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Abstract—Next-generation vehicle control and future au-
tonomous driving require further advances in vehicle dynamic
state estimation. This article provides a concise review, along with
the perspectives, of the recent developments in the estimation of
vehicle dynamic states. The definitions used in vehicle dynamic
state estimation are first introduced, and alternative estimation
structures are presented. Then, the sensor configuration schemes
used to estimate vehicle velocity, sideslip angle, yaw rate and
roll angle are presented. The vehicle models used for vehicle
dynamic state estimation are further summarized, and repre-
sentative estimation approaches are discussed. Future concerns
and perspectives for vehicle dynamic state estimation are also
discussed.

Index Terms—Estimation structure, extended Kalman filter,
sensor configuration, sideslip angle estimation, vehicle dynamic
state estimation, vehicle dynamics model.

I. INTRODUCTION

W ITH the rapid development of automated driving [1],
[2], parallel unmanned systems [3]−[5], control and

computer science [6], [7], intelligent transportation systems
(ITS) [8], [9], advanced driver assistance systems (ADAS),
vehicle handling stability and active safety have increasingly
been promoted since the past century. As a result, various
ADAS and vehicle stability control systems have been devel-
oped, such as the anti-lock braking system (ABS) [10], [11],
adaptive cruise system [12] and traction control system (TCS)
[13], [14], which are based on vehicle longitudinal control;
the electronic stability program (ESP) [15], [16] and active
front steering (AFS) [17], which are concerned with lateral
stability; and active suspension control (ASC) [18], [19] and
active body control (ABC) [20], which emphasizes vehicle
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vertical control. Vehicle handling stability and active safety
are effectively improved with the help of these systems, and
consequently, vehicles have become safer to drive and the
number of fatal accidents has declined [21].

TABLE I
NOMENCLATURE

m vehicle mass

g gravitational constant

J the wheel moment of inertia

vx longitudinal vehicle velocity

vy lateral vehicle velocity

ax longitudinal acceleration

ay lateral acceleration

ay,sensor compensation of lateral acceleration

r yaw rate

rsensor(t) raw yaw rate signal

ψ yaw angle

β center of gravity sideslip angle

δf front wheel steering angle

δ wheel steering angle

Fxi, Fyi (i = 1, . . . , 4) longitudinal/lateral tire forces

Jz vehicle moment of inertia of z axis

ωi (i = 1, . . . , 4) wheel angular speed

Rw the effective tire radius

µ tire/road friction coefficient

φ roll angle

p roll rate

psensor raw roll rate signal

q pitch rate

qsensor(t) raw pitch rate signal

δsus suspension deflection

θ road grade angle

ϕ road bank angle

Fzi vertical tire forces of wheel i

∆sus suspension deflections

ϕGPS GPS tracking angle

vGPS GPS ground velocity

Ti wheel in-motor torque

However, the implementation of those automotive stability
control systems, especially for connected vehicles and auto-
mated driven vehicles, depends on accurate vehicle dynamic
state information [22]. Conventionally, vehicle dynamic state
information is directly measured by onboard sensors that are
sufficiently inexpensive for mass-production vehicles. How-
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ever, due to the extremely complicated running conditions, the
accuracy of these sensors is relatively low and does not satisfy
the requirements of vehicle active safety control systems [23].
In addition, considering the cost of mass-production vehicles,
many sensors are too expensive to equip, such as inertial
navigation sensors (INS), global positioning system (GPS),
and global navigation satellite system (GNSS) [22], [24].

The existing problems of low precision under some extreme
running conditions and the high price of some onboard sensors
have become a bottleneck to obtain precise and complete
vehicle dynamic state information. Thus, the incomplete in-
formation about vehicle dynamic states greatly limits the
development of ADAS and vehicle active safety systems.
To obtain more accurate and reliable vehicle dynamic state
information for ADAS, active stability control and vehicle
fault diagnosis systems [25], a logical technique is to estimate
the vehicle dynamic state by employing estimation schemes.
As a result, with several decades of development, there is an
abundance of literature on the vehicle dynamic state estimation
problem.

This work reviews papers on recent developments and
proposes promising aspects of the vehicle body dynamic state
estimation problem. The objective of this survey is to present a
state-of-the-art overview and perspectives for vehicle dynamic
state estimation rather than giving a complete bibliography.
Due to space limitations, the estimation of tire-road forces
and road parameters, i.e., tire-road interaction estimation, will
be introduced in another paper. The definition of the vehicle
dynamic states that need to be estimated and the existing
estimation structure are illustrated, followed by a discussion
on the dynamic state estimation, including vehicle velocity,
sideslip, yaw rate and roll angle, from the perspective of the
sensor configuration and vehicle model. The advantages and
shortcomings of the estimation methods are highlighted after
evaluating the current estimation methods for each vehicle
dynamic state. Then, concerns and perspectives of vehicle
dynamic state estimation for future research are presented.

The rest of this manuscript is organized as follows. Section
II defines the vehicle dynamic states that need to be estimated
and presents the existing estimation structure. In Section III,
different types of estimators for each vehicle dynamic state
are discussed in the form of the sensor configuration. In
Section IV, the vehicle models used for vehicle dynamic
state estimation are conveyed. In the following Section V, the
conventional approaches for vehicle dynamic state estimation
are presented. Moreover, the characteristics of each method
are evaluated. Finally, in Section VI, promising prospects
of vehicle dynamic state estimation for future research are
proposed.

II. DEFINITION AND STRUCTURE OF VEHICLE DYNAMIC
STATES ESTIMATION

A. Definition of Vehicle Dynamic States
Vehicle state estimation includes vehicle body dynamic state

estimation and tire-road interaction estimation. We mainly
discuss the vehicle body dynamic state estimation here. Multi-
body-based coordinate systems, such as vehicle body coordi-
nate system, and wheel systems [26], are used to describe

various vehicle motions. As shown in Fig. 1, the vehicle body
coordinate is defined with a body-fixed coordinate system with
the origin located at the center of gravity (CoG). The x-axis
points forward, the y-axis points to the left, and the z-axis
points upward. Accordingly, vehicle velocity at the CoG is
decomposed into longitudinal velocity vx, lateral velocity vy

and vertical velocity vz . Moreover, the depicted rotational
degrees of freedom (DOF) about the main vehicle axes are
referred to as the yaw angle (rotation about the z-axis), roll
angle (rotation about the x-axis) and pitch angle (rotation
about the y-axis). As a result, the rates of rotation around
the longitudinal axis, lateral axis, and vertical axis, denoted
as p, q and r, are known as the roll rate, pitch rate and yaw
rate, respectively [27]. Additionally, all rotations are assumed
to be positive in the anti-clockwise direction according to the
right-hand rule. Based on the vehicle body coordinate system
defined above, the sideslip angle can be introduced as shown
in Fig. 1. The angle between the orientation of the longitudinal
axis and the direction of travel at the CoG is called the sideslip
angle [28]. When a car turns, however, it exhibits yaw, causing
the orientation to change, and a lateral acceleration is directed
toward the center of the turn. In this case, the direction of
travel at the CoG deviates from the orientation of the vehicle.
Accordingly, a sideslip angle is generated that is not equal to
zero.

Fig. 1. Vehicle axes systems and geometric definitions.

B. Structure of Vehicle Dynamic State Estimation

Regardless of which state is estimated, it is important to
develop a reasonable estimation structure to simultaneously
simplify the estimation problem and to obtain an accurate
result. According to the different sensors available for different
cars, we discuss two structures for vehicle dynamic state
estimation: the integrated structure and the modular structure.

The structure of the integrated estimation scheme is rela-
tively simple. The overall dynamic information that needs to be
estimated could also be reconstructed using the integrated es-
timation structure. However, since all the dynamic information
needs to be obtained simultaneously, the vehicle model used
in the integrated estimation structure is generally complex. In
addition, road parameters are often used as unknown inputs to
the observer. The estimation of these road parameters usually
requires extension of the vehicle dynamics model, which
further increases the complexity of the vehicle model.

The typical integrated estimation scheme from [29] is shown
in Fig. 2. The 8 DOF vehicle model is established, and the
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tire-road forces are extended to the 8 DOF vehicle dynamics
model using the random-walk model. An extended Kalman
filter (EKF) is employed to predict the vehicle dynamic states
using measurements of the longitudinal velocity vx, lateral
velocity vy , yaw rate r, roll rate p, longitudinal tire-road forces
Fxi and lateral tire-road forces Fyi. In addition, the tire-road
friction coefficient is obtained by a parameter identification
scheme. Besides the paper mentioned above, there are others
that use the integrated structure to reconstruct vehicle dynamic
state information, for example, the estimation scheme in
[30] simultaneously estimates the longitudinal velocity, lateral
velocity, yaw rate and tire-road friction coefficient.

Fig. 2. Example of the integrated scheme for vehicle dynamic state estima-
tion.

Considering the different positions of sensor equipment and
vehicle subsystems, a modular estimation scheme is proposed
and adopted. The design could include different observers or
estimators based on the estimation requirements of dynamic
modules with the flexible design method. However, the specific
modular estimation scheme varies with the dynamic states to
be estimated, the position of the vehicle sensors and the node
position of the estimator, which are determined by analyzing
the network-based vehicle system. In addition, the stability
issue of the modular estimation scheme demands detailed
discussion.

The modular estimation scheme in [30] is shown in Fig. 3.

To decouple the longitudinal and lateral dynamics, the Coriolis
acceleration produced by the yaw rate and lateral acceleration
is regarded as a disturbance that has less impact on longitudi-
nal motion. In the following, modular estimation schemes for
longitudinal velocity, lateral velocity and yaw rate estimation
are proposed based on a nonlinear observer. Moreover, the
input-to-state stability (ISS) is employed to analyze the entire
stability of the modular estimation scheme. The modular
stability of the longitudinal and lateral velocity observer is
analyzed first; then, the entire stability of the modular observer
is analyzed with the Coriolis acceleration as the amplitude-
bounded disturbance input. The modular estimation scheme
is a popular technique that is employed by many researchers,
such as [31].

Fig. 3. Example of a modular scheme for vehicle dynamic state estimation.

Regardless of what scheme is adopted, the excitation con-
ditions should be considered because road information is
always regarded as the unknown input of vehicle dynamics.
Moreover, the longer the sufficient excitation is, the more
accurate the vehicle dynamic states obtained [32]. This is a
valuable problem that requires in-depth consideration during
vehicle state estimation.

III. SENSOR CONFIGURATION SCHEMES FOR VEHICLE
DYNAMIC STATE ESTIMATION

The sensor configuration discussed here is used to estimate
only the vehicle dynamic states excluding the validation of
the estimation schemes. The estimation precision and the cost
of sensor equipment should be synthesized to determine the
specific sensor configuration scheme. It is better to adopt a rel-
atively low-cost sensor to reduce the cost of mass-production
vehicles on the premise that the estimation precision is not
influenced. Moreover, the choice of estimation method and
vehicle model strongly depends on the sensor configuration
scheme. The sensor configuration scheme varies on the basis
of the vehicle dynamic states to be estimated. Therefore, the
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sensor configuration scheme should consider the dynamic state
to be estimated, the estimation algorithm and the price of
the sensor for mass-production vehicles. According to the
discussions above, sensor configuration schemes for typical
vehicle dynamic states are investigated in this section.

1) Sensor Configuration of Vehicle Velocity Estimation: Ve-
hicle velocity estimation, which includes longitudinal velocity,
lateral velocity, and vertical velocity estimation, is a popular
topic in vehicle active safety control and ADAS. Several sensor
equipment schemes are employed to predict this information,
and Table II lists the main vehicle velocity estimation schemes
from the perspective of the sensor configuration, vehicle model
and estimation strategy.

A vehicle equipped with ESP could obtain measurements of
the lateral acceleration ay , yaw rate r, steering wheel angle δ
and wheel angular velocity ωi. Additionally, the longitudinal
acceleration ax could be obtained with a separate inertial
measurement unit (IMU) [30]. This configuration corresponds
to the first scheme in Table II, which is the most common
sensor configuration scheme in vehicle velocity estimation
[30], [33]. The longitudinal and lateral vehicle velocities
can be obtained using different estimation approaches [30],
[32]−[39]. Considering onboard sensors equipped on com-
mercial vehicles, this configuration is the most promising way
to perform vehicle velocity estimation for mass-production
vehicles. Based on the sensor configuration scheme mentioned
above, the wheel steering angle δ, wheel rotational speed
ωi and yaw rate r are used as the measurements, and a
reduced nonlinear observer (RNLO) estimation scheme is
proposed in [40]. This scheme is also suitable for mass-
production vehicles. In addition, considering the unbridgeable
problem in vehicle velocity estimation of the unknown tire-
road friction coefficient, longitudinal velocity is used instead
of longitudinal acceleration because the accelerometer cannot
normally be placed in the exact CoG due to design restrictions.
Then, dual extended Kalman filter (DEKF) and nonlinear
unknown input observer (NUIO) strategies are proposed in
[41], [42]. Additionally, the steering wheel angle and yaw
rate are employed as measurements to estimate lateral velocity
in [43]. Fewer sensors are used in this estimation scheme;
however, the estimation precision must be improved.

In contrast to the sensor configuration schemes discussed
above, inexpensive 6D IMU is employed in [44] to obtain more
measurement information. This configuration can obtain suf-
ficient measurements to implement more complex estimation
schemes. The longitudinal velocity estimation for electrical
vehicles is discussed in [45]. In addition to the conventional
measurements, the wheel torque provided by the electric motor
can be measured to detect excessive wheel slip and improve
the accuracy of the estimation. In addition to the measurements
in [45], lateral acceleration is measured in [46], and the
longitudinal and lateral vehicle velocities can be estimated
simultaneously using the modular estimation scheme to obtain
acceptable experimental results.

2) Sensor Configuration of Sideslip Angle Estimation: Real-
time information of the sideslip angle is useful in many active
vehicle safety applications, including yaw stability control
[47], rollover prevention [48], and lane departure avoidance

[49]. Sideslip angle estimation has become a hot topic of
discussion because measuring the sideslip angle with sensors
is expensive for ordinary automotive that applications with
2-antenna GPS systems and optical sensors. Sideslip angle
estimation sometimes depends on indirect estimation, which
can be evaluated using the estimated longitudinal and lateral
vehicle velocities β̂ = v̂y

v̂x
[28]. Therefore, the potential sensor

configuration schemes are abundant. Accordingly, Table III
lists the sensor configuration schemes, vehicle models and
estimation methods for the sideslip angle estimation problem.

Table III shows how the wheel steering angle and yaw rate
are measured to estimate the sideslip angle in [50], [51]. It
also considers three sets of sensors to observe the impact on
the observer results. By contrast, the steering wheel angle
and lateral acceleration are taken as measurements, and the
sideslip angle estimation problem is discussed using moving
horizon estimation (MHE) in [52]. Based on the measurements
in [52], taking the lateral acceleration as an additional mea-
surement, three estimation schemes for vehicle sideslip angle
estimation are compared and model simplification and observ-
ability analysis are conducted in [53]. Additionally, using the
wheel rotational speeds as additional measurements, the UKF,
artificial neural network (ANN) and NLO are employed to
estimate the sideslip angle in [54], [55]. Compared with the
sensor configuration scheme in [56], [57], the wheel rotational
speed is neglected in [28]. This estimation scheme reduces
the computational complexity compared with the EKF, which
makes the observer suitable for implementation in embedded
hardware.

Although the sensor configuration scheme discussed above
could obtain the sideslip angle, the most widely applied sensor
configuration on actual standard cars that is used to estimate
the sideslip angle is described in [58]−[60], [36], [61], [30],
[34]. It is also the most promising estimation scheme to im-
plement on the mass-production vehicles. Furthermore, several
other sensor configuration schemes have been derived, for
example, the longitudinal vehicle velocity replaces the wheel
rotational speed in [62]−[64], and the longitudinal vehicle
velocity is substituted for the wheel rotational speed and
longitudinal acceleration in [65], [66]. All the measurements
can be used to obtain acceptable sideslip angle estimation
results.

In contrast to the popular sensor configuration schemes
above, the suspension deflection and roll rate are measured in
[67], [68]. The sensor configuration schemes can determine the
sideslip angle using different estimation schemes, including
a high-gain observer (HGO) and EKF. Moreover, the wheel
rotational speed, braking torque, longitudinal velocity and
normal force are measured in [69] to estimate the sideslip
angle. The GPS tracking angle ϕGPS and GPS ground velocity
vGPS are measured in [70], in addition to the measurements
in [60], which adopts an adaptive hybrid fusion strategy to
predict the vehicle sideslip angle for a wide range of driving
maneuvers. GPS is also employed in [71] for sideslip angle
estimation. With the rapid development of sensor technology,
low-cost GPS has become available to mass-production vehi-
cles; accordingly, this sensor configuration scheme would be
useful in the future.
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TABLE II
SENSOR CONFIGURATION, VEHICLE MODEL, AND ESTIMATION METHOD FOR VEHICLE VELOCITY ESTIMATION

No Sensor configuration Estimates Model used Estimation methodology Reference

3 DOF vehicle model NLO [30], [32]−[34]

EKF [35], [36]

1 δ, ωi, r, ax, ay vx, vy 2/3 DOF vehicle model AKF [37]

4/8 DOF vehicle model EKF [35], [38], [39]

vx fuzzy expert system FL [39]

2 ωi, r, δ vx, vy 3 DOF model RNLO [40]

3 ωi, ax, ay r, vx vy 4 DOF vehicle model DEKF [41]

nonlinear vehicle model NUIO [42]

4 δ, r vy bicycle model kinematics approach; LO [43]

transfer function

5 δ, r, ax, ay , ωi, p, q, az vx, vy , vz bicycle model merging schemes [44]

6 r, δ, ωi, Ti, ax vx kinematic model KL [45]

7 r, δ, ωi, Ti, ax ay vx, vy kinematic + LuGre tire model LO [46], [31]

TABLE III
SENSOR CONFIGURATION, VEHICLE MODEL, AND ESTIMATION METHOD FOR SIDESLIP ANGLE ESTIMATION

No Sensor configuration Model used Estimation methodology Reference

1 δ, r bicycle model EKF, NLO, SMO, RLS [47], [48]

2 δ, ay a reduced two-track model MHE [49]

3 δ, r, ay bicycle model UKF, EKF [50]

4 δ, ωi, r, ay two-track model UKF, ANN, NLO [51]

3 DOF vehicle model NLO [52]

5 ωi, r, ax, ay kinematic model EKF [53], [54]

6 r, ax, ay kinematic model NLO [28]

7 δ, ωi, r, ax, ay single-track model EKF [55], [56]

3 DOF vehicle model adaptive LO, EKF [57], [36]

bicycle model SKFMEC [58]

3 DOF vehicle model NLO [30], [34]

8 δ, r, ax, vx ANFIS model, UKF, [59]

9 δ, r, ax, ay , vx neural network ANN [60]

single-track vehicle model, kinematic approach [61]

neural network ANN [60]

10 δ, r, ay , vx single-track model HGO [62], [63]

11 δ, ωi, r, ax, ay , ∆sus, p four wheels vehicle model EKF, UKF [64], [65]

12 ωi, vx, Tb, Fzi one-wheel friction model ANN [66]

13 δ, ωi, r, ax, ay , vGPS , ϕGPS kinematics/bicycle model KEKF, DEKF [67]

14 δ, r, GPS bicycle model KF [68]

3) Sensor Configuration of Yaw Rate Estimation: The
yaw rate can be measured directly by gyroscope. However,
this measurement is not sufficient to satisfy the demands of
vehicle active safety control because old-fashioned mechanical
gyroscopes are characterized by large size, frangibility, easily
powering down and temperature drift error. Therefore, yaw
rate estimation has been discussed in recent years. In addition,
it is necessary to estimate yaw rate for gyroscope fault diag-
nosis from another perspective. Based on an extensive survey
of the published literature, Table IV lists the representative
estimation strategies and sensor configuration schemes for yaw
rate estimation.

According to the sensor configuration schemes in Table
IV, the most widely discussed sensor configuration scheme
for yaw rate is similar to those of the sideslip angle and
vehicle velocities in [28]−[30], [34]−[36], [58], [59], [72],
[73]. Based on sensor configuration schemes, the longitudinal
acceleration is omitted in [54], [55], and NLO and UKF are
proposed, respectively, to estimate the yaw rate and vehicle
velocities. In addition, based on the measurement of the
steering wheel angle, longitudinal vehicle velocity, yaw rate
and lateral acceleration, a simple and accurate approach is
introduced in [74] based on direct identification from filter
data. These sensor configuration schemes are conventional
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ones for yaw rate estimation.
In contrast to the sensor configuration schemes discussed

above, GPS is used in [71]. The GPS signal is also used in
[70] for yaw rate and sideslip angle estimation. Aiming to
estimate the yaw rate and sideslip angle, a novel estimation
method is presented in terms of the recognition of vehicle
dynamic parameters based on the corning kinetics and corning
geometry of vehicles using the velocity of the wheels in [75].
Moreover, the suspension deflection, longitudinal velocity and
longitudinal acceleration are measured in [76] to comprehen-
sively discuss the yaw rate and velocity estimation. In addition
to the sensor configuration schemes above, there are some
configuration schemes where the yaw rate is considered as
a by-product of the estimation of other dynamic states [52].
As the literature survey shows, yaw rate estimation is rarely
discussed alone, it is often obtained as the by-product of ve-
hicle velocity and sideslip angle estimation. Furthermore, the
sensor configuration schemes for other vehicle dynamic state
estimation problems can be explored for yaw rate estimation.

4) Sensor Configuration for Roll Angle Estimation: The
roll angle is indispensable information for active rollover
prevention systems to prevent vehicle rollover, which accounts
for a significant percentage of highway traffic fatalities [77].
Additionally, the roll angle estimate is used to compensate the
gravity component when measuring the lateral acceleration due
to vehicle roll or the road bank angle. Due to the consideration
of roll motion, the sensors used for other vehicle dynamic state
measurements are relatively more abundant than those used for
the independent estimation of sideslip angle, vehicle velocities,
and tire-road forces. In order to survey the representative
sensor configuration, vehicle model, and estimation strategies,
Table V lists the main estimation schemes for roll angle
estimation.

From Table V, it can be observed that the steering wheel an-
gle, yaw rate, lateral acceleration, lateral tire-road force and in-
wheel motor torque are used as measurements, and the Kalman
filter (KF) is adopted to discuss the roll angle estimation in
[51]. Additionally, the sideslip angle is estimated using the
yaw rate and steering angle measurements. To estimate the roll
and pitch angle, a low-price six-dimensional IMU is employed
in [78]. The relations among the yaw rate, pitch rate, roll rate,
and pitch angle are simplified, and observers are constructed
using modern linear control theory. Moreover, based on the
sensor configuration in [78], the measurements of wheel speed
sensors and steering-wheel angle are exploited in [79]. A
novel scheme for reference angle selection that depends on
the cornering-stiffness adaptation is adopted to observe the
angles on the basis of the combination of velocity kinematics
and pseudo integration of the angle kinematics. Additionally,
a roll rate sensor and the sensors that are readily available in
vehicles equipped with ESP systems are used in [80] for roll
angle estimation. Similar to the sensor configuration scheme
above, the longitudinal velocity is viewed as varying slowly
in [81], and the KF is proposed to estimate the roll angle.
Moveover, the UIO is adopted to estimate the roll angle using
the roll rate and lateral acceleration measurements in [82].
The height of the CoG can also be predicted, with a low-
frequency tilt-angle sensor and a gyroscope used as additional

sensor. In addition to the sensor configuration schemes above,
measurements obtained from ESP systems are explored to
estimate the roll angle in [61], [83]. Moreover, the longitudinal
accelerations and yaw rate are omitted in [84], and the roll
angle can be estimated using DEKF and state index switching
strategies.

According to the sensor configuration schemes discussed
above, roll angle estimation is mainly divided into two aspects.
One is considering the roll dynamics, which requires more
sensors. The estimation results are validated by experiments,
and effective results are obtained on banked roads. The other
is the the roll angle conceived as the unknown input of the
observer, where the roll angle is estimated as the unknown
parameter. The estimation results are also validated using
experiments under some typical operating conditions. In the
sensor configuration schemes discussed above, the characteris-
tics of the sensor, such as noise, bias and drift, and the various
road conditions affect the measurement accuracy. Since the
measurement precision of a sensor is directly related to its
estimation performance, the compensation of the sensor signal
should be considered. Filtering techniques are introduced in
[85], [86] for accelerometers and gyroscopes. Due to space
limitations, the compensation of the sensor signal is not
discussed in detail here.

IV. VEHICLE MODELS FOR VEHICLE DYNAMIC
STATE ESTIMATION

Vehicle dynamic state estimation can be categorized into
kinematics-based models and dynamics-oriented models. In
this section, the physical model used in vehicle state estimation
is introduced.

A. Kinematics-based Models
The kinematics-based method is concerned with the motion

of objects without reference to forces and torques. Due to the
various views of kinematics modeling in vehicle systems, there
is a large quantity of kinematics-based models. The repre-
sentative kinematics-based model considering the relationships
among lateral acceleration, yaw rate and the variation of lateral
acceleration in [87] is presented as follows:

v̇y = −rvx + ay. (1)

In addition, considering the relationship among yaw rate,
lateral acceleration, longitudinal velocity, road bank angle and
sideslip angle in [88], the lateral acceleration is expressed as

ay = (β̇ + r)vx − g sin θ. (2)

Accordingly, the sideslip angle estimation can also be
obtained by integrating (2)

β =
∫ (

ay + g sin θ

vx
− r

)
dt. (3)

Vehicle dynamic state estimation using kinematics-based
models mainly involves numerical integration from sensors or
establishing a kinematic estimator according to the configura-
tion. However, noise accumulates when integrating over a long
period of time, resulting in large estimation error. Therefore,
kinematics-based methods have become less common in the
recent years.
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TABLE IV
SENSOR USED FOR YAW RATE ESTIMATION

No Sensor configuration Model used Estimation methodology Reference

1 δ, ωi, ax, ay , r 3 DOF vehicle model NLO, EKF [28], [30], [34]−[36]

single-track model EKF [72], [55], [56]

8 DOF model EKF [29], [73]

2 δ, ωi, ay , r two-track model UKF [51]

7 DOF vehicle model NLO [52]

3 vx, ay , r, δ single-track model LPV filters [74]

4 δ, r, GPS bicycle model KF [68]

5 δ, ωi, r, ax, ay + vGPS , ϕGPS kinematic/bicycle model KEKF, DEKF [67]

6 ωi 3 DOF vehicle model geometric kinetics [75]

7 ∆sus, vx, ax 6 DOF vehicle model EKF [76]

TABLE V
SENSOR AND ESTIMATION STRATEGIES USED FOR ROLL ANGLE ESTIMATION

No Sensor configuration Model used Estimation methodology Reference

1 δ, r, ωi, ay , Fy , Ti yaw + roll dynamic model KF [48]

2 ax, ay , az ,p, q, r roll + pitch model LO [78]

3 ax, ay , az ,p, q, r, ωi, δ roll + pitch kinematic model pseudo-integrator [79]

4 ωi, r, δ, ay , p vx + vy + roll dynamic model pseudo-integrator [80]

5 δ, vx, ay , p 3 DOF/1 DOF vehicle model KF [81]

6 ay , ṗ roll dynamic model UIO [82]

7 δ, r, ax, ay , ωi bicycle model SMOUI/KF [58], [83]

8 δ, r, ay r+β+roll dynamic model DEKF [84]

B. Dynamics-oriented Models

There are numerous degrees of freedom associated with
vehicle dynamics. Vehicle state estimation should be concen-
trated on dynamics related to the estimation of the states.
Moreover, each type of vehicle dynamics model is based on
suitable assumptions.

1) Longitudinal Motion Model: The longitudinal motion
model concentrates on the force or torque in the longitudinal
direction while ignoring the lateral dynamics. The longitudinal
velocity and the wheel rotational speed are considered in
longitudinal motion when the friction coefficient or longitu-
dinal velocity estimation is discussed. According to the force
balance in the longitudinal direction and the torque balance of
wheel rotation, the dynamic model is given as follows:

Jω̇ = Tt −RwFx − Tb

mv̇x = −Fx. (4)

The dynamic behavior of the system is hidden in the
expression of Fx. The most general expression of Fx is
complex as it depends on a large number of features of the
road, tire and suspension. In general, it can be expressed as
a function of the normal tire-force Fz and tire-road friction
coefficient µ, which is a function of the longitudinal slip Sx,
wheel side-slip angle, and a set of parameters νr [35].

Fx = Fzµ(Sx, αf,r; νr). (5)

2) Single-track Model: The single-track model in Fig. 4 is
also called the bicycle model or 2 DOF vehicle model. It is
currently used to describe lateral vehicle dynamic behavior. In

this model, vertical motion, roll and pitch are ignored, and
longitudinal velocity is assumed to be constant. There are
two forms of the bicycle model that consider different states
variables. In one form, the vehicle’s handling dynamics in the
yaw plane are represented by the states of the sideslip angle
β and the yaw rate r as follows

Fig. 4. 2 DOF vehicle dynamic model.

mvx(β̇ + r) = (Fy1 + Fy2)
Iz ṙ = LfFyf − LrFyr. (6)

The lateral tire-road forces Fyf and Fyr, considered to be
a function of the lateral sideslip angle, can be obtained by
various types of tire model. For example, the linear tire model
is used to describe the tire-road force and the lateral sideslip
angle is computed based on assumption [89]

αf = β +
Lfr

vx
− δf

αr = β − Lrr

vx
. (7)
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The most famous bicycle model was presented in [89]. In
other cases, the lateral vehicle velocity vy and yaw rate r are
considered as dynamic states, and the 2 DOF vehicle model
can be described as follows

m(v̇y + rvx) = (Fy1 + Fy2)
Iz ṙ = LfFyf − LrFyr. (8)

In fact, these two vehicle models described in (6) and (8)
are equivalent on the condition that the longitudinal velocity
is assumed to be constant.

3) 3 DOF Vehicle Model: The 2 DOF vehicle model
introduced above only considers the lateral dynamics. If the
longitudinal dynamics are also considered, as shown in Fig. 1,
the 3 DOF vehicle model can be obtained in the form of the
longitudinal velocity, lateral velocity and yaw rate, which are
described as follows [40]:

v̇x = rvy +
fx(vx, vy, r, δ)

m

v̇y = −rvx +
fy(vx, vy, r, δ)

m

ṙ =
Mz(vx, vy, r, δ)

Jz
+ Γε (9)

where fx(vx, vy, r, δ), fy(vx, vy, r, δ) and Mz(vx, vy, r, δ) are
computed according to the tire-road forces in [40]. The 3
DOF vehicle model can be simplified on the condition that
the longitudinal and lateral acceleration can be measured [30].
Moreover, considering the presence of nonzero inclination,
road bank angles, and air-force resistance, the 3 DOF vehicle
model above can be written as follows:

v̇x = rvy + ax − Cxv2
x + g sin θ

v̇y = −rvx + ay − Cyv2
y − g cos θ sinϕ

ṙ =
Mz(vx, vy, r, δ, θ, ϕ)

Jz
. (10)

4) 7 DOF Vehicle Model: Based on the 3 DOF vehicle
model described in (10), the 7 DOF vehicle model is intro-
duced [55] to consider the four wheel rotational speeds as
additional dynamic states.

ω̇i =
1
Ji

(Tti − Tbi − FxiRwi), i = 1, . . . , 4. (11)

The wheel rotational speed can be computed based on
the above description. The wheel rotational speed can be
transformed into longitudinal velocity vx, assuming zero slip,
and the transformed expression for velocity from wheel i is

vxi = Rwiωi cos δi ± bF/Rr. (12)

The computed longitudinal velocity in (12) is often used as
the correction for the longitudinal velocity estimation [30].

5) 8 DOF Vehicle Model: When roll motion is added to
the 7 DOF vehicle model above, the 8 DOF vehicle model is
obtained as follows:

v̇x = rvy +
fx(vx, vy, r, δ)

m
− mshrṗ

m

v̇y = −rvx +
fy(vx, vy, r, δ)

m
+

mshṗ

m

ṙ =
Mz(vx, vy, r, δ)

Jz
+ Ixz ṗ

ṗ =
1

Ixxs
{msh(v̇y + rvx) + Ixzsṙ + mshgφ

+ Mφf + Mφr}
φ̇ = p

ω̇i =
1
Ji

(Tti − Tbi − FxiRwi), i = 1, . . . , 4. (13)

The symbols in this vehicle model are described in [29].
The 8 DOF vehicle model is discussed extensively in vehicle
dynamics, and it is often proposed in vehicle state estimation
and vehicle rollover prevention.

In addition to the conventional vehicle models listed above,
there are also 5 DOF and 6 DOF vehicle models, which are
extracted from the discussed vehicle dynamic states. Moreover,
by considering the steering dynamics and suspension move-
ment in the vertical direction, a 14 DOF vehicle model or
other degrees of freedom vehicle models could be obtained.

V. REPRESENTATIVE DYNAMICS-ORIENTED VEHICLE
DYNAMIC STATE ESTIMATION METHODS

From the perspective of the vehicle model introduced above,
the vehicle dynamic state estimation schemes can be divided
into kinematics-based methods and dynamics-oriented ap-
proaches. Therefore, representative dynamics-oriented vehicle
state estimation methods are discussed in this section.

A. Kalman Filter
The Kalman filter (KF), also known as linear quadratic

estimation (LQE), is an algorithm that uses a series of mea-
surements observed over time and containing noise and other
inaccuracies to produce estimates of unknown variables. KF is
a conventional approach that operates recursively on streams
of noisy input to produce a statistically optimal estimate of
vehicle dynamic states. The filter is composed of a two-step
process, namely, a prediction step and an updating step.

In the prediction step, KF estimates the current states,
along with their uncertainties. After the outcome of the next
measurement is observed, the estimates are updated using a
weighted average. Several studies on this topic have been
reported. For example, a KF is proposed to estimate roll angle
and roll rate based on a 3 DOF vehicle model in [81]. A novel
method based on AKF is presented for estimating vehicle
velocities in [37] by updating the mean and covariance of
the noise online. This method has high adaptability and can
obtain high precision when an appropriate logic threshold is
selected. Through the above research, it can be concluded
that the KF is suitable for vehicle dynamic state estimation
under normal driving conditions. However, vehicle driving
conditions are extremely complex. When a vehicle is operated
under critical conditions, the vehicle exhibits strong nonlin-
earity. In this situation, the deviation between the vehicle
dynamics described by a linear vehicle model and the actual
vehicle system is large. Accordingly, the performance of the
KF in this situation is greatly reduced, and in some cases,
the divergence phenomenon appears. In such situation, EKF
is adopted to estimate the vehicle dynamic states using a more
precise nonlinear vehicle model.
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EKF estimates vehicle dynamic states using a nonlinear
vehicle model. It linearizes an estimation of the current mean
and covariance using first-order Taylor expansion. Then, a
linear KF is applied. In [36], [50], vehicle velocities, yaw
rate and road attributes are estimated using the EKF method,
and the estimated vehicle longitudinal tire force and tire-road
friction coefficient are obtained. The estimated road gradient
and vehicle sideslip angle are also obtained based on these
results. In addition, the vehicle sideslip angle and tire cor-
nering stiffness are effectively estimated in [72] based on the
tire-road force minimum mean square error estimation using
EKF. Moreover, EKF is suitable for conditions with varied
vehicle parameters. To address the variation of the tire-road
friction coefficient and the friction force, the implementation
of a model-based vehicle estimator is presented in [41] using
a dual extended KF (DEKF).

EKF employs a nonlinear vehicle dynamics model that
with highly precise vehicle descriptions. Moreover, recursive
processing is adopted, which simplifies the calculation and is
easy to implement. As a result, a high-precision estimation is
obtained. Therefore, EKF is widely used to discuss vehicle
dynamic state estimation issues. However, EKF has its own
shortcomings. The EKF parameters must be re-tuned when the
adhesion coefficient of the road surface varies [90]. Moreover,
EKF is suitable for discussing the estimation problem of
weak nonlinearity. The performance under highly nonlinear
conditions might deteriorate substantially, which is a key issue
to be improved for mass-production vehicles.

B. Artificial Intelligence Estimation Method
The artificial intelligence estimation method for vehicle

dynamic state estimation is a combination of the conventional
estimation method and intelligent approaches. Its generation
and development rely on a conventional estimation method.
Artificial neural networks and fuzzy logic are the most com-
mon intelligent methods.

ANN is a computational model inspired by an animal’s
central nervous systems that is capable of machine learning
and pattern recognition. Experimental data are applied to an
ANN to assess the performance of the sideslip angle in [64]. In
addition to the above neural networks, a two-level radial basis
function (RBF) neural network is proposed in [69] to approxi-
mate the unknown part of a system based on the single wheel
model, which makes tire force estimation insensitive to the
model inaccuracies. The neural network has strong intelligent
processing capacities, including self-learning ability, adaptive
capacity, and complex relational mapping capabilities. There-
fore, it is suitable for nonlinear systems where only input and
output information is known. The application of this method
has produced good test results, especially in the nonlinear
domain of vehicle driving. However, the test data employed
to train the ANN should be reflective of various driving
conditions. Moreover, the mapping relationships of ANN are
strongly dependent on the experimental data, and it is difficult
to describe the mechanism of the mapping relationships. In
addition, the convergence rate of ANN applied to vehicle
dynamic state estimation is relatively slow; accordingly, the
numerical stability is sometimes difficult to determine.

Fuzzy logic can be applied to concepts that can be ex-
pressed as “partially true”. Although alternative approaches,
such as genetic algorithms and neural networks, can perform
as well as fuzzy logic in many cases, fuzzy logic can be
cast in terms of human operators, whose experience can be
included in the design of the estimator. In [63], a fuzzy
logic procedure is implemented to identify steady state and
transient conditions in sideslip angle estimation. The fuzzy
logic approach does not require special assumptions on the
input signal, and it possesses a good robustness performance
when faced with varying vehicle parameters and noise in-
puts. Moreover, because the fuzzy-based observer obtains
high-frequency responses, perfect estimation accuracy can be
achieved. Therefore, fuzzy logic estimation is suitable for state
and parameter estimation in nonlinear systems. Moreover, the
real-time performance of fuzzy logic satisfies the requirements
of vehicle active safety systems. In addition, fuzzy logic can
easily integrate engineers’ experience. However, fuzzy logic
has its own shortcomings. For example, it relies heavily on
experience for weight parameter selection, and there are no
qualitative rules available for reference. Due to the variety and
complexity of vehicle operating conditions, complete fuzzy
rules are are often too difficult to establish. Due to the
lack of complete fuzzy rules, the requirements of the main
control logic cannot be satisfied and the overall vehicle driving
conditions cannot be considered. Thus, there are difficulties in
engineering applications.

C. Observer-based Method

Vehicle dynamic state estimation can be formulated as an
observer design problem if the vehicle dynamics system can
be described as a deterministic system. To compensate the
influence of modeling error, process noise and unmodeled
dynamics, a correction term is determined according to the
relationship between the measured output and states to be
estimated. A Luenberger observer is often used to estimate
the vehicle dynamic states. For example, two kinematics-based
Luenberger observers are proposed to estimate vehicle roll
and pitch angles using IMU in [78]. Moreover, with varied
observer gain, the estimated roll or pitch angle is shown to
asymptotically converge to the true value. The test results
of the observer mentioned above are satisfied in the linear
region of vehicle operation, but the accuracy of the observer
decreases as the velocity increases because the estimation
precision is strongly related to the vehicle model. Therefore,
researchers have introduced nonlinear vehicle dynamic models
and nonlinear observers to estimate dynamic states.

The nonlinear observer based on the principle of Luenberger
observers has been discussed extensively. The vehicle velocity
and yaw rate are estimated using a nonlinear observer in [30],
[34]. The ISS estimation results, for which it is relatively
difficult to obtain stable results, can be obtained using this
method. In addition, the roll angle is estimated using an
observer based on a roll dynamic model in [82]. In addition
to the consideration of a varying road friction coefficient in
[28], [65], the adaptive NLO is discussed for the sideslip angle
estimation problem. Moreover, an NLO to estimate vehicle
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velocity in the presence of varying friction and road bank
angle is presented in [33]. The performance of the NLO is
as good as that of the EKF while having significantly lower
computational complexity. The NLO method is flexible, and
various observations can be obtained based on different vehicle
models. NLO has achieved good test results under both normal
and critical conditions. Accordingly, NLO is valuable for fur-
ther study. In addition, the structure of the nonlinear observer
is relatively simple compared with EKF. Moreover, compared
with EKF and the optimal estimation method, satisfactory real-
time performance is obtained when applied to a real vehicle.
However, NLO is fragile under varying parameter conditions.
In this situation, the unknown input observer (UIO) is a
suitable solution. For example, a nonlinear UIO is designed
for vehicle lateral velocity estimation on banked roads in [42],
where it is concluded that the error dynamics for a nonlinear
UIO have the same structure as those of a nonlinear observer
without unknown inputs.

In addition to NLO, SMO is often used to estimate vehicle
dynamic states. In order to estimate sideslip angle, an SMO
is proposed in [50], which demonstrates the effectiveness
of using both a validated simulator and experimental data
obtained with a laboratory car. Additionally, a robust method
for estimating the lateral velocity with a simple structure
that contains a sliding mode term that is robust against
output noise, parameter variation and sustained disturbances
is presented in [91]. The given nonlinear model of the vehicle
is then represented by an uncertain T-S fuzzy model when
the road adhesion conditions change. The stability conditions
of such observers are expressed in terms of linear matrix
inequalities (LMI). SMO is characterized by a small number
of calculations and a simple design procedure. Moreover, it
can reconstruct the state by forcing the system into the sliding
mode surface. SMO also inherits the suppression of parameter
uncertainty in the model error by varying the structure control.
However, the choice of filtering time must be simultaneously
as small as possible and sufficiently large to suppress the high-
frequency noise of the system. Therefore, the selection of the
filter time is difficult. Simultaneously, as with the nonlinear
observer, the choice of observer gain requires a large number
of repeated regulations to satisfy the accuracy requirements of
the vehicle active safety system.

D. Optimization-based Estimation Method

In recent years, moving horizon estimation (MHE), based
on the same optimization principle as model predictive control
(MPC) [92]−[94], has been applied to the vehicle dynamic
state estimation problem. For example, an MHE method to
predict vehicle yaw rate and sideslip angle based on the
linear vehicle dynamic model is proposed in [52]. MHE
can explicitly express and optimize the state constraints in
the estimation process by taking full advantage of the given
information of states and disturbance. Accordingly, the ratio-
nality and accuracy of the estimation are improved. The above
MHE methods extensively address the vehicle dynamic state
estimation problem; however, the estimation schemes have not
been verified experimentally because MHE requires substantial

calculation, which affects the real-time performance of vehicle
dynamic state estimation. This is the main shortcoming of
MHE that affects its application in mass-production vehicles
and should be improved in future estimation research.

VI. FURTHER RESEARCH CONCERNS AND PERSPECTIVES

Vehicle dynamic state estimation has been greatly promoted
from various aspects in recent years, and there have been many
successful applications in mass-production vehicles. However,
some interesting and promising issues in vehicle dynamic state
estimation require further consideration.

1) The range of vehicle dynamic state estimation must be
extended towards automated and connected vehicles.

In recent years, intelligent transportation systems, au-
tonomous driving, connected vehicles and cyber-physical sys-
tems [4], [95], [96] have been rapidly developed, extending the
requirements of vehicle dynamic state estimation. Connected
vehicles require information about tire-road interactions, dy-
namic states and the positions of other vehicles to make
decisions. The distance and relative speed of other vehicles
must be predicted to determine the next position and dynamic
state. In addition, human driver information is functionally
required to initiate an automated driving system and which
may or may not do so even when driving conditions are within
the capability of the system. Therefore, vehicle dynamic state
estimation must be extended to obtain that information.

2) The serious coupling problem encountered by vehicle
dynamic state estimation.

Due to signal exchange between various physical compo-
nents, the dynamic state variables are strongly coupled, placing
a huge burden on the design of the dynamic state observer.
Additionally, onboard sensors are scattered at different po-
sitions on the vehicle, and the measured signals belong to
various subsystems, making vehicle dynamic state estimation
extremely challenging. Accordingly, additional state and pa-
rameters information is often required in advance to estimate a
single vehicle dynamic state. Considering the above situation,
the overall structure of vehicle dynamic state estimation should
be analyzed to carefully determine the various requirements
of each module. Based on the existing estimation structures,
adopting a distributed modular estimation strategy and de-
signing the estimator or observer according to the different
performance requirements and dynamic characteristics of dif-
ferent modules are effective ways to solve the serious coupling
problem in vehicle dynamic state estimation.

3) The issue of vehicle dynamic state estimation with
unknown inputs.

Tire-road interactions, such as the road inclination angle,
tire-road friction coefficient and road slope angle, are unknown
input information of vehicle dynamics systems. The road
information should be obtained first to predict vehicle dynamic
states, which results in an unknown input estimation problem.
Unknown road information has mostly been ignored by the
existing estimation schemes by assuming that the information
is already known. With the rapid development of estimation
theory, the superiority of the extended state observer, unknown
input observer and adaptive observer [29], [97], [32] has
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gradually appeared to solve this problem. These estimation
strategies will likely become suitable methods to solve the
vehicle dynamic state estimation problem with unknown road
information.

4) The stability and robustness of vehicle dynamic state
estimation.

When a modular estimation scheme is employed, the stabil-
ity of each module can be addressed using Lyapunov theory.
However, the overall stability of the modular observer must be
analyzed, which is a challenging problem. Moreover, modeling
errors exist, and the parameters will vary to some extent when
the vehicle is operating under different road conditions. There-
fore, uncertainty is present in the vehicle model. Additionally,
varied road conditions and lateral wind constitute external
vehicle disturbances. Therefore, it is valuable to discuss how
the vehicle dynamic state observer addresses the uncertainty
and external disturbances in vehicle model. The wide range of
application of ISS theory [30] makes it an effective measure
to discuss the overall stability and robustness of the modular
estimation scheme.

5) The real-time issue of vehicle dynamic state estimation.
The states of vehicle systems change rapidly during vehicle

operation, and the control cycle of the electronic control
unit is approximately 20 ms [33], which places specific real-
time requirements on the vehicle dynamic state estimation
algorithm. Furthermore, the miniaturization of modern cars
requires the vehicle dynamic state estimation algorithm to
be implemented on chips. Due to the above problems, it is
valuable to consider vehicle dynamic state estimation methods
that satisfy the miniaturization and real-time requirements.
Considering the small amount of calculation and fast calcu-
lating speed, a nonlinear observer is a practical way to solve
the miniaturization and real-time problems in vehicle dynamic
state estimation. Moreover, with the progress of hardware
technology on Field-Programmable Gate Array (FPGA) [35],
a hardware implementation that employs Field-Programmable
Gate Array/System-on-a-Programmable-Chip (FPGA/SoPC)
to solve the miniaturization and real-time problems is also
feasible.
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