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An Adaptive RBF Neural Network Control Method
for a Class of Nonlinear Systems

Hongjun Yang and Jinkun Liu

Abstract—This paper focuses on designing an adaptive radial
basis function neural network (RBFNN) control method for
a class of nonlinear systems with unknown parameters and
bounded disturbances. The problems raised by the unknown
functions and external disturbances in the nonlinear system are
overcome by RBFNN, combined with the single parameter direct
adaptive control method. The novel adaptive control method
is designed to reduce the amount of computations effectively.
The uniform ultimate boundedness of the closed-loop system is
guaranteed by the proposed controller. A coupled motor drives
(CMD) system, which satisfies the structure of nonlinear system,
is taken for simulation to confirm the effectiveness of the method.
Simulations show that the developed adaptive controller has
favorable performance on tracking desired signal and verify the
stability of the closed-loop system.

Index Terms—Adaptive control, neural network (NN), nonlin-
ear system, radial basis function.

I. INTRODUCTION

DAPTIVE control has been successfully used for de-

signing controllers for uncertain dynamic systems. The
principal theory in adaptive control utilizes output feedback in
the model-free unknown system [1], [2]: direct and indirect.
Direct adaptive control, which we use in this study, intends
that the parameters of the controller are directly regulated to
reduce the output error between the desired model and the
controlled plant. A direct adaptive control scheme for tracking
the end effector of a two-link flexible-joint manipulator has
been developed in [3]. In [4], a direct adaptive neural control is
proposed for a class of uncertain non-affine nonlinear systems
with unknown non-symmetric input saturation. The apparent
advantage of direct adaptive control is the high computational
efficiency. With direct approach [5], [6], the controllers compel
the feedback system to track as closely as possible a desired
signal with unknown parameters dynamics. In addition, the
approaches given in [7] and [8] introduce indirect adaptive
control scheme for underwater vehicle-manipulator systems
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(UVMSs) and the synchronization of chaotic systems sepa-
rately.

Neural networks (NNs) are well known for their ability
to approximate uncertainties in model-uncertain systems with
complex and unknown functions. Many NN controllers are
used with adaptive control technique [9]—[11]. The main
performance of the scheme is that controller does not depend
on the accurate structural information and model parame-
ters for the plants. To design a neural network controller,
multivariable feedback linearization is employed in [12] to
convert the nonlinear model to linear one. To solve the control
problem with uncertain parameters, neural network control
combined with sliding mode control [13], model predictive
control [14], back stepping control [15], and iterative adaptive
dynamic programming algorithm [16] have been developed for
a large class of nonlinear systems. Radial basis function neural
networks (RBFNNs) have been successfully used in variety of
applications widely and accepted to be an effective method
for solving many control problems with dynamic uncertainty
[17]. A RBFNN is employed to adaptively learn an upper
bound of uncertain dynamics of a battery equivalent circuit
model in real time [18]. In [19], a RBFNN approach with
a fusion of multiple signal candidates in precision motion
control is studied. The authors in [20] have studied the robust
Mars atmospheric entry guidance design based on RBFNNs
and second-order sliding mode control. A new approach that
combines fuzzy control with RBFNNs is proposed in [21]
to improve the single neuron proportional-integral-derivative
(PID) control technology.

In this paper, we focus on developing an adaptive RBFNN
control method for a class of unknown single-input single-
output (SISO) nonlinear systems with bounded external dis-
turbances. In [22], an adaptive controller has been proposed for
a class of unknown nonlinear systems using high-order neural
networks, which avoids singularity problem and guarantees
regional stability of the closed-loop system. However, the form
of system in it may be a little conservative. Based on [22],
we propose a novel adaptive RBFNN control whose main
contributions are summarized as follows:

1) We propose a single parameter adaptive (SPA) control
method to reduce the amount of NN computations. The
method can make the number of online adaptive parameters
drop to only one, shortening the time on operation. With this
method, the adaptive controller is designed concisely.

2) The SPA control method can be applied to the system
with more complex and indeterminate dynamic model, com-
pared with [22]. Thus, the SPA method is more general.

The uniform ultimate boundedness of the closed-loop
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system is guaranteed by the proposed controller. The dynamic
model of coupled motor drives (CMD) system [23], which is
commonly used in industrial robots, exactly satisfies the struc-
ture of the nonlinear systems in this study. It is finally taken for
simulation to confirm the performance of the proposed control
scheme. The distinct simulations illustrate the effectiveness of
the proposed scheme and guarantee the stability of the closed-
loop system.

The paper is organized as follows. Section II presents the
dynamic model of the SISO nonlinear system and control
objective. Then, desired control design is proposed in Section
III. In Section IV, a SPA RBFNN controller is proposed. The
performance of trajectory tracking and the system’s stability
are all proved. Simulations for the CMD system are given in
Section V to show the effectiveness of the developed scheme.
Section VI concludes the paper.

II. SYSTEM DESCRIPTION

Consider the SISO nonlinear system in the presence of
external disturbance described by:

i’1:CE2

&9 = fi1 (z1,22,x3)

T3 =14

&y = fo(x) + fa(x)u+d(t)

Y= (1)
where x = [z 22 23 u]T € R* and y € R denote the

state vector and output respectively. « € R represents control
input; f1 (z1,22,3), f2 () and f3 (z) are unknown nonlinear
smooth functions; d (t) is the external disturbance bounded by
a positive constant dy, i.e., |d (¢)| < dp. Since all physical
quantities are in limited region, the state x belongs to a
compact subset ® € R*.

Define the desired trajectory vector y4, the tracking error e
and an error function s as
Ya=[ va Ea Fa Ty ]T 2)

T . e e T
e=le; e2 e3 eq] =[e1 €1 €1 €1]

z[xl—:cd To— kg f1—Za fl—a:d] 3)
§ = c1e1 + coea + Cc3e3 + €4 (€]

where ¢; > 0, ¢+ = 1,2, 3 are appropriately chosen such that
polynomial A3 + c3A\? 4 co\ + ¢; is Hurwitz, ie., e — 0 as s
— 0. The desired trajectory vector 34 € ®4 C R* is assumed
known and continuous. &4, &4, T4 represent first, second, and
third order time derivative of x4, respectively. The objective
is to force x to follow x4.

From (1), (3) and (4), the time derivative of s can be written
as

§ = c161 + Coéo + C3€3 + €4
= c1 (vg — 1q) +c2 (f1 — Ta)

Oh, O, Oh
tes (al’lxz + 812 Lt 8x3x4 Td
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fa(z) = Des 3 ()

v=cy (X2 —2q) + 2 (f1 — &q)
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Assumption 1: The sign of fy (z) is known and fy (z) # 0,
Va € ®. Without loss of generality, we could assume f4 () >
0 because of the sign of f4 (z) being known.

Assumption 2: There is a smooth function f; (z) such that
o (@)] < fa(x), and fi(x) is bounded as fy () < fi € R.

III. DESIRED CONTROLLER DESIGN

In order to design the desired controller «, we first assume
that fy (x1,29,23), fo(z) and f5(z) are known, and the
system is ideal and has no disturbance, i.e., d (t) = 0.

Theorem 1: Considering (1), Assumptions 1 and 2, and d ()
= 0, the desired controller is designed by

ﬂ——il v+ L 1
 fa(@)

fa (@)
-+ - s (6)
e efa(z)  2fi(x)
where ¢ is a positive parameter. Thus, we obtain the result of

lim; oo ||e (t)]] = 0.
Proof: Setting u = 4 and substituting (6) into (5), we obtain

. (1 1 fa(w) s
= <5+5f4(x) 2f4(x)>

1 1 fa()
=—| -+ 5+ S. 7)
(s T <x>> 271 (@) (
Choosing a Lyapunov function as V' = Qf%(m)sz, we get the
time derivative of it as follows:

1 sé f4 () »

AT T

by, N ) | fae)

AT [ <6+€f4(w)> *mm] 277 ()

:_< i1 >52<0 (8)
@) @)

Because of f, (x) > 0 and stability theorem, the result V<
0 indicates that lim;_, . |s| = 0, then we have lim;_. ||e ()]
=0. ]

According to (8), we come to the conclusion that the
convergence rate of the tracking error e is closely relevant
to the parameter €. We change (6) into another form, where
the desired controller # can be regarded as a function of the
following variable:
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and compact subset ®,, is defined as

Po={(x" s 2 v)|zec®; ysc Pa}. (10)

RBFNNs will be used to design the desired controller @ in
the following way. Since nonlinear smooth functions fi(x1,
X2, 3), fa(x) and f5(z) are unknown, the ideal controller @
is not available. The reason why s/e is also chosen in RBFNN
as input when s belongs to it is that it will make s and s/e
differ largely when ¢ is very small.

Since u in (9) is continuous on &, there exists an ideal

RBFNN weight vector W as follows:
u(a) = (11

where p. is the RBFNN approximation error such that |u.| <
o, o > 0, and the radial-basis function vector h («) which
denotes the output of hidden layer is given by

WTh( )"‘Hea ac P,

h=Ihihy ... hj ...

hlt, i=1,2,....m
— AP
hj—exp<”a;|>, o€ P,
(b5)

where o € R7 is the input vector, and in this study the number
of input neural nets in the input layer is seven; m denotes
the number of hidden neural nets in the hidden layer; h; is
Gaussian function; A; = [a;,a;, ... ,aj]T €R"; ¢ € R™ and
b € R™ represent the center of the receptive field and the
width of Gaussian function respectively. The ideal RBFNN
weight vector TV is bounded as HWH » < Wmaxs Wmax > 0.

To improve the computational procedure, we define a pos-
itive constant as follows:

12)

13)

=112
¢ =Wl (14)

Since |W|| < Wmax, ¢ is obviously bounded. Let ¢ be
the estimate of ¢, and ¢ gi) ¢. The norm of ideal RBFNN
weight vector W will be estimated via ¢ in following design,
which is the main contribution of this paper.

IV. ACTUAL CONTROLLER DESIGN

In this section, we propose a single parameter adaptive
(SPA) control method. The main contribution is that the
number of online adaptive parameters is decreased to only one
parameter ¢, instead of a vector W, thus shortening the time
on operation. The adaptive controller is designed as follows:

1 -
u = —§s¢hTh. (15)

The adaptive law will be given later. Substituting (15) into
(5), we have

. 1~
s§=v+ f1(x) (—QquhTh) +d(t). (16)

Adding and subtracting fy (z) @ («) on the right-hand side

of (16) and from (11), respectively, we obtain

$=uv+ fi(r) (;sqghTh ~WTh - ue)

+ fa(@)u(a)+d(t). a7
Then, substituting (6) into (17), it yields
$=fi(x) (;sqghTh —WTh - ue)
1 1 fa(x)
- |- — d(t). 18
L‘ EEACEPAT] M A

Theorem 2: With the controller (15), and the adaptive law

¢ = %sthh — K (19)
where v > 0, k > 0, the tracking error e(t) in (3) is bounded in
the compact subset ® for all time, and can be made arbitrarily
small by using appropriate parameters. The closed-loop system
is uniformly ultimately bounded and the state x; will follow
the desired trajectory zg4.

Proof: A Lyapunov function could be denoted as

(2t
_2<f4(x)+v¢ |

Differentiating (20) with respect to time, and from (18), we
have

(20)

V:

s-i-(i)qb
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1 fa(x)
e ( T h@ 2f4(x)> s
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Using the facts that
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and noting that || < po, |d(t)] < do, we obtain
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- 2 Y 2€f4 (33)
R @)
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Considering the adaptive law (19), and from (22), we have

2 € 52 € 1
+ Subfa+ Jd3 + 5

VETr T (x) 2
K 52
K~ 2 1 K,
< - §¢ %1 (2) 2M0f4+ do <2+2¢>.

Setting k = 1/7, n > 0, we obtain

s2

2€f4 (.I)

N 72
< —— —
V< 27¢>
< BV +6

€ 97 € 1 N 2
= SR
+2%ﬁ+40+2+%¢

where fy = min{n,1/e}, & = §pifs + §di + 5 + 3£6°
Solving the above inequality using Lemma B.5 in [24], we
have

t
1/@)ge—%n/m)+5>§/ e=Polt=7) g
0
ot 51 . 0
< e PV (0) — 4+ — Vt>0. 23)
Bol ' Bo
By the definition of V, we have V > 1 fs(z) Thus, we
obtain |s| < \/ 2f4 () V < \/ 2f4V. From (23), and noting

Va+b Sf+\[(a>0,b>0),we0bta1n

sl < \/2f4 e-sor/ (0) + i(1 - eﬁot)}
o

2fs *ﬁofzﬁﬂ/ (1—e" ﬁot)l

2fs [e P02 /V (0) + \/El Vt>0.  (24)
0

Since V (0) is bounded, the inequality (24) shows that s
is bounded as limy_q|s| < v/2f1 - \/6/Bo. V¢t > 0. The
inequality (23) also shows that V' (¢) is bounded which implies
qg is bounded too. Thus, the closed-loop system is proven
uniformly ultimately bounded.

The inequality (24) indicates that the tracking error e(t)
converges to a small residual set ® for all time, then the state
x in system (1) will follow the desired trajectory x4. The track-
ing error e(t) can be made arbitrarily small by appropriately
choosing the parameters ¢, 7 and ~. The increases in v and 7,
or decrease in € will make the tracking performance better. B

V. SIMULATION RESULTS

In order to prove the effectiveness of the control scheme, we
take a CMD system for simulation. Its schematic is shown in
Fig. 1, and the linearized dynamics in the presence of external
disturbance could be written as follows [23]:

Jifs + 1209 + k (02— g.'601) =0
Jdél + 61191 + k:gr_l (9;101 — 92) =Ty + d(t)

where 6; is the drive angle position; 6y is the load angle
position; J; is the total inertias reflected at the load; J; is

(25)
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the total inertias reflected at the drive; g, = (ryrp;)/(rpera) is
the gear ratio; T} is control torque input; ci; is the drive rotary
damping (modeled as viscous); cy2 is the load rotary damping
(modeled as viscous); d(t) is the external disturbance, and k
= 2kyr? is torsional spring constant.

Rotary damping

Drive

Fig. 1. Schematic of CMD system.

Let 1 = 05 and x3 = 6, be the state variables, and u = T},
be the control input, then the dynamics (25) will be changed
into the form as follows:

il = X2
&g = f1(x1, 22, 3)
.’i‘g = X4

iy = fa(z)+ f3(x)u+d(t)

where
fi(z1, w2, 23) = *%2 2 — % (z1 — g, 'as)
f2(z) = *% 4 k:qul (g, 'ws —a1)
fa(x) = Jid'

The parameter values in (25) for simulation are given by J;
= 0.000425 kg - m?, J; = 0.3575 kg - m?, d (t) = sin (t), c12
= 0.05(N-m) -s/rad, ¢11 = 0.004(N-m-s)/rad, g, = 4,
k = 8.45(N-m)/rad.

The initial states are z(0) = [0.5 0 0 0]7, and the
desired signal is x4 = sint. The input vector of RBFNN
is a = [z w2 x3 x4 s s/e wv]|T. The network
structure 7-9-1 is used. The parameters of a; and b; in RBFNN
must be chosen according to the scope of the input value.
If the parameter values are chosen inappropriately, Gaussian
function will not be effectively mapped, and RBF network
will be invalid. In this example, according to the practical
scope of 1, x2, T3, x4, S, $/¢ and v, from (10), for each
Gaussian function, the parameters of a and b; are designed as
a=01x[-2 —-15 -1 =05 0 0.5 1 1.5 2]and b; =
5 respectively. The initial weight value is chosen as zero. In
the adaptive law (20), the initial condition is ¢(0) = 0. The
filtered tracking gain parameters in (4) are chosen as ¢; = 27,
co = 27, and c3 = 9. Fig.2 shows the closed-loop RBFNN
adaptive control scheme.

The simulations with different design parameters are shown
in Figs.3—6 to illustrate the tracking performance of the
controller. In Figs. 3 and 4, the parameter in the ideal feedback
control law (6) is taken as € = 0.1 and the adaptation gain
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constants in the adaptive law (19) are given by n = 10
and v = 10. In Figs.5 and 6, the parameters are chosen
as ¢ = 0.01, n» = 100 and v = 100. Figs.3—6 show the

different tracking errors and control inputs, illustrating the
effectiveness of the proposed scheme. By contrast, we validate
the conclusion that the smaller € and larger n and v may
improve the tracking performance of the closed-loop system.

Adaptive
mechanism

RBFNN u
> controller

/

Plant >

\ J

Fig.2. Block diagram of RBF control scheme.

Desired signal x,
True signal x,

x; and x,(rad)

0 5 10 15 20

Time (s)
0.5 T T T
=)
5
=
2
s Or
an
-§
=
£
& _05 . . .
0 5 10 15 20
Time (s)
Fig.3. Position tracking performance with the parameters € = 0.1, n = 10
and v = 10.
0.3 T
02r ]
_0lf .
g
Z
= 0 -t -
=
a
g
E*O.l F g
=
o
C—g2t 1
_03 L 4
_04 L 1 !
0 5 10 15 20
Time (s)

Fig.4. Control input with the parameters € = 0.1, n = 10 and v = 10.

VI. CONCLUSION

An adaptive RBFNN control method has been proposed in
this paper for a class of SISO nonlinear systems in the presence

of bounded disturbances. By designing adaptive controller and
adaptive law using a constant parameter, we prove uniform
ultimate boundedness of the closed-loop system. Finally, we
take the CMD system which satisfies the above mentioned
for simulation to confirm the effectiveness of the method. The
simulation results show the favorable performance on tracking
desired signal and verify the stability of the closed-loop
adaptive system through selecting the appropriate parameters.

Desired signal x,

....... True signal x,

x, and x,(rad)

0 5 10 15 20
Time (s)
0.5 i
=)
g
5
5 of
on
=}
£
£
E o5 ‘ ‘ .
5 10 15 20
Time (s)

Fig.5.
100 and v = 100.

Position tracking performance with the parameters ¢ = 0.01, n =

0.3 J

021 1

put # (N'm)
e
o —_
T .

Control‘ iny
I

|
<o
&)
T
.

|
o
w

T

.

10 15 20
Time (s)

|
<
o~
[=)
ok

Fig.6. Control input with the parameters ¢ = 0.01, 7 = 100 and v = 100.
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