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MengChu Zhou, Fellow, IEEE, and Mulugeta A. Haile

Abstract—This article presents an up-to-date tutorial review
of nonlinear Bayesian estimation. State estimation for nonlinear
systems has been a challenge encountered in a wide range of
engineering fields, attracting decades of research effort. To date,
one of the most promising and popular approaches is to view and
address the problem from a Bayesian probabilistic perspective,
which enables estimation of the unknown state variables by
tracking their probabilistic distribution or statistics (e.g., mean
and covariance) conditioned on a system’s measurement data.
This article offers a systematic introduction to the Bayesian state
estimation framework and reviews various Kalman filtering (KF)
techniques, progressively from the standard KF for linear systems
to extended KF, unscented KF and ensemble KF for nonlinear
systems. It also overviews other prominent or emerging Bayesian
estimation methods including Gaussian filtering, Gaussian-sum
filtering, particle filtering and moving horizon estimation and
extends the discussion of state estimation to more complicated
problems such as simultaneous state and parameter/input esti-
mation.

Index Terms—Kalman filtering (KF), nonlinear Bayesian esti-
mation, state estimation, stochastic estimation.

I. INTRODUCTION

AS a core subject of control systems theory, state esti-
mation for nonlinear dynamic systems has been under-

going active research and development for a few decades.
Considerable attention is gained from a wide community of
researchers, thanks to its significant applications in signal
processing, navigation and guidance, and econometrics, just to
name a few. When stochastic systems, i.e., systems subjected
to the effects of noise, are considered, the Bayesian estimation
approaches have evolved as a leading estimation tool enjoying
significant popularity. Bayesian analysis traces back to the
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1763 essay [1], published two years after the death of its
author, Rev. Thomas Bayes. This seminal work was meant to
tackle the following question: “Given the number of times in
which an unknown event has happened and failed: Required
the chance that the probability of its happening in a single
trial lies somewhere between any two degrees of probability
that can be named”. Bayes developed a solution to examine
the case of only continuous probability, single parameter and
a uniform prior, which is an early form of the Bayes’ rule
known to us nowadays. Despite its preciousness, this work
remained obscure for many scientists and even mathematicians
of that era. The change came when the French mathematician
Pierre-Simon de Laplace rediscovered the result and presented
the theorem in the complete and modern form. A historical
account and comparison of Bayes’ and Laplace’s work can be
found in [2]. From today’s perspective, the Bayes’ theorem is
a probability-based answer to a philosophical question: How
should one update an existing belief when given new evidence
[3]? Quantifying the degree of belief by probability, the theo-
rem modifies the original belief by producing the probability
conditioned on new evidence from the initial probability. This
idea was applied in the past century from one field to another
whenever the belief update question arose, driving numerous
intriguing explorations. Among them, a topic of perennial
interest is Bayesian state estimation, which is concerned with
determining the unknown state variables of a dynamic system
using the Bayesian theory.

The capacity of Bayesian analysis to provide a powerful
framework for state estimation has been well recognized now.
A representative method within the framework is the well-
known Kalman filter (KF), which “revolutionized the field
of estimation . . . (and) opened up many new theoretical and
practical possibilities” [4]. KF was initially developed by using
the least squares in the 1960 paper [5] but reinterpreted from a
Bayesian perspective in [6], only four years after its invention.
Further envisioned in [6] was that “the Bayesian approach
offers a unified and intuitive viewpoint particularly adaptable
to handling modern-day control problems”. This investigation
and vision ushered a new statistical treatment of nonlinear
estimation problems, laying a foundation for the prosperity of
research on this subject.

In this article, we offer a systematic and bottom-to-up
introduction to major Bayesian state estimators, with a
particular emphasis on the KF family. We begin with
outlining the essence of Bayesian thinking for state estimation
problems, showing that its core is the model-based prediction
and measurement-based update of the probabilistic belief of
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unknown state variables. A conceptual KF formulation can
be made readily in the Bayesian setting, which tracks the
mean and covariance of the states modeled as random vectors
throughout the evolution of the system. Turning a conceptual
KF into executable algorithms requires certain approximations
to nonlinear systems; and depending on the approximation
adopted, different KF methods are derived. We demonstrate
three primary members of the KF family in this context:
extended KF (EKF), unscented KF (UKF), and ensemble
KF (EnKF), all of which have achieved proven success both
theoretically and practically. A review of other important
Bayesian estimators and estimation problems is also presented
briefly in order to introduce the reader to the state of the art
of this vibrant research area.

II. A BAYESIAN VIEW OF STATE ESTIMATION

We consider the following nonlinear discrete-time system:
{

xk+1 = f(xk) + wk

yk = h(xk) + vk

(1)

where xk ∈ Rnx is the unknown system state, and yk ∈ Rny

the output, with both nx and ny being positive integers. The
process noise wk and measurement noise vk are mutually
independent, zero-mean white Gaussian sequences with co-
variances Qk and Rk, respectively. The nonlinear mappings
f : Rnx → Rnx and h : Rnx → Rny represent the
process dynamics and the measurement model, respectively.
The system in (1) is assumed input-free for simplicity of
presentation, but the following results can be easily extended
to an input-driven system.

The state vector xk comprises a set of variables that fully
describe the status or behavior of the system. It evolves
through time as a result of the system dynamics. The process
of states over time hence represents the system’s behavior.
Because it is unrealistic to measure the complete state in
most practical applications, state estimation is needed to infer
xk from the output yk. More specifically, the significance of
estimation comes from the crucial role it plays in the study
of dynamic systems. First, one can monitor how a system
behaves with state information and take the corresponding
actions when any adjustment is necessary. This is particularly
important to ensure the detection and handling of internal
faults and anomalies at the earliest phase. Second, high-
performance state estimation is the basis for the design and
implementation of many control strategies. The past decades
have witnessed the rapid growth of control theories, and most
of them, including optimal control, model predictive control,
sliding mode control and adaptive control, premise the design
on the availability of state information.

While state estimation can be tackled in a variety of
ways, the stochastic estimation has drawn remarkable attention
and been profoundly developed in terms of both theory and
applications. Today, it is still receiving continued interest
and intense research effort. From a stochastic perspective,
the system in (1) can be viewed as a generator of random

vectors xk and yk. The reasoning is as follows. Owing to
the initial uncertainty or lack of knowledge of the initial
condition, x0 can be considered as a random vector subject
to variation due to chance. Then, f(x0) represents a nonlinear
transformation of x0, and its combination with w0 modeled
as another random vector generates a new random vector x1.
Following this line, xk for any k is a random vector, and
the same idea applies to yk. In practice, one can obtain the
sensor measurement of the output at each time k, which can
be considered as a sample drawn from the distribution of the
random vector yk. For simplicity of notation, we also denote
the output measurement as yk and the measurement set at
time k as Yk := {y1, y2, . . . , yk}. The state estimation then is
to build an estimate of xk using Yk at each time k. To this
end, one’s interest then lies in how to capture p(xk|Yk), i.e.,
the probability density function (PDF) of xk conditioned on
Yk. This is because p(xk|Yk) captures the information of xk

conveyed in Yk and can be leveraged to estimate xk.
A “prediction-update” procedure1 can be recursively exe-

cuted to obtain p(xk|Yk). Standing at time k−1, we can pre-
dict what p(xk|Yk−1) is like using p(xk−1|Yk−1). When the
new measurement yk conveying information about xk arrives,
we can update p(xk|Yk−1) to p(xk|Yk). Characterizing a
probabilistic belief about xk before and after the arrival of yk,
p(xk|Yk−1) and p(xk|Yk) are referred to as the a priori and
a posteriori PDF’s, respectively. Specifically, the prediction
at time k − 1, demonstrating the pass from p(xk−1|Yk−1) to
p(xk|Yk−1), is given by

p(xk|Yk−1) =
∫

p(xk|xk−1)p(xk−1|Yk−1)dxk−1. (2)

Let us explain how to obtain (2). By the Chapman-
Kolmogorov equation, it can be seen that

p(xk|Yk−1) =
∫

p (xk, xk−1|Yk−1) dxk−1

which, according to the Bayes’ rule, can be written as

p(xk|Yk−1) =
∫

p(xk|xk−1,Yk−1)p(xk−1|Yk−1)dxk−1.

It reduces to (2), because p(xk|xk−1,Yk−1) = p(xk|xk−1) as
a result of the Markovian propagation of the state. Then on the
arrival of yk, p(xk|Yk−1) can be updated to yield p(xk|Yk),
which is governed by

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
. (3)

The above equation is also owing to the use of the Bayes’ rule

p(xk|Yk) =
p(xk,Yk)

p(Yk)
=

p(xk, yk,Yk−1)
p(yk,Yk−1)

=
p(yk|xk,Yk−1)p(xk,Yk−1)

p(yk,Yk−1)

=
p(yk|xk,Yk−1)p(xk|Yk−1)

p(yk|Yk−1)
.

Note that we have p(yk|xk,Yk−1) = p(yk|xk) from the fact
that yk only depends on xk. Then, (3) is obtained. Together,

1The two steps are equivalently referred to as “time-update” and “measurement-update”, or “forecast” and “analysis”, in different literature.
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Fig. 1. The Bayesian filtering principle. The running of a dynamic system
propagates state xk through time and produces output measurement yk at time
k. For the purpose of estimation, the Bayesian filtering principle tracks the
PDF of xk given the measurement set Yk = {y1, y2, . . . , yk}. It consists
of two steps sequentially implemented: prediction from p(xk−1|Yk−1) to
p(xk|Yk−1), and update from p(xk|Yk−1) to p(xk|Yk) upon the arrival of
yk .

(2) and (3) represent the fundamental principle of Bayesian
state estimation for the system in (1), describing the sequential
propagation of the a priori and a posteriori PDF’s. The
former captures our belief over the unknown quantities in the
presence of only the prior evidence, and the latter updates this
belief using the Bayesian theory when new evidence becomes
available. The two steps, prediction and update, are executed
alternately over time, as illustrated in Fig. 1.

Looking at the above Bayesian filtering principle, we
can summarize three elements that constitute the thinking
of Bayesian estimation. First, all the unknown quantities
or uncertainties in a system, e.g., state, are viewed from
a probabilistic perspective. In other words, any unknown
variable is regarded as a random one. Second, the output
measurements of a system are samples drawn from a certain
probability distribution dependent on the concerned variables.
They provide data evidence for state estimation. Finally, the
system model represents transformations that the unknown and
random state variables undergo over time. Originating from
the philosophical abstraction that anything unknown, in one’s
mind, is subject to variations due to chance, the randomness-
based representation enjoys universal applicability even when
the unknown or uncertain quantities are not necessarily random
in physical sense. In addition, it can easily translate into a
convenient “engineering” way for estimation of the unknown
variables, to be shown in the following discussions.

III. FROM BAYESIAN FILTERING TO KALMAN FILTERING

In the above discussion, we have shown the probabilistic
nature of state estimation and presented the Bayesian filtering
principle (2) and (3) as a solution framework. However, this
does not mean that one can simply use (2) and (3) to track the
conditional PDF of a random vector passing through nonlinear
transformations, because the nonlinearity often makes it diffi-
cult or impossible to derive an exact or closed-form solution.
This challenge turns against the development of executable
state estimation algorithms, since a dynamic system’s state
propagation and observation are based on the nonlinear func-
tions of the random state vector xk, i.e., f(xk) and h(xk). Yet
for the sake of estimation, one only needs the statistics (mean

and covariance) of xk conditioned on the measurements in
most circumstances, rather than a full grasp of its conditional
PDF. A straightforward and justifiable way is to use the mean
as the estimate of xk and the covariance as the confidence (or
equivalently, uncertainty) measure. Reducing the PDF tracking
to the mean and covariance tracking can significantly mitigates
the difficulty in the design of state estimators. To simplify the
problem further, certain Gaussianity approximations can be
made because of the mathematical tractability and statistical
soundness of Gaussian distributions (for the reader’s conve-
nience, several properties of the Gaussian distribution to be
used next are summarized in Appendix). Proceeding in this
direction, we can reach a formulation of the KF methodology,
as shown below.

In order to predict xk at time k − 1, we consider the
minimum-variance unbiased estimation, which gives that the
best estimate of xk given Yk−1, denoted as x̂k|k−1, is
E(xk|Yk−1) [7, Theorem 3.1]. That is,

x̂k|k−1 = E(xk|Yk−1) =
∫

xkp(xk|Yk−1)dxk. (4)

Inserting (2) into the above equation, we have

x̂k|k−1 =
∫ [∫

xkp(xk|xk−1)dxk

]
p(xk−1|Yk−1)dxk−1.

(5)

By assuming that wk is a white Gaussian noise indepen-
dent of xk, we have xk|xk−1 ∼ N (f(xk−1), Q) and then∫

xkp(xk|xk−1)dxk = f(xk−1) according to Appendix (64).
Hence, (5) becomes

x̂k|k−1 =
∫

f(xk−1)p(xk−1|Yk−1)dxk−1

= E [f (xk−1|Yk−1)] . (6)

For x̂k|k−1 in (6), the associated prediction error covariance
is

P x
k|k−1 = E

[
(xk − x̂k|k−1)(xk − x̂k|k−1)T

]

=
∫

(xk − x̂k|k−1)(xk − x̂k|k−1)T p(xk|Yk−1)dxk.

(7)

With the use of (2) and Appendix (64), we can obtain

P x
k|k−1 =

∫
xkxT

k p(xk|Yk−1)dxk − x̂k|k−1x̂
T
k|k−1

=
∫ [∫

xkxT
k p(xk|xk−1)dxk

]
p(xk−1|Yk−1)dxk−1

− x̂k|k−1x̂
T
k|k−1

=
∫ [

f(xk−1)fT (xk−1) + Q
]
p(xk−1|Yk−1)dxk−1

− x̂k|k−1x̂
T
k|k−1

=
∫ [

f(xk−1)− x̂k|k−1

] [
f(xk−1)− x̂k|k−1

]T

× p(xk−1|Yk−1)dxk−1 + Q

= Cov [f(xk−1)|Yk−1] + Q. (8)
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When yk becomes available, we assume that p(xk, yk|Yk−1)
can be approximated by a Gaussian distribution

N



[
x̂k|k−1

ŷk|k−1

]
,




P x
k|k−1 P xy

k|k−1(
P xy

k|k−1

)T

P y
k|k−1





 (9)

where ŷk|k−1 is the prediction of yk given Yk−1 and expressed
as

ŷk|k−1 = E(yk|Yk−1) =
∫

ykp(yk|Yk−1)dyk. (10)

The associated covariance is

P y
k|k−1 =

∫ (
yk − ŷk|k−1

) (
yk − ŷk|k−1

)T
p (yk|Yk−1) dyk.

(11)

It is noted that

p(yk|Yk−1) =
∫

p(xk, yk|Yk−1)dxk

=
∫

p(yk|xk)p(xk|Yk−1)dxk. (12)

Combining (10) and (11) with (12) yields

ŷk|k−1 =
∫ [∫

ykp(yk|xk)dyk

]
p(xk|Yk−1)dxk

=
∫

h(xk)p(xk|Yk−1)dxk = E [h(xk)|Yk−1] (13)

P y
k|k−1 =

∫ (
h(xk)− ŷk|k−1

) (
h(xk)− ŷk|k−1

)T

× p(xk|Yk−1)dxk + R

= Cov [h(xk)|Yk−1] + R. (14)

The cross-covariance between xk and yk is

P xy
k|k−1 =

∫∫ (
xk − x̂k|k−1

) (
yk − ŷk|k−1

)T

× p (xk, yk|Yk−1) dxkdyk

=
∫ (

xk − x̂k|k−1

) [∫ (
yk − ŷk|k−1

)T
p (yk|xk) dyk

]

× p (xk|Yk−1) dxk

=
∫ (

xk − x̂k|k−1

) (
h(xk)− ŷk|k−1

)T

× p (xk|Yk−1) dxk

= Cov [xk, h(xk)|Yk−1] . (15)

For two jointly Gaussian random vectors, the conditional
distribution of one given another is also Gaussian, which is
summarized in (67) in Appendix. It then follows from (9) that
a Gaussian approximation can be constructed for p (xk|Yk).
Its mean and covariance can be expressed as

x̂k|k = x̂k|k−1 + P xy
k|k−1

(
P y

k|k−1

)−1

︸ ︷︷ ︸
Kalman gain

(yk − ŷk|k−1) (16)

P x
k|k = P x

k|k−1 − P xy
k|k−1

(
P y

k|k−1

)−1 (
P xy

k|k−1

)T

. (17)

Putting together (6)−(8), (13), (14) and (15)−(17), we can
establish a conceptual description of the KF technique, which

Fig. 2. A schematic sketch of the KF technique. KF performs the prediction-
update procedure recursively to track the mean and covariance of xk for
estimation. The equations show that its implementation depends on determin-
ing the mean and covariance of the random state vector through nonlinear
functions f(·) and h(·).

is outlined in Fig. 2. Built in the Bayesian-Gaussian setting,
it conducts state estimation through tracking the mean and
covariance of a random state vector. It is noteworthy that
one needs to develop explicit expressions to enable the use
of the above KF equations. The key that bridges the gap is
to find the mean and covariance of a random vector passing
through nonlinear functions. For linear dynamic systems, the
development is straightforward, because, in the considered
context, the involved PDF’s are strictly Gaussian and the
linear transformation of the Gaussian state variables can be
readily handled. The result is the standard KF to be shown
in the next section. However, complications arise in the case
of nonlinear systems. This issue has drawn significant interest
from researchers. A wide range of ideas and methodologies
have been developed, leading to a family of nonlinear KFs.
The three most representative among them are EKF, UKF,
and EnKF to be introduced following the review of the linear
KF.

IV. STANDARD LINEAR KALMAN FILTER

In this section, KF for linear systems is reviewed briefly
to pave the way for discussion of nonlinear KFs. Consider a
linear time-invariant discrete-time system of the form

{
xk+1 = Fxk + wk

yk = Hxk + vk

(18)

where: 1) {wk} and {vk} are zero-mean white Gaussian noise
sequences with wk ∼ N (0, Q) and vk ∼ N (0, R), 2) x0 is
Gaussian with x0 ∼ N (x̄0, P0), and 3) x0, {wk} and {vk} are
independent of each other. Note that, under these conditions,
the Gaussian assumptions in Section III exactly hold for the
linear system in (18).

The standard KF for the linear dynamic system in (18)
can be readily derived from the conceptual KF summarized
in Fig. 2. Since the system is linear and under a Gaussian
setting, p(xk−1|Yk−1) and p(xk|Yk−1) are strictly Gaussian
according to the properties of Gaussian vectors. Specifi-
cally, xk−1|Yk−1 ∼ N (x̂k−1|k−1, P

x
k−1|k−1) and xk|Yk−1 ∼
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N (x̂k|k−1, P
x
k|k−1). Here, one can let x̂0|0 = x̄0 and P x

0|0 =
P0. According to (6) and (8), the prediction is

x̂k|k−1 = E (Fxk−1|Yk−1) = Fx̂k−1|k−1 (19)

P x
k|k−1 = Cov (Fxk−1|Yk−1) + Q

= FP x
k−1|k−1F

T + Q. (20)

The update can be accomplished along the similar lines.
Based on (13)−(15), we have ŷk|k−1 = Hx̂k|k−1, P y

k|k−1 =
HP x

k|k−1H
T + R, and P xy

k|k−1 = P x
k|k−1H

T . Then, as indi-
cated by (16) and (17), the updated state estimate is

x̂k|k = x̂k|k−1 + P x
k|k−1H

T
(
HP x

k|k−1H
T + R

)−1

︸ ︷︷ ︸
Kalman gain

× (
yk −Hx̂k|k−1

)
(21)

P x
k|k = P x

k|k−1 − P x
k|k−1H

T
(
HP x

k|k−1H
T + R

)−1

×HP x
k|k−1. (22)

Together, (19)−(22) form the linear KF. Through the
prediction-update procedure, it generates the state estimates
and associated estimation error covariances recursively over
time when the output measurement arrives. From a probabilis-
tic perspective, x̂k|k and P x

k|k together determine the Gaussian
distribution of xk conditioned on Yk. The covariance, quanti-
fying how widely the random vector xk can potentially spread
out, can be interpreted as a measure of the confidence on or
uncertainty of the estimate. A schematic diagram of the KF
is shown in Fig. 3 (It can also be used to demonstrate EKF to
be shown next).

Given that (F, H) is detectable and (F, Q
1
2 ) stabilizable,

P x
k|k−1 converges to a fixed point, which is the solution to a

discrete-time algebraic Riccati equation (DARE)

X = FXFT − FXHT (HXHT + R)−1HXFT + Q.

This implies that KF can approach a steady state after a few
time instants. With this idea, one can design a steady-state
KF by solving DARE offline to obtain the Kalman gain and
then apply it to run KF online, as detailed in [7]. Obviating
the need for computing the gain and covariance at every
time instant, the steady-state KF, though suboptimal, presents
higher computational efficiency than the standard KF.

V. REVIEW OF NONLINEAR KALMAN FILTERS

In this section, an introductory overview of the major
nonlinear KF techniques is offered, including the celebrated
EKF and UKF in the field of control systems and the EnKF
popular in the data assimilation community.

A. Extended Kalman Filter

EKF is arguably the most celebrated nonlinear state estima-
tion technique, with numerous applications across a variety
of engineering areas and beyond [9]. It is based on the
linearization of nonlinear functions around the most recent
state estimate. When the state estimate x̂k−1|k−1 is generated,

Fig. 3. A schematic of the KF/EKF structure, modified from [8]. KF/EKF
comprises two steps sequentially executed through time, prediction and
update. For prediction, xk is predicted by using the data up to time k − 1.
The forecast is denoted as x̂k|k−1 and subject to uncertainty quantified by the
prediction error covariance P x

k|k−1
. The update step occurs upon the arrival

of new measurement yk . In this step, yk is leveraged to correct x̂k|k−1 and
produce the updated estimate x̂k|k . Meanwhile, P x

k|k−1
is updated to generate

P x
k|k to quantify the uncertainty imposed on x̂k|k .

consider the first-order Taylor expansion of f(xk−1) at this
point:

f(xk−1) ≈ f(x̂k−1|k−1) + Fk−1

(
xk−1 − x̂k−1|k−1

)
(23)

Fk−1 =
∂f

∂x

∣∣∣∣
x̂k−1|k−1

. (24)

For simplicity, let p(xk−1|Yk−1) be approximated by a dis-
tribution with mean x̂k−1|k−1 and covariance P x

k−1|k−1. Then
inserting (23) to (6)−(8), we can readily obtain the one-step-
forward prediction

x̂k|k−1 = E [f (xk−1|Yk−1)] ≈ f
(
x̂k−1|k−1

)
(25)

P x
k|k−1 = Cov [xk|Yk−1] + Q

= Fk−1P
x
k−1|k−1F

T
k−1 + Q. (26)

Looking into (23), we find that the Taylor expansion ap-
proximates the nonlinear transformation of the random vector
xk by an affine one. Proceeding on this approximation, we
can easily estimate the mean and covariance of f(xk−1) once
provided the mean and covariance information of xk−1 con-
ditioned on Yk−1. This, after being integrated with the effect
of noise wk on the prediction error covariance, establishes a
prediction of xk, as specified in (25) and (26). After x̂k|k−1 is
produced, we can investigate the linearization of h(xk) around
this new operating point in order to update the prediction. That
is,

h(xk) ≈ h
(
x̂k|k−1

)
+ Hk

(
xk − x̂k|k−1

)
(27)

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

. (28)

Similarly, we assume that p(xk|Yk−1) can be replaced by
a distribution with mean x̂k|k−1 and covariance P x

k|k−1.
Using (27), the evaluation of (13)−(15) yields ŷk|k−1 ≈
h

(
x̂k|k−1

)
, P y

k|k−1 ≈ HkP x
k|k−1H

T
k + R, and P xy

k|k−1 ≈
P x

k|k−1H
T
k .

Here, the approximate mean and covariance information of
h(xk) and yk are obtained through the linearization of h(xk)
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around x̂k|k−1. With the aid of the Gaussianity assumption
in (9), an updated estimate of xk is produced as follows:

x̂k|k = x̂k|k−1 + P x
k|k−1H

T
k

(
HkP x

k|k−1H
T
k + R

)−1

× [
yk − h

(
x̂k|k−1

)]
(29)

P x
k|k = P x

k|k−1 − P x
k|k−1H

T
k

(
HkP x

k|k−1H
T
k + R

)−1

×HkP x
k|k−1. (30)

Then, EKF consists of (25) and (26) for prediction and (29)
and (30) for update. When comparing it with the standard
KF in (19)−(22), we can find that they share significant
resemblance in structure, except that EKF introduces the
linearization procedure to accommodate the system nonlinear-
ities.

Since the 1960s, EKF has gained wide use in the ar-
eas of aerospace, robotics, biomedical, mechanical, chemical,
electrical and civil engineering, with great success in the
real world witnessed. This is often ascribed to its relative
easiness of design and execution. Another important reason
is its good convergence from a theoretical viewpoint. In
spite of the linearization-induced errors, EKF has provable
asymptotic convergence under some conditions that can be
satisfied by many practical systems [10]−[14]. However, it
also suffers from some shortcomings. The foremost one is
the inadequacy of its first-order accuracy for highly nonlinear
systems. In addition, the need for explicit derivative matrices
not only renders EKF futile for discontinuous or other non-
differentiable systems, but also pulls it away from convenient
use in view of programming and debugging, especially when
nonlinear functions of a complex structure are faced. This
factor, together with the computational complexity at O(n3

x),
limits the application of EKF to only low-dimensional systems.

Some modified EKFs have been introduced for improved
accuracy or efficiency. In this regard, a natural extension is
through the second-order Taylor expansion, which leads to the
second-order EKF with more accurate estimation [15]−[19].
Another important variant, named iterated EKF (IEKF),
iteratively refines the state estimate around the current point
at each time instant [18], [19]. Though requiring an increased
computational cost, it can achieve higher estimation accuracy
even in the presence of severe nonlinearities in systems.

B. Unscented Kalman Filter

As the performance of EKF degrades for systems with
strong nonlinearities, researchers have been seeking better
ways to conduct nonlinear state estimation. In the 1990’s,
UKF was invented [20], [21]. Since then, it has been gaining
considerable popularity among researchers and practitioners.
This technique is based on the so-called “unscented transform
(UT)”, which exploits the utility of deterministic sampling
to track the mean and covariance information of a random
variable passing through a nonlinear transformation [22]−[24].
The basic idea is to approximately represent a random variable
by a set of sample points (sigma points) chosen deterministi-
cally to completely capture the mean and covariance. Then,
projecting the sigma points through the nonlinear function

concerned, one obtains a new set of sigma points and then
use them to form the mean and covariance of the transformed
variable for estimation.

To explain how UT tracks the statistics of a nonlinearly
transformed random variable, we consider a random variable
x ∈ Rn and a nonlinear function z = g(x). It is assumed that
the mean and covariance of x are x̄ and Px, respectively. The
UT proceeds as follows [22], [23]. First, a set of sigma points
{xi, i = 0, 1, . . . , 2n} are chosen deterministically:

x0 = x̄ (31)

xi = x̄ +
√

n + λ
[√

Px

]
i
, i = 1, 2, . . . , n (32)

xi+n = x̄−
√

n + λ
[√

Px

]
i
, i = 1, 2, . . . , n (33)

where [·]i represents the ith column of the matrix and the
matrix square root is defined by

√
Px

√
Px

T = Px achievable
through the Cholesky decomposition. The sigma points spread
across the space around x̄. The width of spread is dependent
on the covariance Px and the scaling parameter λ, where λ =
α2(n + κ) − n. Typically, α is a small positive value (e.g.,
10−3), and κ is usually set to 0 or 3−n [20]. Then the sigma
points are propagated through the nonlinear function g(·) to
generate the sigma points for the transformed variable z, i.e.,

zi = g
(
xi

)
, i = 0, 1, . . . , 2n.

The mean and covariance of z are estimated as

z̄ = E [g(x)] ≈
2n∑

i=0

W
(m)
i zi (34)

Pz = E
[
(g(x)− z̄) (g(x)− z̄)T

]

≈
2n∑

i=0

W
(c)
i

(
zi − z̄

) (
zi − z̄

)T
(35)

where the weights are

W
(m)
0 =

λ

n + λ
(36)

W
(c)
0 =

λ

n + λ
+ (1− α2 + β) (37)

W
(m)
i = W

(c)
i =

1
2(n + λ)

, i = 1, 2, . . . , 2n. (38)

The parameter β in (37) can be used to include prior informa-
tion on the distribution of x. When x is Gaussian, β = 2 is
optimal. The UT procedure is schematically shown in Fig. 4.

To develop UKF, it is necessary to apply UT at both
prediction and update steps, which involve nonlinear state
transformations based on f and h, respectively. For prediction,
suppose that the mean and covariance of xk−1, x̂k−1|k−1 and
P x

k−1|k−1, are given. To begin with, the sigma points for xk−1

are generated:

x̂
(0)
k−1|k−1 = x̂k−1|k−1 (39)

x̂
(i)
k−1|k−1 = x̂k−1|k−1 +

√
nx + λ

[√
P x

k−1|k−1

]
i
,

i = 1, 2, . . . , nx (40)
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Fig. 4. A schematic sketch of the UT procedure, adapted from [22]. A set of
sigma points (blue dots) are generated first according to the initial mean (red
five-pointed star) and covariance (red ellipse) (left) and projected through
the nonlinear function to generate a set of new sigma points (right). The
new sigma points are then used to calculate the new mean (green star) and
covariance (green ellipse).

x̂
(i+nx)
k−1|k−1 = x̂k−1|k−1 −

√
nx + λ

[√
P x

k−1|k−1

]
i
,

i = 1, 2, . . . , nx. (41)

Then, they are propagated forward through the nonlinear
function f(·), that is,

x̂
−(i)
k|k−1 = f

(
x̂

(i)
k−1|k−1

)
, i = 0, 1, . . . , 2nx. (42)

These new sigma points are considered capable of capturing
the mean and covariance of f(xk−1). Using them, the predic-
tion of xk can be achieved as follows:

x̂k|k−1 = E [f (xk−1) |Yk−1] =
2nx∑

i=0

W
(m)
i x̂

−(i)
k|k−1 (43)

P x
k|k−1 = Cov [f (xk−1) |Yk−1] + Q

=
2nx∑

i=0

W
(c)
i

(
x̂
−(i)
k|k−1 − x̂k|k−1

)

×
(
x̂
−(i)
k|k−1 − x̂k|k−1

)T

+ Q. (44)

By analogy, the sigma points for xk need to be generated
first in order to perform the update, which are

x̂
+(0)
k|k−1 = x̂k|k−1 (45)

x̂
+(i)
k|k−1 = x̂k|k−1 +

√
nx + λ

[√
P x

k|k−1

]
i
,

i = 1, 2, . . . , nx (46)

x̂
+(i+nx)
k|k−1 = x̂k|k−1 −

√
nx + λ

[√
P x

k|k−1

]
i
,

i = 1, 2, . . . , nx. (47)

Propagating them through h(·), we can obtain the sigma
points for h(xk), given by

ŷ
(i)
k|k−1 = h

(
x̂

+(i)
k|k−1

)
, i = 0, 1, . . . , 2nx. (48)

The predicted mean and covariance of yk and the cross-
covariance between xk and yk are as follows:

ŷk|k−1 = E [yk|Yk−1] =
2nx∑

i=0

W
(m)
i ŷ

(i)
k|k−1 (49)

P y
k|k−1 = Cov [h(xk)|Yk−1] + R

=
2nx∑

i=0

W
(c)
i

(
ŷ
(i)
k|k−1 − ŷk|k−1

)

×
(
ŷ
(i)
k|k−1 − ŷk|k−1

)T

+ R (50)

P xy
k|k−1 = Cov [xk, h(xk)|Yk−1]

=
2nx∑

i=0

W
(c)
i

(
x̂

+(i)
k|k−1 − x̂k|k−1

)

×
(
ŷ
(i)
k|k−1 − ŷk|k−1

)T

. (51)

With the above quantities becoming available, the Gaussian
update in (16) and (17) can be leveraged to enable the
projection from the predicted estimate x̂k|k−1 to the updated
estimate x̂k|k.

Summarizing the above equations leads to UKF sketched
in Fig. 5. Compared with EKF, UKF incurs a computational
cost of the same order O(n3

x) but offers second-order accuracy
[22], implying an overall smaller estimation error. In addition,
its operations are derivative-free, exempt from the burdensome
calculation of the Jacobian matrices in EKF. This will not only
bring convenience to practical implementation but also imply
its applicability to discontinuous undifferentiable nonlinear
transformations. Yet, it is noteworthy that, with a complexity
of O(n3

x) and operations of 2nx + 1 sigma points, UKF faces
substantial computational expenses when the system is high-
dimensional with a large nx, thus unsuitable for this kind of
estimation problems.

Owing to its merits, UKF has seen a growing momentum
of research since its advent. A large body of work is devoted
to the development of modified versions. In this respect,
square-root UKF (SR-UKF) directly propagates a square root
matrix, which enjoys better numerical stability than squaring
the propagated covariance matrices [25]; iterative refinement
of the state estimate can also be adopted to enhance UKF as
in IEKF, leading to iterated UKF (IUKF). The performance
of UKF can be improved by selecting the sigma points in dif-
ferent ways. While the standard UKF employs symmetrically
distributed 2nx + 1 sigma points, asymmetric point sets or
sets with a larger number of points may bring better accuracy
[26]−[29]. Another interesting question is the determination
of the optimal scaling parameter κ, which is investigated in
[30]. UKF can be generalized to the so-called sigma-point KF
(SPKF), which refers to the class of filters that use determin-
istic sampling points to determine the mean and covariance
of a random vector through nonlinear transformation [31],
[32]. Other SPKF techniques include the central-difference
KF (CDKF) and Gauss-Hermite KF (GHKF), which perform
sigma-point-based filtering and can also be interpreted from
the perspective of Gaussian-quadrature-based filtering [33].
GHKF is to be further discussed in Section VII.

C. Ensemble Kalman Filter

Since its early development in [34]−[36], the ensemble KF
(EnKF) has established a strong presence in the field of state
estimation for large-scale nonlinear systems. Its design is built
on an integration of KF with the Monte Carlo method, which
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Fig. 5. A schematic of UKF. Following the prediction-update procedure,
UKF tracks the mean and covariance of state xk using sigma points chosen
deterministically. A state estimate is graphically denoted by a red five-pointed-
star mean surrounded by a covariance ellipse, and the sigma points are colored
in blue dots.

is a prominent statistical method concerning simulation-based
approximation of probability distributions using samples di-
rectly drawn from certain distributions. Basically, it maintains
an ensemble representing the conditional distribution of a
random state vector given the measurement set. The state
estimate is generated from the sample mean and covariance
of the ensemble. In view of the sample-based approximation
of probability distributions, EnKF shares similarity with UKF;
however, the latter employs deterministic sampling while
EnKF adopts non-deterministic sampling.

Suppose that there is an ensemble of samples, x̂
(i)
k−1|k−1 for

i = 1, 2, . . . , Ns, drawn from p(xk−1|Yk−1) to approximately
represent this PDF. Next, let an ensemble of samples, w

(i)
k−1

for i = 1, 2, . . . , Ns, be drawn independently and identically
from Gaussian distribution N (0, Q) in order to account for
the process noise wk−1. Then, x̂

(i)
k−1|k−1 can hence be pro-

jected to generate a priori ensemble {x̂(i)
k|k−1} that represents

p(xk|Yk−1) as follows:

x̂
(i)
k|k−1 = f

(
x̂

(i)
k−1|k−1

)
+ w

(i)
k−1, i = 1, 2, . . . , Ns. (52)

The sample mean and covariance of this ensemble can be
calculated as:

x̂k|k−1 = E (xk|Yk−1) ≈ 1
Ns

Ns∑

i=1

x̂
(i)
k|k−1 (53)

P x
k|k−1 = Cov (xk|Yk−1)

≈ 1
Ns − 1

Ns∑

i=1

(
x̂

(i)
k|k−1 − x̂k|k−1

)

×
(
x̂

(i)
k|k−1 − x̂k|k−1

)T

(54)

which form the prediction formulae.
The update step begins with the construction of the ensem-

ble for p (yk|Yk−1) by means of

ŷ
(i)
k|k−1 = h

(
x̂

(i)
k|k−1

)
+ v

(i)
k , i = 1, 2, . . . , Ns (55)

where vi
k is generated as per Gaussian distribution N (0, R) to

delineate the measurement noise vk. The sample mean of this
ensemble is

ŷk|k−1 =
1

Ns

Ns∑

i=1

ŷ
(i)
k|k−1 (56)

with the associated sample covariance

P y
k|k−1 =

1
Ns − 1

Ns∑

i=1

(
ŷ
(i)
k|k−1 − ŷk|k−1

)

×
(
ŷ
(i)
k|k−1 − ŷk|k−1

)T

. (57)

The cross-covariance between xk and yk given Yk−1 is

P xy
k|k−1 =

1
Ns − 1

Ns∑

i=1

(
x̂

(i)
k|k−1 − x̂k|k−1

)

×
(
ŷ
(i)
k|k−1 − ŷk|k−1

)T

. (58)

Once it arrives, the latest measurement yk can be applied to
update each member of a priori ensemble in the way defined
by (16), i.e.,

x̂
(i)
k|k = x̂

(i)
k|k−1 + P xy

k|k−1

(
P y

k|k−1

)−1 (
yk − ŷ

(i)
k|k−1

)
,

i = 1, 2, . . . , Ns. (59)

This a posteriori ensemble {x̂(i)
k|k} can be regarded as an

approximate representation of p(xk|Yk). Then, the updated
estimation of the mean and covariance of xk can be achieved
through:

x̂k|k =
1

Ns

Ns∑

i=1

x̂i
k|k (60)

P x
k|k =

1
Ns − 1

Ns∑

i=1

(
x̂

(i)
k|k − x̂k|k

)(
x̂

(i)
k|k − x̂k|k

)T

. (61)

The above ensemble-based prediction and update are re-
peated recursively, forming EnKF. Note that the computation
of estimation error covariance in (54) and (61) can be skipped
if a user has no interest in learning about the estimation ac-
curacy. This can cut down EnKF’s storage and computational
cost.
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Fig. 6. A schematic of EnKF. EnKF maintains an ensemble of sample points
for the state vector xk . It propagates and updates the ensemble to track the
distribution of xk . The state estimation is conducted by calculating the sample
mean (red five-pointed-star) and covariance (red ellipse) of the ensemble.

EnKF is illustrated schematically in Fig. 6. It features direct
operation on the ensembles as a Monte Carlo-based extension
of KF. Essentially, it represents the PDF of a state vector
by using an ensemble of samples, propagates the ensemble
members and makes estimation by computing the mean and
covariance of the ensemble at each time instant. Its complexity
is O(n3

y + n2
yNs + nyN2

s + nxN2
s ) (nx À ny and nx À Ns

for high-dimensional systems) [37], which contrasts with
O(n3

x) of EKF and UKF. This, along with the derivative-free
computation and freedom from covariance matrix propagation,
makes EnKF computationally efficient and appealing to be
the method of choice for high-dimensional nonlinear systems.
An additional contributing factor in this respect is that the
ensemble-based computational structure places it in an advan-
tageous position for parallel implementation [38]. It has been
reported that convergence of EnKF can be fast even with a
reasonably small ensemble size [39], [40]. In particular, its
convergence to KF in the limit for large ensemble size and
Gaussian state probability distributions is proven in [40].

VI. APPLICATION TO SPEED-SENSORLESS
INDUCTION MOTORS

This section presents a case study of applying EKF, UKF
and EnKF to state estimation for speed-sensorless induction
motors. Induction motors are used as an enabling compo-
nent for numerous industrial systems, e.g., manufacturing
machines, belt conveyors, cranes, lifts, compressors, trolleys,
electric vehicles, pumps, and fans [41]. In an induction motor,
electromagnetic induction from the magnetic field of the stator
winding is used to generate the electric current that drives
the rotor to produce torque. This dynamic process must be
delicately controlled to ensure accurate and responsive opera-
tions. Hence, control design for this application was researched
extensively during the past decades, e.g., [41]−[43]. Recent

years have seen a growing interest in speed-sensorless induc-
tion motors, which have no sensors to measure the rotor speed
to reduce cost and increase reliability. However, the absence
of the rotor speed makes control design more challenging. To
address this challenge, state estimation is exploited to recover
the speed and other unknown variables. It is also noted that
an induction motor as a multivariable and highly nonlinear
system makes a valuable benchmark for evaluating different
state estimation approaches [43], [44].

The induction motor model in a stationary two-phase refer-
ence frame can be written as

i̇ds = −γids + αβψdr + βψqrω +
uds

σ

i̇qs = −γiqs − βψdrω + αβψqr +
uqs

σ
ψ̇dr = αLmids − αψdr − ψqrω

ψ̇qr = αLmiqs + ψdrω − αψqr

ω̇ =
µ

J
(−ψqrids + ψdriqs)− TL

J

y =
[
ids

iqs

]

where (ψdr, ψqr) is the rotor fluxes, (ids, iqs) is the stator
currents, and (uds, uqs) is the stator voltages, all defined in a
stationary d-q frame. In addition, ω is the rotor speed to be
estimated, J is the rotor inertia, TL is the load torque, and y
is the output vector composed of the stator currents. The
rest symbols are parameters, where σ = Ls(1 − L3

m/LsLr),
α = Rr/Lr, β = Lm/(σLr), γ = Rs/σ + αβLm, µ
= 3Lm/(2Lr); (RsLs) and (Rr, Lr) are the resistance-
inductance pairs of the stator and rotor, respectively; Lm is
the mutual inductance. As shown above, the state vector x
comprises ids, iqs, ψdr, ψqr, and ω. The parameter setting
follows [45]. Note that, because of the focus on state estima-
tion, an open-loop control scheme is considered with uds(t)
= 380 sin(100πt) and uqs(t) = −380 sin(200πt). The state
estimation problem is then to estimate the entire state vector
through time using the measurement data of ids, iqs, uds and
uqs.

In the simulation, the model is initialized with x0 =
[0 0 0 0 0]T . The initial state guess for all the filters is set to be
x̂0|0 = [1 1 1 1 1]T and P x

0 = 10−2I . For EnKF, its estimation
accuracy depends on the ensemble size. Thus, different sizes
are implemented to examine this effect, with Ns = 40, 100,
200 and 400. To make a fair evaluation, EKF, UKF and EnKF
with each Ns are run for 100 times as a means to reduce the
influence of randomly generated noise. The estimation error
for each run is defined as

∑
k ‖xk − x̂k|k‖2; the errors from

the 100 runs are averaged to give the final estimation error for
comparison.

Fig. 7 shows the estimation errors for ω along with ±3σ
bounds in a simulation run of EKF, UKF and EnKF with
ensemble size of 100 (here, σ stands for the standard deviation
associated with the estimate of ω, and ±3σ bounds correspond
to the 99 % confidence region). It is seen that, in all three cases,
the error is large at the initial stage but gradually decreases to a
much lower level, indicating that the filters successfully adapt
their running according to their own equations. In addition,



410 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018

TABLE I
AVERAGE ESTIMATION ERRORS FOR EKF, UKF, AND ENKF

Filter EKF UKF
EnKF

Ns = 40 Ns = 100 Ns = 200 Ns = 400

Average estimation error 682.63 321.05 347.24 329.70 323.96 320.30

Fig. 7. Estimation error for ω: (a) EKF; (b) UKF; (c) EnKF with Ns = 100.

UKF demonstrates the best estimation of ω overall. The
average estimation errors over 100 runs are summarized in
Table I. It also shows that UKF offers the most accurate

estimation when all state variables are considered. In addition,
the estimation accuracy of EnKF improves when the ensemble
size increases.

We draw the following remarks about nonlinear state es-
timation from our extensive simulations with this specific
problem and experience with other problems in our past
research.

1) The initial estimate can significantly impact the estima-
tion accuracy. For the problem considered here, it is found
that EKF and EnKF are more sensitive to an initial guess.
It is noteworthy that an initial guess, if differing much from
the truth, can lead to divergence of filters. Hence, one is
encouraged to obtain a guess as close as possible to the truth
by using prior knowledge or trying different guesses.

2) A filter’s performance can be problem-dependent. A filter
can provide estimation at a decent accuracy when applied to
a problem but may fail when used to handle another. Thus,
the practitioners are suggested to try different filters whenever
allowed to find out the one that performs the best for their
specific problems.

3) Successful application of a filter usually requires to
tune the covariance matrices and in some cases, parameters
involved in a filter (e.g., λ, α and β in UKF), because of
their important influence on estimation [46]. The trial-and-
error method is common in practice. Meanwhile, there also
exist some studies of systematic tuning methods, e.g., [47],
[48]. Readers may refer to them for further information.

4) In choosing the best filter, engineers need to take into
account all the factors relevant to the problem they are
addressing, including but not limited to estimation accuracy,
computational efficiency, system’s structural complexity, and
problem size. To facilitate such a search, Table II summarizes
the main differences and application areas of EKF, UKF and
EnKF.

VII. OTHER FILTERING APPROACHES AND
ESTIMATION PROBLEMS

Nonlinear stochastic estimation remains a major research
challenge for the control research community. Continual re-
search effort has been in progress toward the development of
advanced methods and theories in addition to the KFs reviewed
above. This section gives an overview of other major filtering
approaches.

1) Gaussian Filters (GFs): GFs are a class of Bayesian
filters enabled by a series of Gaussian distribution approxima-
tions. They bear much resemblance with KFs in view of their
prediction-update structure and thus, in a broad sense, belong
to the KF family. As seen earlier, the KF-based estimation
relies on the evaluation of a set of integrals indeed, for
example, the prediction of xk is attained in (6) by computing
the conditional mean of f(xk−1) on Yk−1. The equation is



FANG et al.: NONLINEAR BAYESIAN ESTIMATION: FROM KALMAN FILTERING TO A BROADER HORIZON 411

TABLE II
COMPARISON OF EKF, UKF AND ENKF

Computational
complexity

Jacobian matrix System dimensions Applications

EKF High Needed Low
Guidance and navigation, flight control, attitude control, target
tracking, robotics (e.g., simultaneous localization and mapping),
electromechanical systems (e.g., induction motors and electric
drives), vibration control, biomedical signal processing, sensor
fusion, structural system monitoring, sensor networks, process
control, computer vision, battery management, HVAC systems,
econometrics

UKF High Not needed Low to medium

EnKF Low Not needed High
Meteorology, hydrology, weather forecasting, oceanography,
reservoir engineering, transportation systems, power systems

repeated here for convenience of reading:

x̂k|k−1 = E [f(xk−1)|Yk−1]

=
∫

f(xk−1)p(xk−1|Yk−1)dxk−1.

GFs approximate p(xk−1|Yk−1) with a Gaussian distribution
having mean x̂k−1|k−1 and covariance P x

k−1|k−1. Namely,
p(xk−1|Yk−1) is replaced by N (x̂k−1|k−1, P

x
k−1|k−1) [33].

Continuing with this approximation, one can use the Gaus-
sian quadrature integration rules to evaluate the integral. A
quadrature is a means of approximating a definite integral of a
function by a weighted sum of values obtained by evaluating
the function at a set of deterministic points in the domain
of integration. An example of a one-dimensional Gaussian
quadrature is the Gauss-Hermite quadrature, which plainly
states that, for a given function g(x),

∫ ∞

−∞
g(x) · N (x; 0, 1)dx ≈

m∑

i=1

wig(xi)

where m is the number of points used, xi for i = 1, 2, . . . , m
the roots of the Hermite polynomial Hm(x), and wi the
associated weights:

wi =
2m−1m!

√
π

m2 [Hm−1(xi)]
2 .

Exact equality holds for polynomials of order up to 2m − 1.
Applying the multivariate version of this quadrature, one
can obtain a filter in a KF form, which is named Gauss-
Hermite KF or GHKF [33], [49]. GHKF reduces to UKF in
certain cases [33]. Besides, the cubature rules for numerical
integration can also be used in favor of a KF realization, which
yields a cubature KF (CKF) [50], [51]. It is noteworthy that
CKF is a special case of UKF given α = 1, β = 0 and κ = 0
[52].

2) Gaussian-sum Filters (GSFs): Though used widely in the
development of GFs and KFs, Gaussianity approximations are
often inadequate and performance-limiting for many systems.
To deal with a non-Gaussian PDF, GSFs represent it by a
weighted sum of Gaussian basis functions [7]. For instance,
the a posteriori PDF of xk is approximated by

p(xk|YK) =
m∑

i=1

W i
kN

(
xk; x̂i

k|k, P i
k|k

)

where W i
k, x̂i

k and P i
k|k are the weight, mean and covariance

of the ith Gaussian basis function (kernel), respectively. This
can be justified by the universal approximation theorem, which
states that a continuous function can be approximated by a
group of Gaussian functions with arbitrary accuracy under
some conditions [53]. A GSF then recursively updates x̂i

k|k,
P i

k|k and W i
k. In the basic form, x̂i

k|k and P i
k|k for i = 1,

2, . . . , m are updated individually through EKF, and W i
k

updated according to the output-prediction accuracy of x̂i
k.

The assumption for the EKF-based update is that the system’s
nonlinear dynamics can be well represented by aggregating
linearizations around a sufficient number of different points
(means). In recent years, more sophisticated GSFs have been
developed by merging the Gaussian-sum PDF approximation
with other filtering techniques such as UKF, EnKF, GFs and
particle filtering [33], [54]−[57] or optimization techniques
[58].

3) Particle Filters (PFs): The PF approach was first pro-
posed in the 1990’s [59] and came to prominence soon after
that owing to its capacity for high-accuracy nonlinear non-
Gaussian estimation. Today they have grown into a broad class
of filters. As random-sampling-enabled numerical realizations
of the Bayesian filtering principle, they are also referred to
as the sequential Monte Carlo methods in the literature. Here,
we introduce the essential idea with minimal statistical theory
to offer the reader a flavor of this approach. Suppose that
Ns samples, x̂

(i)
k−1|k−1 for i = 1, 2, . . . , Ns, are drawn from

p(xk−1|Yk−1) at time k−1. The ith sample is associated with
a weight W

(i)
k−1, and

∑Ns

i=1 W
(i)
k−1 = 1. Then, p(xk−1|Yk−1)

can be empirically described as

p(xk−1|Yk−1) ≈
Ns∑

i=1

W
(i)
k−1δ

(
xk−1 − x̂

(i)
k−1|k−1

)
. (62)

This indicates that the estimate of xk−1 is

x̂k−1|k−1 =
∫

xk−1p(xk−1|Yk−1)dxk−1

=
N∑

i=1

W
(i)
k−1x̂

(i)
k−1|k−1.

The samples can be propagated one-step forward to generate
a sampling-based description of xk, i.e.,
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x̂
(i)
k = f

(
x̂

(i)
k−1|k−1

)
+ w

(i)
k−1, i = 1, 2, . . . , Ns

where w
(i)
k−1 for i = 1, 2, . . . , Ns sample drawn from the

distribution of wk−1. After the propagation, each new sample
should take a different weight in order to be commensurate
with its probabilistic importance with respect to the others. To
account for this, one can evaluate p(yk|x̂(i)

k ), which quantifies
the likelihood of yk given the ith sample x̂

(i)
k . Then, the weight

can be updated and normalized into [0, 1] by

W
(i)
k = W

(i)
k−1p

(
yk|x̂(i)

k

)
, W

(i)
k =

W
(i)
k

Ns∑
i=1

W
(i)
k

.

Then, an empirical sample-based distribution is built for
p(xk|Yk) as in (62), and the estimate of xk can be computed
as

x̂k =
Ns∑

i=1

W
(i)
k x̂

(i)
k .

In practical implementation of the above procedure, the is-
sue of degeneracy may arise, which refers to the scenario
that many or even most samples take almost zero weights.
Any occurrence of degeneracy renders the affected samples
useless. Remedying this situation requires the deployment of
resampling, which replaces the samples by new ones drawn
from the discrete empirical distribution defined by the weights.
Summarizing the steps of sample propagation, weight update
and resampling gives rise to a basic PF, which is schematically
shown in Fig. 8. While the above outlines a reasonably intuitive
explanation of the PF approach, a rigorous development can
be made on a solid statistical foundation, as detailed in [16],
[60], [61].

Fig. 8. A graphic diagram of the PF technique modified from [62]. Suppose
that a set of samples (particles, as shown in gray color in the figure) are used to
approximate the conditional PDF of the state on the available measurements as
a particle discrete distribution. A one-step-froward propagation is implemented
to generate the samples for the state at the next time instant. On its arrival,
the new measurement is used to update the weight of each sample to reflect
its importance relative to others. Some samples may be given almost zero
weight, referred to as degeneracy, and thus have meaningless contribution to
the state estimation. Resampling is then performed to generate a new set of
samples.

With the sample-based PDF approximation, PFs can demon-
strate estimation accuracy superior to other filters given a
sufficiently large Ns. It can be proven that their estimation
error bound does not depend on the dimension of the sys-
tem [63], implying applicability for high-dimensional systems.

A possible limitation is their computational complexity, which
comes at O(Nsn

2
x) with Ns À nx. Yet, a strong anticipation

is that the rapid growth of computing power tends to overcome
this limitation, enabling wider application of PFs. A plethora
of research has also been undertaken toward computation-
ally efficient PFs [64]. A representative means is the Rao-
Blackwellization that applies the standard KF to the linear
part of a system and a PF to the nonlinear part and reduces
the number of samples to operate on [16]. The performance of
PFs often relies on the quality of samples used. To this end,
KFs can be used in combination to provide high-probability
particles for PFs, leading to a series of combined KF-PF
techniques [65]−[67]. A recent advance is the implicit PF,
which uses the implicit sampling method to generate samples
capable of an improved approximation of the PDF [68], [69].

4) Moving-horizon Estimators (MHEs): They are an emerg-
ing estimation tool based on constrained optimization. In
general, they aim to find the state estimate through minimizing
a cost function subject to certain constraints. The cost function
is formulated on the basis of the system’s behavior in a moving
horizon. To demonstrate the idea, we consider the maximum
a posteriori (MAP) estimation for the system in (1) during the
horizon [k −N, k] as shown below:

{x̂k−N , . . . , x̂k}
= arg max

xk−N ,...,xk

p(xk−N , . . . , xk|yk−N , . . . , yk)

= arg max
xk−N ,...,xk

p(xk−N )

×
k∏

l=k−N

p(yl|xl)
k−1∏

l=k−N

p(xl+1|xl)

= arg max
xk−N ,...,xk

p(xk−N )

×
k∏

l=k−N

p(vl)
k−1∏

l=k−N

p(wl).

Assuming wk ∼ N (0, Q) and vk ∼ N (0, R) and using the
logarithmic transformation, the above cost function becomes

min
xk−N ,...,xk

Φ(xk−N ) +
k−1∑

l=k−N

wT
l Q−1wl +

k∑

l=k−N

vT
l R−1vl

where Φ(xk−N ) is the arrival cost summarizing the past infor-
mation up to the beginning of the horizon. The minimization
here should be subject to the system model in (1). Meanwhile,
some physically motivated constraints for the system behavior
should be incorporated. This produces the formulation of MHE
given as

{x̂k−N , . . . , x̂k} = arg min
xk−N ,...,xk

Φ(xk−N )

+
k−1∑

l=k−N

wT
l Q−1wl +

k∑

l=k−N

vT
l R−1vl

s. t. xl+1 = f(xl) + wl

yl = h(xl) + vl

x ∈ X, w ∈W, v ∈ V
where X, W and V are, respectively, the sets of all feasible
values for x, w and v and imposed as constraints. It is seen
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Fig. 9. MHE performed over a moving observation horizon that spans N

+ 1 time instants. For estimation at time k, the arrival cost Φ(xk−N ) is
determined first, which summarizes the information of the system behavior
up to the beginning of the horizon. Then, the output measurements within
the horizon, yk−N , . . . , yk , are used, along with the arrival cost, to conduct
estimation of x̂k−N , . . . , x̂k through constrained optimization.

that MHE tackles the state estimation through constrained
optimization executed over time in a receding-horizon manner,
as shown in Fig. 9. For an unconstrained linear system, MHE
reduces to the standard KF. It is worth noting that the arrival
cost Φ(xk−N ) is crucial for the performance or even success
of an MHE approach. In practice, an exact expression is often
unavailable, thus requiring an approximation [70], [71]. With
the deployment of constrained optimization, MHE is compu-
tationally expensive and usually more suited for slow dynamic
processes; however, the advancement of real-time optimization
has brought some promises to its faster implementation [72],
[73].

5) Simultaneous State and Parameter Estimation (SSPE): In
state estimation problems, a system model is considered fully
known a priori. This may not be true in various real-world
situations, where part or even all of the model parameters
are unknown or subject to time-varying changes. Lack of
knowledge of the parameters can disable an effort for state
estimation in such a scenario. Hence, SSPE is motivated to
enable state estimation self-adapting to the unknown parame-
ters. A straightforward and popular way for SSPE is through
state augmentation. To deal with the parameters, the state
vector is augmented to include them, and on account of this,
the state-space model is transformed accordingly to one with
more dimensions. Then, a state estimation technique can be
applied directly to the new model to estimate the augmented
state vector, which is a joint estimation of the state variables
and parameters. In the literature, EKF, UKF, EnKF and PFs
have been modified using this idea for a broad range of
applications [74]−[78]. Another primary solution is the so-
called dual Kalman filtering. By “dual”, it means that the
state estimation and parameter estimation are performed in
parallel and alternately. As such, the state estimate is used
to estimate the parameters, and the parameter estimate is
used to update the state estimation. Proceeding with this
idea, EKF, UKF and EnKF can be dualized [79]−[82]. It
should be pointed out that caution should be taken when an
SSPE approach is developed. Almost any SSPE problem is
nonlinear by nature due to coupling between state variables
and parameters. The joint state observability and parameter

identifiability may be unavailable, or the estimation may get
stuck in local minima. Consequently, the convergence can
be vulnerable or unguaranteed, diminishing the chance of
successful estimation. Thus application-specific SSPE analysis
and development are recommended.

6) Simultaneous State and Input Estimation (SSIE): Some
practical applications entail not only unknown states but also
unknown inputs. An example is the operation monitoring for
an industrial system subject to unknown disturbance, where the
operational status is the state and the disturbance the input.
In maneuvering target tracking, the tracker often wants to
estimate the state of the target, e.g., position and velocity,
and the input, e.g., the acceleration. Another example is
the wildfire data assimilation extensively investigated in the
literature. The spread of wildfire is often driven by local
meteorological conditions such as the wind. This gives rise
to the need for a joint estimation of both the fire perimeters
(state) and the wind speed (input) toward accurate monitoring
of the fire growth.

The significance of SSIE has motivated a large body of
work. A lead was taken in [83] with the development of a KF-
based approach to estimate the state and external white process
noise of a linear discrete-time system. Most recent research
builds on the existing state estimation techniques. Among
them, we highlight KF [84], [85], MHE [86], H∞-filtering
[87], sliding mode observers [88], [89], and minimum-variance
unbiased estimation [90]−[94]. SSIE for nonlinear systems
involves more complexity, with fewer results reported. In [95],
[96], SSIE is investigated for a special class of nonlinear
systems that consist of a nominally linear part and a nonlinear
part. However, the Bayesian statistical thinking has been
generalized to address this topic, exemplifying its power in
the development of nonlinear SSIE approaches. In [97], [98], a
Bayesian approach along with numerical optimization is taken
to achieve SSIE for nonlinear systems of a general form. This
Bayesian approach is further extended in [99], [100] to build
an ensemble-based SSIE method, as a counterpart of EnKF,
for high-dimensional nonlinear systems. It is noteworthy that
SSIE and SSPE would overlap if we consider the parameters
as a special kind of inputs to the system. In this case, the SSIE
approaches may find their use in solving SSPE problems.

VIII. CONCLUSION

This article offers a state-of-the-art review of nonlinear state
estimation approaches. As a fundamental problem encountered
across a few research areas, nonlinear stochastic estimation
has stimulated a sustaining interest during the past decades.
In the pursuit of solutions, the Bayesian analysis has proven
to be a time-tested and powerful methodology for addressing
various types of problems. In this article, we first introduce
the Bayesian thinking for nonlinear state estimation, showing
the nature of state estimation from the perceptive of Bayesian
update. Based on the notion of Bayesian state estimation, a
general form of the celebrated KF is derived. Then, we illus-
trate the development of the standard KF for linear systems
and EKF, UKF and EnKF for nonlinear systems. A case study
of state estimation for speed-sensorless induction motors is
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provided to present a comparison of the EKF, UKF and EnKF
approaches. We further extend our view to a broader horizon
including GF, GSF, PF and MHE approaches, which are also
deeply rooted in the Bayesian state estimation and thus can be
studied from a unified Bayesian perspective to a large extent.

Despite remarkable progress made thus far, it is anticipated
that nonlinear Bayesian estimation continues to see intensive
research in the coming decades. This trend is partially driven
by the need to use state estimation as a mathematical tool
to enable various emerging systems in contemporary industry
and society, stretching from autonomous transportation to
sustainable energy and smart X (grid, city, planet, geosciences,
etc.). Here, we envision several directions that may shape the
future research in this area. The first one lies in accurately
characterizing the result of a nonlinear transformation applied
to a probability distribution. Many of the present methods
such as EKF, UKF and EnKF were more or less motivated to
address this fundamental challenge. However, there still exists
no solution universally acknowledged as being satisfactory,
leaving room for further exploration. Second, much research
is needed to deal with uncertainty. Uncertainty is intrinsic to
many practical systems because of unmodeled dynamics, ex-
ternal disturbances, inherent variability of a dynamic process,
and sensor noise, representing a major threat to successful es-
timation. Although the literature contains many results on state
estimation robust to uncertainty, the research has not reached
a level of maturity because of the difficulty involved. A third
research direction is optimal sensing structure design. Sensing
structure or sensor deployment is critical for data informa-
tiveness and thus can significantly affect the effectiveness of
estimation. An important question thus is how to achieve co-
design of a sensing structure and Bayesian estimation approach
to maximize estimation accuracy. Fourth, Bayesian estimation
in a cyber-physical setting is an imperative. Standing at the
convergence of computing, communication and control, cyber-
physical systems (CPSs) are foundationally important and
underpinning today’s smart X initiatives [101], [102]. They
also present new challenges for estimation, which include
communication constraints or failures, computing limitations,
and cyber data attacks. The current research is particularly
rare on nonlinear Bayesian estimation for CPSs. Finally, many
emerging industrial and social applications are data-intensive,
thus asking for a seamless integration of Bayesian estima-
tion with big data processing algorithms. New principles,
approaches and computing tools must be developed to meet
this pressing need, which should make an unprecedented
opportunity to advance the Bayesian estimation theory and
applications.

APPENDIX

This appendix offers a summary of the properties of the
Gaussian distribution. Suppose that z ∈ Rn is a Gaussian
random vector with z ∼ N (z̄, Pz). The PDF of z is expressed
as

p(z) =
1√

(2π)n|Pz|
exp

(−(z − z̄)P−1
z (z − z̄)T

)
.

Some useful properties of the Gaussian vectors are as
follows [103].

1)
∫

zp(z)dz = z̄,

∫
(z − z̄)(z − z̄)T p(z)dz = Pz

∫
zzT p(z)dz = Pz + z̄z̄T . (63)

2) The affine transformation of z, Az + b, is Gaussian, i.e.,

Az + b ∼ N (
Az̄ + b, APzA

T
)
. (64)

3) The sum of two independent Gaussian random vectors is
Gaussian; i.e., if z1 ∼ N (z̄1, Pz1) and z2 ∼ N (z̄2, Pz2) and
if z1 and z2 are independent, then

Az1 + Bz2 ∼ N (
Az̄1 + Bz̄2, APz1A

T + BPz2B
T
)
. (65)

4) For two random vectors jointly Gaussian, the conditional
distribution of one given the other is Gaussian. Specifically, if
z1 and z2 are jointly Gaussian with

[
z1

z2

]
∼ N

([
z̄1

z̄2

]
,

[
Pz1 Pz1z2

PT
z1z2

Pz2

])

then

z1|z2 ∼ N
(
z̄1 + Pz1z2P

−1
z2

(z2 − z̄2),

Pz1 − Pz1z2P
−1
z2

PT
z1z2

)
. (66)
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