) ū (α) + d (t) . (17)

Then, substituting (6) into (17), it yields

ṡ = f4 (x)
(
−1

2
sφ̂hT h− W̄T h− µε

)

−
[

1
ε

+
1

εf4 (x)
− ḟ4 (x)

2f4 (x)

]
s + d (t) . (18)

Theorem 2: With the controller (15), and the adaptive law
˙̂
φ =

γ

2
s2hT h− κγφ̂ (19)

where γ > 0, κ > 0, the tracking error e(t) in (3) is bounded in
the compact subset Φ for all time, and can be made arbitrarily
small by using appropriate parameters. The closed-loop system
is uniformly ultimately bounded and the state x1 will follow
the desired trajectory xd.

Proof: A Lyapunov function could be denoted as

V =
1
2

(
s2

f4 (x)
+

1
γ

φ̃2

)
. (20)

Differentiating (20) with respect to time, and from (18), we
have

V̇ =
sṡ

f4(x)
− ḟ4(x)

2f2
4 (x)

s2 +
1
γ

φ̃
˙̂
φ

=
s

f4 (x)

[
f4 (x)

(
−1

2
sφ̂hT h− W̄T h− µε

)]

− s

f4(x)

[(
1
ε

+
1

εf4(x)
− ḟ4(x)

2f4(x)

)
s + d(t)

]

− ḟ4(x)
2f2

4 (x)
s2 +

1
γ

φ̃
˙̂
φ

=− 1
2
s2(φ̃ + φ)hT h− sW̄T h

−
(

1
εf4 (x)

+
1

εf2
4 (x)

)
s2 − d (t)

f4 (x)
s− µεs +

1
γ

φ̃
˙̂
φ.

(21)

Using the facts that

s2φhT h + 1 = s2
∥∥W̄

∥∥2
hT h + 1 ≥ −2sW̄T h

∣∣∣∣
d (t)
f4 (x)

s

∣∣∣∣ ≤
s2

εf2
4 (x)

+
ε

4
d2 (t)

|µεs| ≤ s2

2εf4 (x)
+

ε

2
µ2

εf4 (x) ≤ s2

2εf4 (x)
+

ε

2
µ2

εf̄4

and noting that |µε| ≤ µ0, |d (t)| ≤ d0, we obtain

V̇ ≤ φ̃

(
−1

2
s2hT h +

1
γ
˙̂φ

)

−
(

1
εf4 (x)

+
1

εf2
4 (x)

)
s2 − d (t)

f4 (x)
s− µεs +

1
2

≤ φ̃

(
−1

2
s2hT h +

1
γ
˙̂φ

)
− s2

2εf4 (x)

+
ε

2
µ2

0f̄4 +
ε

4
d2
0 +

1
2
. (22)
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Considering the adaptive law (19), and from (22), we have

V̇ ≤− κφ̃φ̂− s2

2εf4 (x)
+

ε

2
µ2

0f̄4 +
ε

4
d2
0 +

1
2

≤− κ

2

(
φ̃2 − φ2

)
− s2

2εf4 (x)
+

ε

2
µ2

0f̄4 +
ε

4
d2
0 +

1
2

≤− κ

2
φ̃2 − s2

2εf4 (x)
+

ε

2
µ2

0f̄4 +
ε

4
d2
0 +

(
1
2

+
κ

2
φ2

)
.

Setting κ = η/γ, η > 0, we obtain

V̇ ≤ − η

2γ
φ̃2 − s2

2εf4 (x)
+

ε

2
µ2

0f̄4 +
ε

4
d2
0 +

1
2

+
η

2γ
φ2

≤ −β0V + δ

where β0 = min{η, 1/ε}, δ = ε
2µ2

0f̄4 + ε
4d2

0 + 1
2 + η

2γ φ2.
Solving the above inequality using Lemma B.5 in [24], we
have

V (t) ≤ e−β0tV (0) + δ ×
∫ t

0

e−β0(t−τ)dτ

≤ e−β0t

[
V (0)− δ

β0

]
+

δ

β0
∀t ≥ 0. (23)

By the definition of V , we have V ≥ 1
2

s2

f4(x) . Thus, we

obtain |s| ≤
√

2f4 (x) V ≤
√

2f̄4V . From (23), and noting√
a + b ≤ √

a +
√

b (a > 0, b > 0), we obtain

|s| ≤
√

2f̄4

[
e−β0tV (0) +

δ

β0
(1− e−β0t)

]

≤
√

2f̄4

[
e−β0

t
2
√

V (0) +

√
δ

β0
(1− e−β0t)

]

≤
√

2f̄4

[
e−β0

t
2
√

V (0) +

√
δ

β0

]
∀t ≥ 0. (24)

Since V (0) is bounded, the inequality (24) shows that s

is bounded as limt→0 |s| ≤
√

2f̄4 ·
√

δ/β0, ∀t ≥ 0. The
inequality (23) also shows that V (t) is bounded which implies
φ̃ is bounded too. Thus, the closed-loop system is proven
uniformly ultimately bounded.

The inequality (24) indicates that the tracking error e(t)
converges to a small residual set Φ for all time, then the state
x in system (1) will follow the desired trajectory xd. The track-
ing error e(t) can be made arbitrarily small by appropriately
choosing the parameters ε, η and γ. The increases in γ and η,
or decrease in ε will make the tracking performance better. ¥

V. SIMULATION RESULTS

In order to prove the effectiveness of the control scheme, we
take a CMD system for simulation. Its schematic is shown in
Fig. 1, and the linearized dynamics in the presence of external
disturbance could be written as follows [23]:

Jlθ̈2 + c12θ̇2 + k
(
θ2 − g−1

r θ1

)
= 0

Jdθ̈1 + c11θ̇1 + kg−1
r

(
g−1

r θ1 − θ2

)
= Td + d (t) (25)

where θ1 is the drive angle position; θ2 is the load angle
position; Jl is the total inertias reflected at the load; Jd is

the total inertias reflected at the drive; gr = (rlrpl)/(rp2rd) is
the gear ratio; Td is control torque input; c11 is the drive rotary
damping (modeled as viscous); c12 is the load rotary damping
(modeled as viscous); d(t) is the external disturbance, and k
= 2klr

2
l is torsional spring constant.

Fig. 1. Schematic of CMD system.

Let x1 = θ2 and x3 = θ1 be the state variables, and u = Td

be the control input, then the dynamics (25) will be changed
into the form as follows:

ẋ1 = x2

ẋ2 = f1 (x1, x2, x3)
ẋ3 = x4

ẋ4 = f2 (x) + f3 (x) u + d (t)

where

f1 (x1, x2, x3) = −c12

Jl
x2 − k

Jl

(
x1 − g−1

r x3

)

f2 (x) = −c11

Jd
x4 − kg−1

r

Jd

(
g−1

r x3 − x1

)

f3 (x) =
1
Jd

.

The parameter values in (25) for simulation are given by Jd

= 0.000425 kg ·m2, Jl = 0.3575 kg ·m2, d (t) = sin (t), c12

= 0.05 (N ·m) · s/rad, c11 = 0.004 (N ·m · s)/rad, gr = 4,
k = 8.45 (N ·m)/rad.

The initial states are x(0) = [ 0.5 0 0 0 ]T , and the
desired signal is xd = sin t. The input vector of RBFNN
is α = [x1 x2 x3 x4 s s/ε v ]T . The network
structure 7-9-1 is used. The parameters of aj and bj in RBFNN
must be chosen according to the scope of the input value.
If the parameter values are chosen inappropriately, Gaussian
function will not be effectively mapped, and RBF network
will be invalid. In this example, according to the practical
scope of x1, x2, x3, x4, s, s/ε and v, from (10), for each
Gaussian function, the parameters of a and bj are designed as
a = 0.1× [−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 ] and bj =
5 respectively. The initial weight value is chosen as zero. In
the adaptive law (20), the initial condition is φ̂(0) = 0. The
filtered tracking gain parameters in (4) are chosen as c1 = 27,
c2 = 27, and c3 = 9. Fig. 2 shows the closed-loop RBFNN
adaptive control scheme.

The simulations with different design parameters are shown
in Figs. 3−6 to illustrate the tracking performance of the
controller. In Figs. 3 and 4, the parameter in the ideal feedback
control law (6) is taken as ε = 0.1 and the adaptation gain
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constants in the adaptive law (19) are given by η = 10
and γ = 10. In Figs. 5 and 6, the parameters are chosen
as ε = 0.01, η = 100 and γ = 100. Figs. 3−6 show the
different tracking errors and control inputs, illustrating the
effectiveness of the proposed scheme. By contrast, we validate
the conclusion that the smaller ε and larger η and γ may
improve the tracking performance of the closed-loop system.

Fig. 2. Block diagram of RBF control scheme.

Fig. 3. Position tracking performance with the parameters ε = 0.1, η = 10

and γ = 10.

Fig. 4. Control input with the parameters ε = 0.1, η = 10 and γ = 10.

VI. CONCLUSION

An adaptive RBFNN control method has been proposed in
this paper for a class of SISO nonlinear systems in the presence

of bounded disturbances. By designing adaptive controller and
adaptive law using a constant parameter, we prove uniform
ultimate boundedness of the closed-loop system. Finally, we
take the CMD system which satisfies the above mentioned
for simulation to confirm the effectiveness of the method. The
simulation results show the favorable performance on tracking
desired signal and verify the stability of the closed-loop
adaptive system through selecting the appropriate parameters.

Fig. 5. Position tracking performance with the parameters ε = 0.01, η =

100 and γ = 100.

Fig. 6. Control input with the parameters ε = 0.01, η = 100 and γ = 100.
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