
IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018 445

An Online Fault Detection Model and Strategies
Based on SVM-Grid in Clouds

PeiYun Zhang, Senior Member, IEEE, Sheng Shu, and MengChu Zhou, Fellow, IEEE

Abstract—Online fault detection is one of the key technologies
to improve the performance of cloud systems. The current data
of cloud systems is to be monitored, collected and used to reflect
their state. Its use can potentially help cloud managers take some
timely measures before fault occurrence in clouds. Because of
the complex structure and dynamic change characteristics of the
clouds, existing fault detection methods suffer from the problems
of low efficiency and low accuracy. In order to solve them, this
work proposes an online detection model based on asystematic
parameter-search method called SVM-Grid, whose construction
is based on a support vector machine (SVM). SVM-Grid is used
to optimize parameters in SVM. Proper attributes of a cloud
system’s running data are selected by using Pearson correlation
and principal component analysis for the model. Strategies of
predicting cloud faults and updating fault sample databases are
proposed to optimize the model and improve its performance.
In comparison with some representative existing methods, the
proposed model can achieve more efficient and accurate fault
detection for cloud systems.

Index Terms—Cloud computing, fault detection, support vector
machine (SVM), grid.

NOTATIONS
BAC-score Balance accuracy score
CRM Client relation management
ELM Extreme learning machine
LVQ Learning vector quantization
NCZ Not crossing zero
PCA Principal component analysis
RBF Radial basis function
SVM Support vector machine
VM Virtual machines
A1 The normal sample set obtained from the first stage
B1 The abnormal sample set obtained from the first stage
C Parameter C in an SVM model
D The set of samples from a cloud system
D′ The set of all new samples

Manuscript received July 24, 2017; accepted November 10, 2017. This
work was supported by the National Natural Science Foundation of China
(61472005, 61201252), and CERNET Innovation Project (NGII20160207).
Recommended by Associate Editor Xiaoou Li. (Corresponding author: PeiYun
Zhang and MengChu Zhou.)

Citation: P. Y. Zhang, S. Shu, and M. C. Zhou, “An online fault detection
model and strategies based on SVM-grid in clouds,” IEEE/CAA J. of Autom.
Sinica, vol. 5, no. 2, pp. 445−456, Mar. 2018.

P. Y. Zhang and S. Shu are with the School of Mathematics and Com-
puter Science, Anhui Normal University, Wuhu 241003, China (e-mail:
zpyanu@ahnu.edu.cn; mrshusheng@163.com).

M. C. Zhou is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102, USA and also with
the Renewable Energy Research Group, King Abdulaziz University, Jeddah,
21589, Saudi Arabia (e-mail: zhou@njit.edu).

Digital Object Identifier 10.1109/JAS.2017.7510817

Ď The set of all old abnormal samples
DB The database of samples
Mi The ith principal component
Pi The fault probability
R The cumulative contribution ratio
T A given test set of samples
V The classified set after fine prediction
||W || ||W || =

√
2(f1 + f2)

Xn×m The matrix of all attributes
Yn×m The normalized attribute matrix of Xn×m

ai ai ∈ D′

bj bj ∈ Ď

b∗ The offset of the decision function
cmin The lower bound of C

cmax The upper bound of C

di di ∈ D

f(w) Decision function for classification in an SVM
f1 The objective function value from a trained SVM
f2 The sum of αi from a trained SVM
g Parameter g in an SVM model
gmin The lower bound of g

gmax The upper bound of g

lj w′j s label
pi The eigen vectors
rjp Correlation coefficient between standardized attributes j

and p

r The contribution ratio of the principal component Mi

step1 A preset used to increase the value of C

step2 A preset used to increase the value of g

vi vi ∈ V

w An input vector of a sample
wj The vector of a sample j

yij yij is an entry in Yn×m

α The required training error
αi Lagrange multiplier
α∗i The solution to (1)
µ The threshold in parameter optimization
Θ The threshold for fine fault prediction
γ The threshold for updating cloud faults
λ Learning rate

I. INTRODUCTION

THE past decade has witnessed the rapid development
and wide applications of cloud computing technology.

Many large IT companies have launched their own cloud
platforms, such as Google, Alibaba and Amazon cloud. Open
source technologies have gained much development for cloud
computing, including Eucalyptus and OpenStack. Currently,

446 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018

e-commerce, social networks [1] and other Internet services
[2] have become inseparable parts of people’s daily work
and life. Many applications are deployed on cloud platforms,
such as saleforce client relation management (CRM). Many
researchers are devoted to cloud scheduling [3]−[5], and
resource allocation [6] so as to improve the quality of cloud
services [7]−[9]. However, the complexity and diversity of
cloud applications and environment bring about cloud faults
from time to time, which affect the quality of services. The
faults not only have a huge bad impact on people’s normal life
and work, but also cause serious economic losses in business.
For example, the Amazon crash happened in August 2013
in less than an hour, resulted in about $5 million loss, and
badly affected numerous customers. Efficient monitoring and
accurate detection of cloud faults are prerequisites for stable
operations of cloud services.

Faults in distributed systems are generally caused by hard-
ware faults and software failures. For example, software bugs
related to deadlocks, concurrency and other complex relations
account for 15 %−80 % [10] of all software failures detected
after release [11], [12]. These kinds of failures are randomly
produced and are difficult to be reproduced. These software
failures are hard to be detected in software development and
testing phases. It is also difficult for system managers to
manually track their statuses at run time. Although virtualiza-
tion provides software failure isolation among different virtual
machines (VM), the virtualization infrastructure including the
hypervisor and privileged VMs remains vulnerable to hard-
ware errors [13]. Hence, it is necessary for service providers to
adopt fault detection technologies in clouds, such as commonly
used online detection systems, which can predict cloud faults
before their happening and thus reduce the corresponding
loss. Tellme Networks discusses the time of fault recovery
in distributed systems. It shows that often 75 % of time is
used to detect faults, and 18 % of time is required to diagnose
faults [14]. Advanced fault detection strategies can be used to
avoid about 65 % of faults in clouds [15]. Therefore, efficient
and accurate detection of cloud faults can help ensure stable
operations and reliable services for cloud systems. There
are some online detection systems. However they face some
problems, such as low accuracy.

Traditional fault detection methods can detect faults when
the monitored running status deviates from the set values
[11]. However, existing solutions are hard to detect faults in a
large-scale dynamic distributed cloud computing environment
because of the following reasons [16]:

1) Elastic and on-demand services based on VMs in the
clouds produce many new issues, such as VM re-sizing, mi-
gration, and cloning in a dynamic cloud context. The dynamic
cloud environment makes applications change from time to
time with workloads and resource allocation.

2) Applications deployed in a large scale data center with
nodes make fault detection systems collect a large number of
sample attribute values from many layers, e.g., network and
hardware.

3) Because services are usually transparent to system oper-
ators, it is infeasible to use traditional methods to analyze
a service’s architecture, e.g., dependencies and interactions

among components. It is also difficult to detect faults without
domain knowledge.

Hence, new detection approaches for detecting faults are
highly demanded. We propose an online detection model
and strategies based on SVM-Grid for predicting emerging
problems in clouds. The proposed model mainly predicts faults
with the collected samples from the running status of cloud
systems. Some strategies are utilized to improve the detection
performance of the model.

The rest of the paper is organized as follows: Section
II gives a brief literature review. Section III introduces the
proposed model and gives its analysis. Section IV gives the
experimental results and their analysis. Section V makes some
conclusions and indicates the future work.

II. RELATED WORK

Many researchers have been devoted to the field of fault
detection. Fault detection models can be mainly divided into
two classes: rule and statistics-based ones.

A. Rule-based Detection Models

Rule-based detection models discern a fault based on its
characteristics. Fault databases are constructed based on prior
descriptions. When attributes of samples are matched with a
fault’s features in fault sample database, we claim that the
samples are fault ones. Their representative methods include:

1) Signature method: It defines fault characteristics as signa-
ture. Arefin et al. [17] propose a framework named FlowDiff
to model the behavior of a data center by using infrastructure,
application, and task signatures. The infrastructure signature
captures the physical topology of a network, the mapping of
applications to servers, and baseline performance parameters
(such as link utilization and end-to-end delay); application one
captures the behavior of each application (e.g., response time
distribution and flow statistics) and how applications interact
with each other; while task one models the valid behavioral
changes performed by the operator or applications (e.g., VM
migration).

2) Similarity judgment: It sets up a fault sample database
according to historical knowledge that includes fault charac-
teristics, faults occurrences and how to fix faults. Chen et al.
[18] present an instance-based approach to diagnose failures
by storing historical faults in a database and retrieving similar
instances in the occurrence of faults.

3) Decision tree: It can judge whether faults happen or not
based on mappings between object attributes and object values.
Kiciman et al. [19] propose a methodology by using a decision
tree for automated fault detection in Internet services, which
includes observing low-level internal structural behaviors of
services, modeling majority of system behaviors as correct
ones, and detecting anomalies in these behaviors as possible
symptoms of faults. Lin et al. [20] present an efficient adaptive
failure detection mechanism based on Volterra series that uses
a Volterra filter for time series prediction and a decision tree
for decision making.

ZHANG et al.: AN ONLINE FAULT DETECTION MODEL AND STRATEGIES BASED ON SVM-GRID IN CLOUDS 447

B. Statistics-based Detection Models

Statistics-based detection models construct fault detection
models based on the data collected from the cloud systems.
Important methods include:

1) Neural networks [21]−[26]. Liu et al. [21] propose a
prediction model based on an optimized neural network with
a multilevel genetic algorithm. Li et al. [22] describe a fault
diagnosis model based on a neural network, and establish
relations between network fault information and fault pattern
output. Yan et al. [23] adopt a neural network model to predict
faults in electric power communication systems. Tamura et al.
[24] use it to detect software faults in a cloud environment.
A neural network-based method is applied to intelligently
classify inverter switch faults [25].

2) Improved learning vector quantization (LVQ) based on
back propagation (BP) neural networks [27]−[30]. Malik et
al. [27] present an LVQ neural network for classification
problems. Li et al. [28] use it for fault classification for analog
circuits. Liu et al. [29] utilize it to classify samples into normal
samples and faults. Bassiuny et al. [30] combine empirical
mode decomposition and LVQ to detect faults.

3) Support vector machine (SVM) [31]−[38]. Lee et al.
[34] propose a detection model based on SVM to find open-
switch faults. SVM can be used to address two-class (normal
or abnormal) and multi-class problems [37]. Zhang et al. [38]
propose a method for predicting the types of weather via multi-
class SVM based on the photovoltaic (PV) power data and
partial meteorological data.

Both rule and statistics-based detection models have en-
countered their own challenges. The first one requires too
much information about the internal systems and the efficiency
of its online analysis is low. For the second one, neural
network-based methods require a large number of training
samples. In reality, it is extremely difficult to collect a suf-
ficient number of abnormal samples.

In contrast with the first one, in recent years, the second
one has attracted more researchers’ attention because of its
following advantages:

1) Neither historical knowledge, nor prior descriptions of
fault characteristics of cloud systems are required. statistics-
based detection models use the ports to monitor and collect
the running data of cloud systems without deeply knowing
the internal structure of cloud systems. Hence, it has a wide
application scope.

2) The corresponding characteristics of cloud systems can
be detected efficiently and accurately through online monitor-
ing of cloud systems and timely analysis of collected data.

As one of the popular statistics-based detection models,
Rahulamathavan et al. [37] point out that SVM has strong
mathematical foundations and high reliability in many practi-
cal applications. However, traditional SVM models suffer from
high time cost. Such high cost is caused by a) lack of opti-
mization of SVM parameters and b) lack of timely updating
of the sample space, which also result in low accuracy. Hence,
a new model is highly demanded to address these two issues.

We propose an online fault detection model based on SVM-
Grid, which targets at solving the above problems, including

improving the accuracy of detection and efficiency of tradi-
tional SVM models. The proposed model makes the following
improvements:

1) It uses a Grid method to optimize the parameters of
an SVM model to achieve fine-tuned prediction for higher
accuracy;

2) It uses a two-stage strategy for preliminary fault predic-
tion and fine prediction for cloud faults; and

3) It utilizes a novel strategy for updating the fault sample
database so as to further reduce the computational time of fault
detection.

Next, we present and analyze the proposed method.

III. CLOUD FAULT DETECTION MODEL
BASED ON SVM-GRID

The proposed model based on SVM-Grid is constructed as
follows:

1) A fault detection model is set up based on SVM. The Grid
method is based on [25]. We use it to optimize two important
parameters for the model and

2) Strategies for predicting cloud faults and updating fault
sample database are proposed and used to optimize the model
and improve its performance.

A. Fault Prediction Model

Some definitions related to the proposed model are given
before its introduction.

Normal samples are those collected when the cloud systems
run normally. Abnormal ones are those collected when they
run wrongly.

We treat cloud fault detection as a binary classification
problem. Let S be a given cloud sample training set.

S = {(w1, l1), (w2, l2), . . . , (wm, lm)}
where wj ∈ Rn is the vector of a sample j, j ∈ {1, 2, . . . , m}
and lj is its label.

lj =
{ −1,

1,
sample j is abnormal
sample j is normal

Based on SVM [44], we can transform a cloud fault
detection problem into the following second-order constrained
programming problem:

min
α

1
2

m∑
i=1

m∑
j=1

liljK(wi, wj)αiαj −
m∑

i=1

αi

s.t.
m∑

i=1

liαi = 0, 0 ≤ αi ≤ C
(1)

where i, j ∈ {1, 2, . . . , m}, αi and αj are the Lagrange
multipliers. K(wi, wj) is the kernel function. Parameter C
denotes the penalty dealing with constraint violation for the
model. The cloud fault detection problem is further translated
into finding the optimal hyperplane problem. Its decision
function is as follows:

f(w) = sgn
(m∑

i=1

liα
∗
i K(wi, w) + b∗

)
(2)

448 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018

where w is an input vector of a sample, a∗i is the solution to
(1) and b∗ is the offset.

When constructing a fault detection model based on SVM,
we first need to select an appropriate kernel function. The
commonly used ones include a linear kernel function, polyno-
mial kernel function and radial basis function (RBF). RBF can
approximate any nonlinear function. It has good generalization
ability with fast convergence. It also has fewer parameters
to be determined. It can reduce a model’s complexity and
improve efficient prediction for faults. Hence, we adopt RBF
as the kernel function of the proposed fault detection model.

There are two key parameters C and g of SVM in the
proposed model to be optimized. Motivated by [39], we use
the Grid method to do so as shown in Algorithm 1.

Algorithm 1. Parameter Optimization

Input: cmin, cmax, gmin, gmax, step1, step2, DB. /*DB

is the database of samples */

Output: C, g

Begin

1 C = 0; g = 0;

2 Max = 0;

3 DB ← Get samples from the fault sample database;

4 For C = 2 ∧ (cmin) to 2 ∧ (cmax)

5 For g = 2 ∧ (gmin) to 2 ∧ (gmax)

6 invoke acc(C, g) based on DB;/* invoke acc

7 function from libSVM to compute accuracy */

8 Max = arg max{acc(C, g)};

9 C+=step1;

10 EndFor

11 g+=step2;

12 EndFor

13 IF(Max > µ) /* µ is the threshold of Max */

14 Return C, g;

15 Else

16 DB ← add new samples;

17 Goto Line 2;

18 EndIf

End

Algorithm 1 aims to find the best values for parameters C
and g in a hyper plane. The ranges of parameters C and g
are derived from (2−10, 210). In Lines 9 and 11, step1 and
step2 are two preset values that are used to increase the values
of C SPACE needed before ”and” and g respectively. We set
cmin = gmin = 2−10 and cmax = gmax = 210. If the
accuracy of the trained model cannot satisfy the requirement,
we need to add additional samples from the existing dataset
to re-train it until the requirement is satisfied. If there are no
more additional samples for retraining, we have to decrease
the accuracy requirement, i.e., decreasing the threshold in
Algorithm 1.

Based on the proposed model with optimized parameters C
and g, the normal and abnormal samples for training are used
to train the model. After training, a hyperplane is obtained.

We add two strategies to the obtained model to improve its
performance, i.e., fault prediction strategy and fault updating
one.

B. Fault Prediction Strategy

The cloud fault prediction strategy has two stages.
1) Preliminary fault prediction
At the first stage, we use the hyperplane of the trained

SVM model to divide samples into two classes: normal and
abnormal samples, i.e., set A1 with normal samples and B1

with abnormal ones. We predict the fault probability based
on the distance from abnormal samples to the SVM hyper-
plane. The bigger the distance, the greater fault probability.
Because of SVM’s inaccuracy, some abnormal samples may
be misclassified as normal ones. Let T be a given testing set
of samples.

T = {w1, w2, . . . , wm}.
The preliminary fault prediction is realized in Algorithm 2.

Algorithm 2. Preliminary Fault Prediction

Input: C, g, T/* C and g come from Algorithm 1. T is a given sample set */

Output: V, f1, f2

Begin

1 SVMtrain (C, g, T);

2 f1 ← The objective value from a trained SVM;

3 f2 ← The sum of αi from a trained SVM;

4 V ← svmpredict(T);

5 Return V, f1, f2;

End

Algorithm 2 gives a preliminary fault prediction. For abnor-
mal samples near the hyperplane, they may sway much and
have a greater likelihood to be misclassified as normal ones.
If they are used for fault prediction, they may lead to low
accuracy. Hence, we use the second stage prediction strategy
to improve the prediction accuracy.

2) Fine prediction for cloud faults
The first stage has preliminarily classified all samples into

normal and abnormal ones. We have to deal with those
abnormal samples (near the hyperplane) that are misclassified
as normal ones. After the hyperplane is obtained, the fault
probability Pi for sample i to be a fault is as follows:

Pi =
|vi|/||W ||

argmax{|vi|/||W ||} (3)

where vi ∈ V is the decision value of sample i from the first
stage classification. vi is negative if sample i is abnormal;
otherwise positive. vi can be zero in theory (i.e., an undecided
sample), but we have not obtained any zero results in our
experiments. ||W || =

√
2(f1 + f2). Note that V, f1 and f2

come from the output of Algorithm 2. The process of fine-
tuned fault prediction is proposed in Algorithm 3.

In Algorithm 3, Θ ∈ (0, 1) is the threshold of the fault
probability of samples. When P [i] ≤ Θ, we regard sample

ZHANG et al.: AN ONLINE FAULT DETECTION MODEL AND STRATEGIES BASED ON SVM-GRID IN CLOUDS 449

i as an abnormal one. We use B2 to denote the set of the
abnormal samples obtained from the second stage.

Algorithm 3. Fine Fault Prediction
Input: V, f1 and f2/* They come from the output of Algorithm 2*/
Output: V /* classified results after fine prediction */
Begin
1 l ← the size of V ;
2 For (int i = 0; i < l; i++) and each vi > 0

3 temp = |vi|/
√

2(f1 + f2);
4 P [i] = temp/argmax(temp);
5 If (P [i] ≤ Θ) /* Θ is the threshold of P */
6 vi ← −vi;
7 EndIf
8 EndFor
9 Return the updated V ;
End

Let wi be the vector of abnormal sample i. After two stages
of fault prediction based on Algorithms 2 and 3, wi satisfies:

wi ∈ B1 ∪ (A1 ∩B2). (4)

C. Fault Updating Strategy

Because the cloud faults increase gradually, we need to
add them into the fault sample database. We need to consider
reducing extra time for the clouds when new abnormal samples
are added. To avoid adding the same or more similar samples
to the abnormal sample database, we need to compute the
similarity between a new abnormal sample and an old one as
follows:

S =
ai · bj

||ai||||bj || (5)

where ai and bj are two vectors representing new abnormal
sample i and old abnormal sample j, respectively. ai · bj is an
inner product of vectors ai and bj . The fault updating process
is given in Algorithm 4.

Algorithm 4. Updating Cloud Faults
Input: All new samples D′ and old abnormal samples Ď
Output: NULL
Begin
1 K = |D′|;
2 L = |Ď|;
3 L′ = L;
4 For i = 1 to K
5 For j = 1 to L
6 S = ai · bj/(||ai||||bj ||);
7 If (S < γ) /* γ is the threshold */
8 L′ = L′+1;
9 Add abnormal sample i to Ď;
10 EndIf
11 EndFor
12 EndFor
13 If (L′ > L)
14 Train the proposed model by executing Algorithm 1 based on Ď;
15 EndIf
End

In Algorithm 4, K and L represent the total number of old
and new fault samples, respectively. ai ∈ D′, 1 ≤ i ≤ K and
bj ∈ Ď, 1 ≤ j ≤ L. The similarity S between ai and bj is
computed based on a cosine vector. If their similarity is high

enough, the new fault sample i is regarded as being a similar
fault, and should not be added into the database. Otherwise,
sample i is added into it. The proposed model is then trained
based on the updated fault sample database. Algorithm 4 can
avoid updating for each new abnormal sample, but for only
new abnormal samples with enough difference from all the
prior ones. Therefore, it decreases computing burden.

IV. EXPERIMENTS

A. Experimental Environment

In this work, simulation experiments are conducted based
on publicly available data from Google2 application cluster
of Google Corporation. The total size of this dataset is about
40 GB. It contains more than 12 500 virtual machines running
during 29 days. Data items New line. are acquired every 300
seconds. The dataset is available at
http://github.com/google/cluster-data

500 normal samples and 500 abnormal samples are selected
randomly from the dataset. In order to validate the capability
of the model, the dataset is divided into 5 groups. 4 copies are
used for training the proposed model, and the remaining one is
used for model prediction. The average values are computed.
We execute 10 trials in experiments and compute the average
values based on 5 groups of data.

Experimental environment includes MATLAB 2017, Intel
Core i5, 2.3 GHz and 4 G memory and libSVM-3.1 [37], [39].
Thresholds: µ = 85 % in Algorithm 1, Θ = 0.5 in Algorithm
3 and γ = 0.8 in Algorithm 4.

B. Attribute Optimization

If all attributes of samples collected from a cloud environ-
ment were used by the fault detection model, the computa-
tional overhead would be too large. Therefore it is necessary
to make a reasonable choice for attributes while meeting a
model’s accuracy requirements. The monitored attributes of a
cloud system usually have certain correlation. We use the Pear-
son correlation coefficient to analyze linear correlation among
attributes. Based on principal component analysis (PCA) [40],
a new attribute is constructed based on the linear combination
of attributes. It should represent as many original attributes as
possible in disparate conditions. In the end, several attributes
are synthesized to represent most if not all of attributes based
on the linear correlation of the latter.

Let D be the set of samples from a cloud system as follows.

D = {d1, d2, . . . , dn}
where n is the cardinality of set D and di ∈ D.

di = (xi1, xi2, . . . , xim)

where xij represents the jth attribute of sample di.
Taking a Google dataset for example, we have the following

10 attributes:
mean CPU usage rate
canonical memory usage
assigned memory usage
unmapped page cache memory usage

450 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018

total page cache memory usage
maximum memory usage
mean disk I/O time
mean local disk space used
maximum CPU usage
maximum disk I/O time.
Because of different dimensions and different classes of

numerical values of attributes, we should normalize all the
original attributes. We then calculate the Pearson correlation
coefficient among attributes. We finally reduce the number
of attributes for model training via PCA so as to reduce the
computational overhead while ensuring the model accuracy.

The process of attribute optimization is as follows.
1) Normalize attributes
There are n collected samples, each of which has m at-

tributes. Let Xn×m be the matrix of all non-negative attributes:

Xn×m =

x11 x12 . . . x1m

x21 x22 . . . x2m

...
... . . .

...
xn1 xn2 . . . xnm

The normalized attribute matrix of Xn×m is Yn×m whose
entry at (i, j), i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, is:

yij =
xij

n∑
i=1

xij

. (6)

After (6), the sum of all components in a column is one.
2) Calculate Pearson correlation coefficient
The closer the correlation coefficient is to 1 or −1, the

stronger the correlation is. The closer the correlation coef-
ficient is to 0, the weaker the correlation is. Generally, the
threshold is set as 0.8, requiring that, two attributes are very
strongly correlated.

a) Calculate the correlation coefficient rjp between stan-
dardized attributes j and p

rjp =

n∑
i=1

(yij − ȳ)(yip − ȳip)
√

n∑
i=1

(yij − ȳ)2(yip − ȳip)2
(7)

where

y = (
n∑

i=1

yij)/n, ȳip = (
n∑

i=1

yip)/n

j, p ∈ {1, 2, . . . , m}.
b) Construct the removal matrix G

G(j, p) =
{

0,
1,

if rjp ∈ [0.8, 1]
if rjp ∈ [0, 0.8)

We use Gaussian elimination to make G as G̃. For example:

G =

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

During Gaussian elimination, swapping two rows is not
permitted because each row has its own meaning. After
Gaussian elimination for G, we obtain G̃ as follows:

G̃ =

0 1 0 1
1 0 1 0
0 0 0 0
0 0 0 0

 .

Define:

Z = Yn×m ∩ q (8)

where

q(i) =
{

0,
1,

if∀j, G̃(i, j) = 0
otherwise

and i ∈ {1, 2, . . . , n} and q is a column vector, q(i) ∈ q.
We shrink Yn×m by removing column i in it if q(i) = 0. For
example, given:

Y4×4 =

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

 and q =

1
1
0
0

we have

Z = Y4×4 ∩ q =

y11 y12

y21 y22

y31 y32

y41 y42

 .

For our samples, after calculating the Pearson correlation
coefficient for 10 attributes, we remove two very strongly cor-
related attributes, i.e., canonical memory usage and assigned
memory usage. Hence, eight attributes are obtained.

c) Select attributes with PCA
To reduce systems’ overhead, we reduce the number of

attributes involved in the model calculation. A new attribute
is constructed such that it covers the information of original
attributes as much as possible.

Using PCA to calculate Z is as follows:
Let C be the correlation coefficient matrix of Z. C =

ZT Z/(n − 1). Let λ1 ≥ λ2 ≥ · · · ≥ λn >0 [41] be
eigen values of C and i ∈ {1, 2, . . . , n}. Let pi be eigen
vectors. Mi is the ith principal component of Z, and Mi = piZ.
The contribution ratio r of the principal component Mi is as
follows:

r =
λi

n∑
j=1

λj

. (9)

Let R be the cumulative contribution ratio of principal
components as follows:

R =

N∑
i=1

λi

M∑
j=1

λj

(10)

M ≤ n is the number of attributes in Z. N ≤ M denotes the
number of principal components when cumulative contribution

ZHANG et al.: AN ONLINE FAULT DETECTION MODEL AND STRATEGIES BASED ON SVM-GRID IN CLOUDS 451

ratio R is not less than the given threshold. The number of
principal components is decided by R. Generally, R ≥ 95 %.
The ratios of principal components are shown in Fig. 1.

Fig. 1. The ratios of principal components.

As shown in Fig. 1, after the correlation analysis through
the Pearson correlation coefficient for 10 attributes, 5 principal
components are obtained, which contain 95 % of information
in 10 attributes via PCA. They clearly keep the vast majority
of 10 attributes information while reducing the number of
attributes by half. Hence, it can reduce the complexity of the
proposed model. Three rows of values of the five principal
components are shown in Table I.

TABLE I
SOME VALUES OF THE FIVE PRINCIPAL COMPONENTS

Principal
component

1

Principal
component

2

Principal
component

3

Principal
component

4

Principal
component

5

0.3678 0.2386 0.0425 0.0480 0.0165

0.2696 0.2976 0.0631 0.0942 0.0497

0.4421 0.3967 0.0584 0.0952 0.3238

C. Parameter Optimization

To train a better model, we need to optimize the model’s
key parameters C and g of SVM. Experimental results are
shown in Figs. 2 and 3.

Fig. 2. The optimized parameters of RBF (contour plot).

Fig. 3. The optimized parameters of RBF.

Different values of parameters C and g have different effect
on accuracy of the proposed trained model. As shown in
Figs. 2 and 3, the initial range of both C and g is (2−10, 210).
Here, we use log2C and log2g to deal with the range of values.
Values of cmax and gmax both are 210. In Fig. 2, a contour
line shows the same accuracy with different co-ordinates. The
higher parameter C, the lower accuracy of the model. Hence,
when reaching the same accuracy, we select smaller C at
the higher contour line. We obtain the best C = 11.3137 and
g = 256 through the grid method of Algorithm 1. The accuracy
of the trained model is 89.8 %. From Fig. 3 we can clearly see
that the accuracy reaches about 90 %.

D. Comparing the Proposed Model With BP and LVQ

We compare the proposed model with BP [24] and LVQ
[27] models.

A BP model [24] is a kind of multi layer feed-forward neural
network according to the error back-propagation training. Its
basic idea is to use the gradient descent method and gradient
search technology. Its goal is to reach the minimum mean
square error between actual output and predicted outputs.
Maximum training count is 1000. Learning rate λ = 0.1. The
required training error α = 0.1. After testing two situations:
α = 0.1 and α = 0.01, we find that the result is better at α = 0.1.
Smaller α induces a higher misclassification rate, i.e., the
accuracy of the classification is lower. The other values of
parameters of BP are by default as shown in MATLAB 2017.

An LVQ model [27] is a kind of a feed-forward network
in which a supervised learning method is used to train its
competitive layer. The same α and λ are used as those in the
proposed and BP models.

For sample prediction, it produces four kinds of results:
1) Normal samples are predicted as normal ones. Let NN

be the number of such samples.
2) Normal samples are predicted as abnormal ones. Let NF

be the number of such samples.
3) Abnormal samples are predicted as normal ones. Let FN

be the number of such samples.
4) Abnormal samples are predicted as abnormal ones. Let

FF be the number of such samples.

452 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018

Because accuracy is very important for fault prediction for
the three models, we use it to evaluate them.

Accuracy =
NN + FF

NN + NF + FN + FF
%.

The results of accuracy are shown in Fig. 4.

Fig. 4. Accuracy of three models.

As shown in Fig. 4, in order to avoid random effects on
the results, the three models have significant differences in
accuracy via 5 sets of experiments. We can see that BP has
higher accuracy than LVQ while the proposed model well
outperforms BP and LVQ. We also test the time cost of the
three models as shown in Fig. 5.

From Fig. 5 we can see that LVQ has the highest training
time cost. BP is much faster than LVQ while the proposed
model is the fastest.

Fig. 5. Training time of the proposed, LVQ and BP.

E. Proposed Model vs. Traditional SVM

Traditional models based on SVM[37] simply classify sam-
ples via the SVM hyperplane as shown in [31]−[38]. It lacks
parameter optimization and fine prediction. In view of practical
application problems, strategies of the fine prediction and
updating fault sample databases are adopted in the proposed
model, so as to increase the accuracy and reduce training time.

The SVM classification involves two phases: training and
testing phase. In the first phase, SVM is trained by using
labeled data belonging to different classes. In the second
phase, unlabeled data samples can be classified and labeled
to the matched classes through the trained SVM model.

We use Precision, Recall, F-score and BAC-score to make
a comprehensive comparison between the proposed one and
traditional SVM model.

Precision =
FF

NF + FF
%

Recall =
FF

FN + FF
%

F -score =
2

1
Precision + 1

Recall

%

BAC-score =
Sen + Spe

2
%

where Sen denotes the sensitivity degree and Spe denotes the
specificity of fault detection, which are computed as

Sen =
FF

FN + FF

and

Spe =
NN

NN + NF
.

The experimental results are shown in Figs. 6−10.

Fig. 6. Accuracy of the proposed method and a traditional SVM.

Fig. 7. Precision of the proposed method and a traditional SVM.

ZHANG et al.: AN ONLINE FAULT DETECTION MODEL AND STRATEGIES BASED ON SVM-GRID IN CLOUDS 453

Fig. 8. Recall of the proposed method and a traditional SVM.

Fig. 9. F-score of the proposed method and a traditional SVM.

Fig. 10. BAC-score of the proposed method and a traditional SVM.

From Figs. 6−10 we conclude that the accuracy, precision,
recall, F-score and BAC-score of the proposed model are better
than SVM’s, especially for groups 2 and 5. Because the time
cost of the two models exhibits insignificant difference, we do
not illustrate them in this paper.

F. Proposed Model vs. State-of-the-art Model

We compare the prediction performance between the pro-
posed method and a neural network-based method called
extreme learning machine (ELM) [42]. Note that the ELM’s
parameter setting and training follow [42]. We execute the
same experiment based on five groups of testing data as the
previous ones.

In Table II, there are five functions for ELM, which are sig,
sin, hardlim, tribas and radbas. The number of hidden neurons

is 20, 40, 60, 80 and 100, respectively. By taking function sig
and 20 hidden neurons as an example, the accuracy values of
five groups are 0.72, 0.54, 0.48, 0.55 and 0.67, respectively.
From the former experimental results in Figs. 4 and 6, we can
see that the average values of five groups of the proposed
method are higher than the results from ELM in Table II.

TABLE II
THE ACCURACY RESULTS BY USING ELM

Activation function
sig sin hardlim tribas radbas

Number of hidden neurons

20

0.72 0.73 0.44 0.59 0.7

0.54 0.55 0.61 0.65 0.56

0.48 0.51 0.63 0.45 0.53

0.55 0.64 0.41 0.41 0.46

0.67 0.57 0.53 0.58 0.59

40

0.58 0.52 0.62 0.44 0.61

0.64 0.49 0.46 0.6 0.54

0.44 0.38 0.56 0.42 0.48

0.58 0.58 0.39 0.55 0.66

0.7 0.66 0.56 0.53 0.52

60

0.52 0.56 0.62 0.63 0.47

0.56 0.63 0.45 0.69 0.67

0.49 0.53 0.49 0.47 0.5

0.45 0.54 0.38 0.52 0.46

0.53 0.52 0.53 0.55 0.66

80

0.62 0.54 0.62 0.56 0.57

0.45 0.51 0.5 0.45 0.45

0.33 0.38 0.54 0.46 0.43

0.45 0.49 0.46 0.65 0.58

0.44 0.49 0.56 0.66 0.45

100

0.53 0.55 0.61 0.59 0.47

0.7 0.5 0.5 0.7 0.42

0.46 0.51 0.64 0.52 0.45

0.53 0.67 0.42 0.57 0.54

0.51 0.63 0.58 0.61 0.58

G. Statistical Test

We perform the statistical test for the proposed method
and the other prior methods. We execute the same experiment
based on 5 groups of testing data as the previous ones by using
SPSS [43], which is commercially available and widely-used
software for data analysis.

From Table III, we can see that the proposed method
well outperforms ELM in accuracy. By using the proposed
method and ELM, F -value =1.50. We obtain p-value of F -
test = 0.26, which is bigger than the significance level 0.05.
Thus the assumption of equal variance is accepted. Then, we
obtain p-value of T -test = 5.17E−4 based on the equal variance
result. Because it is smaller than significance level 0.05,
the assumption of equal means is rejected. In other words,
the proposed method and ELM have statistically significant

454 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018

difference between their average accuracy results. In addition,
the 95 % confidence interval of mean difference of samples
does not cross 0. From their mean accuracy at 85.4 (the
proposed method’s) and 60 (ELM’s), it is easy to conclude that
the proposed method is much better than ELM. We can draw
the similar conclusion that the proposed method outperforms
BP and LVQ.

From Table IV, we can see that the proposed method well
outperforms SVM in F -score. We have F -value at 5.56 and
p-value of F -test at 0.046. Since p-value is smaller than
the significance level 0.05, they have statistically significant
difference between their variances in F -score results. We
obtain p-value of T -test = 0.001 based on unequal variance
result. Because 0.001 is smaller than significance level 0.05,
thus the assumption of equal means is rejected. We can
conclude that the proposed method and SVM have statistically
significant difference between their average values in F -score.
In addition, the 95 % confidence interval of mean difference
of samples does not cross 0. From the proposed method,
the average values are 84.95 and from SVM it is 37.12,
we conclude that the proposed method is much better than
SVM. The experimental results in accuracy, precision, recall
and BAC-score from these methods also lead to the same
conclusion that the proposed method well outperforms its
peers. From the analysis of results obtained via ELM and
SVM, we conclude that ELM is better than SVM.

TABLE III
STATISTICAL TEST FOR THE PROPOSED METHOD VS. BP, LVQ
AND ELM IN MEAN ACCURACY (NCZ = NOT CROSSING ZERO)

F -value
p-value

of F -test

p-value

of T -test

Confidence

interval

Mean of

existing

methods

Mean of the

proposed

method

BP 1.4 0.27 3.84E−05 NCZ 48.6 85.4

LVQ 0.45 0.352 1.67E−04 NCZ 59.2 85.4

ELM 1.5 0.26 5.17E−04 NCZ 60 85.4

TABLE IV
SOME STATISTICAL TESTS OF THE PROPOSED METHOD VS. SVM
IN ACCURACY, PRECISION, RECALL, F-SCORE AND BAC-SCORE

F -value
p-value

of F -test

p-value

of T -test

Confidence

interval

Mean of

existing

methods

Mean of the

proposed

method

Accuracy 0.05 0.84 2.98E−05 NCZ 57.4 85.4

Precision 0.75 0.41 0.01 NCZ 67.82 87.27

Recall 1.5 0.26 5.17E−04 NCZ 27.2 83.2

F -score 5.56 0.046 0.001 NCZ 37.12 84.95

BAC-score 0.046 0.84 2.98E−05 NCZ 57.4 85.4

V. CONCLUSIONS

Online fault detection is very important for cloud stability.
Many detection models need to know too much about the
internal cloud systems. The most adopted models based on
traditional SVM suffer from the problems of low accuracy. To
address them, the work proposes a new online fault detection
model based on SVM-Grid. The model is constructed based on

SVM and its key parameters are optimized by the grid method.
To further improve prediction performance and decrease time
cost, the methods for fine-tuned prediction and updating fault
sample databases are proposed.

We compare the proposed model with BP and LVQ. The ex-
perimental results with a Google dataset clearly show that the
proposed model has better accuracy and lower time cost than
its two peers. We also compare the proposed model with the
traditional SVM model (without using attribute optimization,
fine-tuned prediction and database update). The experimental
results show that the proposed model achieves better accuracy,
precision, recall, F-score and BAC-score than the latter. The
experimental results also show that the proposed method is
better than ELM.

This work can predict the occurrence of faults in clouds;
however it is difficult to locate the reasons that cause faults.
This is to be addressed as our the future work. The method
can also be modified to predicate faults in other environments,
such as Internet of Things [45]−[49].

REFERENCES

[1] M. M. Hassan, M. Abdullah Al-Wadud, and G. Fortino, “A socially
optimal resource and revenue sharing mechanism in cloud federations,”
in Proc. 19th IEEE Int. Conf. Computer Supported Cooperative Work
in Design, Calabria, Italy, 2015, pp. 620−625.

[2] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Integration of
agent-based and cloud computing for the smart objects-oriented IoT,”
in Proc. 18th IEEE Int. Conf. Computer Supported Cooperative Work
in Design, Hsinchu, Taiwan, China, 2014, pp. 493−498.

[3] H. T. Yuan, J. Bi, W. Tan, M. C. Zhou, B. H. Li, and J. Q. Li, “TTSA:
An effective scheduling approach for delay bounded tasks in hybrid
clouds,” IEEE Trans. Cybern., vol. 47, no. 11, pp. 3658−3668, Nov.
2017.

[4] H. T. Yuan, J. Bi, W. Tan, and B. H. Li, “CAWSAC: Cost-aware
workload scheduling and admission control for distributed cloud data
centers,” IEEE Trans. Automat. Sci. Eng., vol. 13, no. 2, pp. 976−985,
Apr. 2016.

[5] P. Y. Zhang and M. C. Zhou, “Dynamic cloud task scheduling based
on a two-stage strategy,” IEEE Trans. Automat. Sci. Eng., 2017. doi:
10.1109/TASE.2017.2693688.

[6] J. Bi, H. T. Yuan, W. Tan, M. C. Zhou, Y. S. Fan, J. Zhang, and J. Q.
Li, “Application-aware dynamic fine-grained resource provisioning in
a virtualized cloud data center,” IEEE Trans. Automat. Sci. Eng., vol.
14, no. 2, pp. 1172−1183, Apr. 2017.

[7] Y. N. Xia, M. C. Zhou, X. Luo, Q. S. Zhu, J. Li, and Y. Huang,
“Stochastic modeling and quality evaluation of infrastructure-as-a-
service clouds,” IEEE Trans. Automat. Sci. Eng, vol. 12, no. 1, pp.
162−170, Jan. 2015.

[8] W. B. Zheng, M. C. Zhou, L. Wu, Y. N. Xia, X. Luo, S. C. Pang, Q. S.
Zhu, and Y. Q. Wu, “Percentile performance estimation of unreliable
IaaS clouds and their cost-optimal capacity decision,” IEEE Access,
vol. 5, pp. 2808−2818, Feb. 2017.

[9] M. H. Ghahramani, M. C. Zhou, and C. T. Hon, “Toward cloud
computing QoS architecture: Analysis of cloud systems and cloud
services,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 6−18, Jan.
2017.

ZHANG et al.: AN ONLINE FAULT DETECTION MODEL AND STRATEGIES BASED ON SVM-GRID IN CLOUDS 455

[10] K. Trivedi, G. Ciardo, B. Dasarathy, M. Grottke, A. Rindos, and B.
Varshaw, “Achieving and assuring high availability,” in Proc. IEEE Int.
Symp. Parallel and Distributed Processing, Miami, FL, USA, 2008, pp.
1−7.

[11] G. F. Jiang, H. F. Chen, and K. Yoshihira, “Modeling and tracking
of transaction flow dynamics for fault detection in complex systems,”
IEEE Trans. Dependable Secure Comput., vol. 3, no. 4, pp. 312−326,
Oct.−Dec. 2006.

[12] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. S. Ward, “Effi-
cient fault detection and diagnosis in complex software systems with
information-theoretic monitoring,” IEEE Trans. Dependable Secure
Comput., vol. 8, no. 4, pp. 510−522, Jul.−Aug. 2011.

[13] X. Xu and H. H. Huang, “On soft error reliability of virtualization
infrastructure,” IEEE Trans. Comput., vol. 65, no. 12, pp. 3727−3739,
Dec. 2016.

[14] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox,
and E. Brewer, “Path-based faliure and evolution management,” in
Proc. 1st Symp. on Networked Systems Design and Implementation,
San Francisco, California, USA, 2004, pp. 309−322.

[15] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?,” in Proc. 4th Conf.
USENIX Symp. Internet Technologies and Systems, Seattle, Washing-
ton, USA, 2003, pp. 165−171.

[16] T. Wang, W. B. Zhang, C. Y. Ye, J. Wei, H. Zhong, and T. Huang,
“FD4C: Automatic fault diagnosis framework for web applications in
cloud computing,” IEEE Trans. Syst. Man Cybern. Syst., vol. 46, no.
1, pp. 61−75, Jan. 2016.

[17] A. Arefin, V. K. Singh, G. F. Jiang, Y. P. Zhang, and C. Lumezanu,
“Diagnosing data center behavior flow by flow,” in Proc. 33rd Int.
Conf. Distributed Computing Systems, Philadelphia, PA, USA, 2013,
pp. 11−20.

[18] H. F. Chen, G. F. Jiang, K. Yoshihira, and A. Saxena, “Invariants based
failure diagnosis in distributed computing systems,” in Proc. 29th Symp.
Reliable Distributed Systems, New Delhi, India, 2010, pp. 160−166.

[19] E. Kiciman and A. Fox, “Detecting application-level failures in
component-based Internet services,” IEEE Trans. Neural Netw., vol.
16, no. 5, pp. 1027−1041, Sep. 2005.

[20] R. H. Lin, B. D. Wu, F. C. Yang, Y. Zhao, and J. X. Zhou, “An
efficient adaptive failure detection mechanism for cloud platform based
on volterra series,” China Commun., vol. 11, no. 4, pp. 1−12, Apr.
2014.

[21] Q. Liu, F. Zhang, M. Liu, and W. M. Shen, “A fault prediction
method based on modified Genetic Algorithm using BP neural network
algorithm,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics
(SMC), Budapest, Hungary, 2016, pp. 4614−4619.

[22] C. L. Li, X. S. Zong, and Gudake, “A survey of online fault diagnosis
for PV module based on BP neural network,” in Proc. Int. Conf. Smart
City and Systems Engineering (ICSCSE), Zhangjiajie, Hunan, China,
2016, pp. 483−486.

[23] S. Yan, Y. J. Liu, and F. J. Guan, “The application of BP neural network
algorithm in optical fiber fault diagnosis,” in Proc. 14th Int. Symp.
Distributed Computing and Applications for Business Engineering and
Science, Guiyang, China, 2015, pp. 509−512.

[24] Y. Tamura, Y. Nobukawa, and S. Yamada, “A method of reliability

assessment based on neural network and fault data clustering for cloud
with big data,” in Proc. 2nd Int. Conf. Information Science and Security,
Seoul, South Korea, 2015, pp. 1−4.

[25] Z. J. Huang, Z. S. Wang, and H. G. Zhang, “Multilevel feature moving
average ratio method for fault diagnosis of the microgrid inverter
switch,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 177−185, Apr.
2017.

[26] X. W. Feng, X. Y. Kong, and H. G. Ma, “Coupled cross-correlation
neural network algorithm for principal singular triplet extraction of a
cross-covariance matrix,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 2,
pp. 149−156, Apr. 2016.

[27] H. Malik and S. Mishra, “Application of Probabilistic Neural Net-
work in fault diagnosis of wind turbine using FAST, TurbSim and
simulink,” Procedia Comput. Sci., vol. 58, pp. 186−193, Dec. 2015.
doi: 10.1016/j.procs.2015.08.052.

[28] P. H. Li, S. X. Zhang, D. C. Luo, and H. P. Luo, “Fault diagnosis of
analog circuit using spectrogram and LVQ neural network,” in Proc.
27th Chinese Control and Decision Conf., Qingdao, China, 2015, pp.
2673−2678.

[29] J. Y. Liu, Y. C. Liang, and X. Y. Sun, “Application of Learning Vector
Quantization network in fault diagnosis of power transformer,” in Proc.
Int. Conf. Mechatronics and Automation, Changchun, China, 2009, pp.
4435−4439.

[30] A. M. Bassiuny, X. L. Li, and R. Du, “Fault diagnosis of stamping
process based on empirical mode decomposition and learning vec-
tor quantization,” Int. J. Mach. Tools Manuf., vol. 47, no. 15, pp.
2298−2306, Dec. 2007.

[31] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp: 273−297, Sep. 1995.

[32] Z. Zhen, F. Wang, Y. J. Sun, Z. Q. Mi, C. Liu, B. Wang, and J. Lu,
“SVM based cloud classification model using total sky images for PV
power forecasting,” in Proc. IEEE Power & Energy Society Innovative
Smart Grid Technologies Conf., Washington, DC, USA, 2015, pp. 1−5.

[33] M. A. Munawar and P. A. S. Ward, “A comparative study of pairwise
regression techniques for problem determination,” in Proc. Conf. Centre
for Advanced Studies on Collaborative Research, Richmond Hill,
Ontario, Canada, 2007, pp. 152−166.

[34] J. S. Lee and K. B. Lee, “An open-switch fault detection method and
tolerance controls based on SVM in a grid-connected T-type rectifier
with unity power factor,” IEEE Trans. Ind. Electron., vol. 61, no. 12,
pp. 7092−7104, Dec. 2014.

[35] N. Tutkun, “Minimization of operational cost for an off-grid renewable
hybrid system to generate electricity in residential buildings through the
SVM and the BCGA methods,” Energy Build., vol. 76, pp. 470−475,
Jun. 2014.

[36] A. Meligy and M. Al-Khatib, “A grid-based distributed SVM data
mining algorithm,” Eur. J. Sci. Res., vol. 27, no. 3, pp. 313−321, Jan.
2009.

[37] Y. Rahulamathavan, R. C. W. Phan, S. Veluru, K. Cumanan, and M.
Rajarajan, “Privacy-preserving multi-class support vector machine for
outsourcing the data classification in cloud,” IEEE Trans. Dependable
Secure Comput., vol. 11, no. 5, pp. 467−479, Sep.−Oct. 2014.

[38] W. Y. Zhang, H. G. Zhang, J. H. Liu, K. Li, D. S. Yang, and H. Tian,
“Weather prediction with multiclass support vector machines in the

456 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018

fault detection of photovoltaic system,” IEEE/CAA J. Autom. Sinica,
vol. 4, no. 3, pp. 520−525, Jul. 2017.

[39] C. W. Hsu, C. C. Chang, and C. J. Lin, “A practical guide to support
vector classification,” Technical Report, Department of Computer Sci-
ence and Information Engineering, University of Taiwan, China, pp.
1−12, 2003.

[40] Z. L. Lan, Z. M. Zheng, and Y. W. Li, “Toward automated anomaly
identification in large-scale systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 21, no. 2, pp. 174−187, Feb. 2010.

[41] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical
Analysis. Phi Learning Private Limited, 2012.

[42] G. B. Huang, H. M. Zhou, X. J. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans. Syst.
Man Cybern. Part B Cybern., vol. 42, no. 2, pp. 513−529, Apr. 2012.

[43] A. Bryman and D. Cramer, Quantitative Data Analysis with IBM SPSS
17, 18 & 19: A Guide for Social Scientists. New York: Routledge, 2011.

[44] J. Platt, “A fast algorithm for training support vector machines,” J. of
Infor. Techn., vol. 2, no. 5, pp. 1−28, Feb. 1998.

[45] G. Fortino, R. Gravina, W. Russo and C. Savaglio, “Modeling and
Simulating Internet-of-Things Systems: A Hybrid Agent-Oriented Ap-
proach,” Computing in Science & Engineering, vol. 19, no. 5, pp.
68−76, 2017.

[46] N. Q. Wu, Z. W. Li, K. Barkaoui, X. O. Li, T. Murata, and M.C.
Zhou, “IoT-based smart and complex systems: A guest editorial report,”
IEEE/CAA J. of Autom. Sinica, vol. 5, no. 1, pp. 69−73, Jan. 2018.

[47] M. Zhou, G. Fortino, W. Shen, J. Mitsugi, J. Jobin, and R. Bhat-
tacharyya, “Guest Editorial: Special Section on Advances and Applica-
tions of Internet of Things for Smart Automated Systems,” IEEE Trans.
on Automa. Sci. and Engin., vol. 13, no. 3, pp. 1225−1229, July 2016.

[48] J. J. Cheng, J. L. Cheng, M. C. Zhou, Q. Zhang, C. Yan, Y. Yang, and
C. Liu, “Routing in Internet of Vehicles: A Review,” IEEE Trans. on
Intell. Transport. Sys., vol. 16, no. 5, pp. 2339−2352, Oct. 2015.

[49] J. Yan, M. Zhou and Z. Ding, “Recent Advances in Energy-Efficient
Routing Protocols for Wireless Sensor Networks: A Review,” IEEE
Access, vol. 4, pp. 5673−5686, Oct. 2016.

Peiyun Zhang (M’16) received her B.S. degree from
Anhui Normal University, China in 1998, M.S. de-
gree from Northwest University, China in 2005, and
Ph.D. degree from the School of Computer Science
and Technology, Nanjing University of Science and
Technology, China in 2008. She did post-doctoral
research in University of Science & Technology
China, from 2010 to 2013, and a Visiting Scholar
with the New Jersey Institute of Technology, USA in
2016. She is currently a Professor with the School of
Mathematics and Computer Science, Anhui Normal

University, China. Her research interests include cloud computing, big data,
trust computing, Petri nets, web service and intelligent information processing.
She has published over 50 papers in the above areas.

Sheng Shu received his B.S. degree from Hefei
University, China in 2015. He is pursuing his master
degree at Anhui Normal University, China since
2015 and is expected to graduate in July 2018.
His research interests include cloud computing and
intelligent information processing.

MengChu Zhou (S’88-M’90-SM’93-F’03) received
his B.S. degree in Control Engineering from Nan-
jing University of Science and Technology, China
in 1983, M.S. degree in Automatic Control from
Beijing Institute of Technology, China in 1986, and
Ph. D. degree in Computer and Systems Engineering
from Rensselaer Polytechnic Institute, Troy, NY in
1990. He joined New Jersey Institute of Technol-
ogy (NJIT), Newark, NJ in 1990, and is now a
Distinguished Professor of Electrical and Computer
Engineering. His research interests are in Petri nets,

intelligent automation, Internet of Things, big data, web services, and intel-
ligent transportation. He has over 700 publications including 12 books, 400+
journal papers (300+ in IEEE transactions), 11 patents and 28 book-chapters.
He is the founding Editor of IEEE Press Book Series on Systems Science
and Engineering and Editor-in-Chief of IEEE/CAA Journal of Automatica
Sinica. He was General Chair of IEEE Conf. on Automation Science and
Engineering, Washington D.C., August 23-26, 2008, General Co-Chair of
2003 IEEE International Conference on System, Man and Cybernetics (SMC),
Washington DC, October 5-8, 2003, Founding General Co-Chair of 2004
IEEE Int. Conf. on Networking, Sensing and Control, Taipei, March 21-23,
2004, and General Chair of 2006 IEEE Int. Conf. on Networking, Sensing
and Control, Ft. Lauderdale, Florida, U.S.A. April 23-25, 2006. He was
Program Chair of 2010 IEEE International Conference on Mechatronics
and Automation, August 4−7, 2010, Xi’an, China, 1998 and 2001 IEEE
International Conference on SMC and 1997 IEEE International Conference on
Emerging Technologies and Factory Automation. He organized and chaired
over 100 technical sessions and served on program committees for many
conferences. Dr. Zhou has led or participated in over 50 research and education
projects with total budget over $12M, funded by National Science Foundation,
Department of Defense, NIST, New Jersey Science and Technology Commis-
sion, and industry. He was the recipient of NSF’s Research Initiation Award,
CIM University-LEAD Award from Society of Manufacturing Engineers,
Perlis Research Award and Fenster Innovation in Engineering Education
Award from NJIT, Humboldt Research Award for US Senior Scientists
from Alexander von Humboldt Foundation, Leadership Award and Academic
Achievement Award from Chinese Association for Science and Technology-
USA, Asian American Achievement Award from Asian American Heritage
Council of New Jersey, and Outstanding Contributions Award, Distinguished
Lecturership, Franklin V. Taylor Memorial Award and the Norbert Wiener
Award from IEEE SMC Society, and Distinguished Service Award from IEEE
Robotics and Automation Society. He is founding Co-chair of Enterprise
Information Systems Technical Committee (TC) and Environmental Sensing,
Networking, and Decision-making TC of IEEE SMC Society. He has been
among most highly cited scholars for years and ranked top one in the field
of engineering worldwide in 2012 by Web of Science/Thomson Reuters and
now Clarivate Analytics. He is a life member of Chinese Association for
Science and Technology-USA and served as its President in 1999. He is a
Fellow of International Federation of Automatic Control (IFAC), American
Association for the Advancement of Science (AAAS) and Chinese Association
of Automation (CAA).

