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Causality Diagram-based Scheduling Approach for
Blast Furnace Gas System
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Abstract—Rational use of blast furnace gas (BFG) in steel
industry can raise economic profit, save fossil energy resources
and alleviate the environment pollution. In this paper, a causality
diagram is established to describe the causal relationships among
the decision objective and the variables of the scheduling process
for the industrial system, based on which the total scheduling
amount of the BFG system can be computed by using a causal
fuzzy C-means (CFCM) clustering algorithm. In this algorithm,
not only the distances among the historical samples but also the
effects of different solutions on the gas tank level are considered.
The scheduling solution can be determined based on the proposed
causal probability of the causality diagram calculated by the total
amount and the conditions of the adjustable units. The causal
probability quantifies the impact of different allocation schemes
of the total scheduling amount on the BFG system. An evaluation
method is then proposed to evaluate the effectiveness of the
scheduling solutions. The experiments by using the practical data
coming from a steel plant in China indicate that the proposed
approach can effectively improve the scheduling accuracy and
reduce the gas diffusion.

Index Terms—Blast furnace gas system, causal fuzzy C-means
(CFCM) clustering, causality diagram, scheduling.

I. INTRODUCTION

BLAST furnace gas (BFG) is one of the most important
byproduct gases generated from blast furnace, which is

widely used as secondary fuel for some other production
processes in iron and steel industry. Rational scheduling of
BFG can raise the economic profit, improve the produc-
tion efficiency, reduce the waste of energy and alleviate the
environmental pollution. In practical production processes,
scheduling solutions are determined mostly by the experience
of the scheduling experts. In such a way, low accuracy and
incomplete scheduling might be generated. Thus, studies fo-
cused on the scheduling problem were presented in literature.
A Bayesian network was used to determine the structure of
the adjustable users in [1], and the scheduling amount was
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obtained by computing the posterior probability. In order to
obtain the scheduling amount, a hybrid parameter optimization
algorithm was developed to optimize the model for high
prediction accuracy in [2]. Also, a Gaussian process-based
echo states network (ESN) was proposed to predict the gas
tank level, and a certain heuristic method was developed
to quantify the users gas adjustment [3]. A dynamic mixed
integer linear programming model is established to achieve
total scheduling amount in [4] and a benefit and cost (BAC)
model-based algorithm was proposed to solve the online
byproduct gas scheduling problem in [5]. However, these
methods enumerated above had two common limitations. One
is that the real-time status of the scheduling units was not being
taken into account, and the other is that the total scheduling
amount obtained by the gas tank level prediction may cause
the accumulation of iteration error.

Fuzzy C-means (FCM) clustering [6] is one of the major
clustering algorithms which has been widely used in many
fields, such as the long-term prediction for time series [7], the
image segmentation [8] and the feature extraction [9]. FCM
establishes the uncertainty description of the samples and can
objectively reflect the actual situation of industrial data. Based
on its characteristics that data can be separated into a number
of groups and the objects in each group showing a high sim-
ilarity, FCM is capable of selecting the historical scheduling
solutions most close to the current condition and calculating
the total scheduling amount. However, the traditional FCM
is not suitable for such an industrial scheduling problem
since the reported studies in literature only take the geometric
distances among the sample data into account, which failed to
clearly describe the causal relationships among the clustering
variables, especially for the practical industrial problem.

Causality is a kind of analysis method which is highly
consistent with human cognition mode. Pearl established the
causality model [10], and employed a directed acyclic graphs
(DAGs) to denote the cause and the effect among variables.
One can reference a series of typical instances related to the
causality-based research. A syntax and semantics of neuron
diagrams were formalized to identify the causal effects in [11].
A graphical representation of missing data mechanism was
presented in [12]. And then a causal model was reported to
solve the problem of estimating the causal relationship from
data with missing entries [13]. Similarly, a minimal causal
model is presented for the reliable knowledge discovery [14].
In addition, a causal effect criterion was made for model
selection [15]. The above mentioned studies indicated the
reliability of the causality-based approaches when facing with
the data-driven modeling or referencing.
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Fig. 1. Structure of BFG system.

In this paper, a causality diagram is established to describe
the causal relationships among the decision objective and
variables of the scheduling process for the BFG energy system,
based on which the total scheduling amount can be computed
by using a modified fuzzy C-means clustering algorithm.
Given that the Euclidean distance is combined with the causal
relationships among the clustering variables, the proposed
clustering method is more suitable to the application problems
described in this paper than the traditional one. A most
reasonable solution will be generated according to the current
status of the scheduling units. Then, an evaluation method
is designed to quantify the effectiveness of the suggested
solution. A series of comparative experiments using the real
industrial data are carried out. The results indicate that the
proposed method achieves much higher scheduling accuracy
and improves the efficiency of the BFG utilization.

This paper is organized as follows. In Section II, a practical
scheduling problem in steel industry is described. And a
causality diagram-based approach is proposed in Section III
to deduce the scheduling solution. The proposed method is
verified in Section IV by using the real data from a steel
plant in China, and the related results with some analysis are
addressed. Finally, Section V draws the conclusions for this
study.

II. PROBLEM DESCRIPTION

In practice (the studied Shanghai Baosteel Co. Ltd, in
China), a large amount of sensors acquire the energy real
time data and transfer them into programmable logic control
(PLC). And then, the data are stored into the real time database
(iHistorianTM on-site), and are displayed with various time
intervals on the supervisory control and data acquisition
(SCADA) system. The running states of the energy units are
monitored by the energy operators through SCADA system
on-site. The BFG system in steel industry is very complex,
and its balance status is mainly represented by the varying
tendency of the gas tank level. Fig. 1 shows the structure
of the BFG system. Regarded as a kind of very important
byproduct gas, BFG is generated from four blast furnaces, and

its generation amounts can be up to 1800 km3/h on average.
The transportation system contains pressure stations, mixing
devices and pipeline network, through which BFG can be
transported to a number of consumption units, such as coke
ovens, hot rolling and cold rolling. The surplus gas is stored in
the two gas tanks, which are connected to the pipeline as buffer
devices, and they always keep one connected to the pipeline,
and the other standby at high tank level for emergent situation.
Each of the blast furnaces is fed by four hot blast stoves. Due
to the production requirements, the combustion status of them
should be switched frequently. As the BFG consumption of
one hot blast stove can be up to about 10 km3/h, when the
combustion status switches, there will be a drastic impact of
the generated BFG on the whole gas system. Although the
gas tanks can be treated as the buffer devices, the capacity of
about only 60 km3/h can hardly completely stabilize the gas
fluctuation.

For the stability of the system, the trend of the gas tank level
has to be maintained in the safety region. When the gas tank
level is becoming out of the boundaries, the operators have to
change the operational mode of some adjustable units so as to
balance the generation and the consumption amounts of BFG.
In this study, a typical example to describe the BFG scheduling
problem can be briefly addressed as follows. Fig. 2 shows the
situation that the gas tank level has reached the upper boundary
while the generation amount is continually higher than that
of the consumption. In this case, the diffusing towers have to
diffuse the excess gas if the scheduling operation is not carried
out in time or correctly.

Thus, in order to ensure the efficient production, the
scheduling operation must be performed ahead of time. Cur-
rently, the total scheduling amount and the corresponding
scheduling units, which are referred to the tendency of the
gas tank level and the difference amount between the gas
generation and the consumption, are roughly determined by
the operators. This may cause a large computational cost and
uncompleted scheduling.
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Fig. 2. Condition that gas tank level has reached the upper boundary.

III. CAUSALITY DIAGRAM-BASED APPROACH

In this paper, a causality diagram-based approach is pro-
posed. The algorithm flow is shown in Fig. 3.

A. Causality Diagram-based Approach

In view of the fact that the scheduling of the BFG system
should take the related factors (such as the current gas tank
level and the flow difference between gas generation and con-
sumption) into account, the causality diagram of the variables
is established as shown in Fig. 4.

In the causality diagram, y(t) denotes the current gas tank
level, and the flow difference between gas generation and
consumption (FDGGC) can be denoted by X = [x(t − θi +
1), . . . , x(t)]T where t is the current time and θi denotes
the time span before t. The gas tank level in the future is
denoted by Y = [y(t + 1), . . . , y(t + θ2)]T where θ2 denotes
the time span of the tank level in the future, and Z denotes
the corresponding scheduling solution. The probability of the
gas tank level reaching the boundary which is represented by
Padjust is described as

Padjust =P (Y 6⊂ Rsafe|y(t),X)
=P (Y > ε1|y(t),X) + P (Y < ε2|y(t),X)

(1)

where Rsafe = [ε2,ε1] denotes the safety region, ε1 and ε2 are
the upper boundary and the lower one, respectively. The gas
tank level has to be adjusted when the total probability is not
0.

B. Causal Fuzzy C-Means Algorithm

In the studied practical problem, it is highly possible that
two different production conditions could lead to the same
flow differences of the gas generation and the consumption,
but different scheduling amounts. In contrast, the identical

scheduling amounts could also correspond to somewhat vari-
ous generation-consumption flow differences. In order to ob-
tain the solutions, a causal fuzzy C-means (CFCM) clustering
method is proposed, which combines the historical solutions
with the corresponding production status. The minimal vari-
ance criterion is used as the objective function of the proposed
clustering method. Assuming that there are n patterns, and c
clusters required, the optimization problem can be formulated
by

Fig. 3. Algorithm flow of the proposed approach.

Fig. 4. Causality diagram of the variables.
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JFCM =
n∑

j=1

c∑

i=1

um
ij (w1dij + w2ACEij)2

s.t.
c∑

i=1

uij = 1, ∀j = 1, 2, . . . , n

w1 + w2 = 1, uij ∈ [0, 1], i ∈ [1, c], j ∈ [1, n]

(2)

where dij = ‖vi − xj‖ denotes the Euclidean distance between
the ith clustering center and the jth data sample, m ∈ [1,+∞)
is the weighted index, w1 and w2 are the weights of the
distances. ACEij is the average causal effect (ACE) between
data samples and clustering centers which can be described
by

ACEij = ACE(xj −→ vi)
= E(yi|do(X = xj))− E(yi|do(X = vi))

(3)

where do(·) is Pearl’s do-operator and yi is the gas tank
level in ith cluster. Equation (3) provides the relationship
between the production status of the jth historical solution
and the ith clustering, meanwhile measures the expectation
differences of the gas tank level after being scheduled by the
historical solution and the corresponding clustering center. Let
Dij = w1dij + w2ACEij , then the clustering centers vi and
the degree of membership uij can be expressed by

vi =

n∑
j=1

um
ij xj

n∑
j=1

um
ij

(4)

uij =
1

c∑
k=1

( Dij

Dkj
)
−2

m−1

. (5)

According to the causality principle, the historical total
scheduling amount and the difference flow between gas gen-
eration and consumption are taken as the clustering variables,
which are regarded as the inputs of the clustering. The
outputs, i.e., the clustering centers, correspond to the different
production status. The center, whose gas flow difference is
close to the current difference, is regarded as the key center,
and the total scheduling amount of the center will be taken as
the average value of the total amount of the current solution.
The historical solutions that belong to the key center are
recomposed as follows.

1) If the scheduling amount of one historical solution
is close to the average total scheduling amount, then the
historical solution is regarded as a suggested solution.

2) If the sum of the amounts of several historical solutions
is close to the total scheduling amount, then the group of them
is regarded as a suggested solution.

C. Causal Probability of Suggested Solution

The causal probability of each new solution can be com-
puted by considering the running states of the scheduling units.
Denoting Pnorm as the probability of each scheduling solution,
we have

Pnorm = P (Y ⊂ Rsafe|do(Z)),Z ⊂ C (6)

where C represents all the new solutions. Equation (6) can
be explained as the probability of the gas tank level back to
the safety region with the intervention of the scheduling
solution Z.

D. Input Delay-based Least Square Support Vector Machine
(LSSVM) for Scheduling Solution Verification

In this study, given the characteristic of the BFG system, an
input delay-based LSSVM model is established to verify and
evaluate the effectiveness of the proposed solution for the gas
scheduling.

According to the causal relationship of the BFG system, one
can designate the previous gas generation, consumption and
the gas tank level as the most relevant factors of the current gas
tank level. Therefore, the cumulative flow difference between
gas generation and consumption in the previous moments and
the previous gas tank level are taken as the inputs of the model,
and the tank levels in the future are taken as the outputs. Let
τ1 and τ2 be the input delay values of the flow difference
between the gas generation and the consumption X1 and the
previous tank level X2, respectively. N denotes the sample
length, and the training samples are constructed by

X1 =




x(t− τ1 −N + 1) · · · x(t−N + 1)
...

. . .
...

x(t− τ1 − 1) · · · x(t− 1)
x(t− τ1) · · · x(t)


 (7)

X2 =




y(t− τ2 −N + 1) · · · y(t−N)
...

. . .
...

y(t− τ2 − 1) · · · y(t− 2)
y(t− τ2) · · · y(t− 1)


 . (8)

The regression model established in this paper can be
formulated by

y =
m∑

j=1

wjϕ(xj) + b (9)

where y is the gas tank level in the future, b is the bias, xj

denotes the jth factor of the inputs, m denotes the number of
the factors. The nonlinear mapping function and the weight of
the jth factor are represented by ϕ and wwwj , respectively. The
solving of the input delay-based LSSVM can be regarded as
an optimization problem

min J{ω, b, e} =
1
2

m∑

j=1

ωT
j ωj +

γ

2

m∑

j=1

n∑

i=1

e2
ij

s.t. yi =
m∑

j=1

ωT
j ϕ(xi) + b +

m∑

j=1

eij (10)

where γ is a penalty coefficient, n denotes the length of the
sample and eij is the fitting error of the jth input. One has to
solve the equations set as follows




0 1T

1
m∑

j=1

Kj + 2
γ I




[
b
α

]
=

[
0
y

]
(11)
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where Kj = ϕ(xj)T ϕ(xi) is the kernel function (usually
Gaussian kernel function) of the jth factor, I is an n order unit
matrix and 1 = [1, 1, . . . , 1]T . Then, we have the regression
model

y =
n∑

i=1

αi

m∑

j=1

Kj(xj , xij) + b. (12)

By repeating the process above, the gas tank levels in the
future will be computed to verify the effectiveness of the
scheduling solution.

E. Scheduling Evaluation

The effectiveness of the scheduling solution should be
evaluated. The definition of the objective function is defined
as follows

Jobj =
Gd

Gg
+

Ts

Tp
(13)

where Gd refers to the BFG diffusion and Gg the generation,
Ts refers to the moment needed to be scheduled and Tp the
predicted length. In (13), both the rate of BFG diffusion in
the next period of time and the frequency of the scheduling
operation are considered. When the scheduling amount was
not consumed by the scheduling units, the gas will be diffused,
leading to a waste of energy and environment pollution. The
smaller the value of Jobj is, the better the scheduling solution
is. When the value of Jobj is 0, it means that there will be no
diffusion and the gas tank level will be in the safety region in
a period of time.

IV. EXPERIMENTS AND ANALYSIS

To verify the performance of the proposed method, the
practical data obtained in April 2016 from a steel plant in
China are employed for the experiments. In the experiments,
both circumstances, approaching the lower boundary and the
upper one, are considered. The scheduling units include #1−#4
power plants (PP) and low pressure boiler (LPB). The evalua-
tion index mentioned in this paper is regarded as the judgment
criteria of the scheduling solutions.

A. Approaching the Lower Boundary

The lower boundary of the gas tank is 60 km3 in this plant,
and the solution has to be provided when the level is becoming
lower than it. In this section, a typical practical situation
is studied, in which the gas tank level is becoming lower
than 60 km3 and the gas generation amount, meanwhile, is
continually lower than the consumption amount.

Initially, one can compute Padjust according to the current
production status. In this situation, it equals to 0.435 6, which
means the scheduling is required. For the sake of calculating
the total scheduling amount, the proposed CFCM is used
for clustering all the 43 samples selected from the historical
data. The number of clusters is 5, which is decided by expert
knowledge. The clustering results based on CFCM and normal
FCM are shown in Fig. 5, where X label is the flow difference
between gas generation and consumption and Y label is the
total scheduling amounts. The value of w1 and w2 are set to
0.7 and 0.3, respectively.

Comparing to the current situation with the clustering
centers in Fig. 5, the average value of the total amount is
−100 km3 and −50 km3 respectively. The running states of
the scheduling units are shown in Table I where t represents
the current moment.

Fig. 5. Clustering results of the historical solutions. (a) Clustering result with
CFCM. (b) Clustering result with normal FCM.

TABLE I
CURRENT RUNNING STATES OF THE SCHEDULING UNITS

Time #1PP #2PP #3PP #4PP LPB
t−9 0.70 0.85 150.07 565.22 48.45
t−8 0.58 0.82 149.74 565.68 48.23
t−7 0.61 0.92 150.39 565.80 48.47
t−6 0.70 0.92 149.94 566.41 48.22
t−5 0.61 0.89 149.29 566.44 48.09
t−4 0.67 0.85 149.33 566.44 48.32
t−3 0.61 0.92 150.57 565.74 48.95
t−2 0.67 0.95 149.86 565.71 49.22
t−1 0.61 0.85 149.48 566.61 48.95
t 0.61 0.92 146.34 565.80 47.40

Table I shows that #1PP and #2PP are at stopping stage,
therefore the maximal adjustment ranges of #1PP, #2PP and
#3PP according to the operation load are 0 km3, 0 km3, and
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−150 km3 respectively. In order to ensure the regular running
of #4PP and LPB, the maximal adjustable range of them
are −100 km3 and 0 km3, respectively. Therefore, the new
solutions with special scheduling units and the corresponding
amount and the causal probability can be shown in Table II
and Table III.

TABLE II
SOLUTIONS OBTAINED BY CFCM

Solution

number

Total amount

(km3)

Solution

(amount(km3))

Causal

probabilities

1 −120 #1PP (−80), LPB (−40) 0

2 −110 #3PP (−50), #1PP (−60) 0

3 −100 #3PP (−100) 0.15

4 −100 #2PP (−100) 0

5 −80 #3PP (−50), #2PP (−30) 0

6 −80 #3PP (−80) 0.85

7 −80 #3PP (−50), #4PP (−30) 0

TABLE III
SOLUTIONS OBTAINED BY NORMAL FCM

Solution

number

Total amount

(km3)

Solution

(amount(km3))

Causal

probabilities

1 −80 #3PP (−50), #4PP(−30) 0

2 −60 #1PP (−60) 0

3 −50 #1PP (−50) 0

4 −50 #2PP (−50) 0

5 −50 #3PP (−50) 0.9

6 −50 #4PP (−50) 0.45

7 −40 #3PP (−40) 0.75

8 −30 #3PP (−30) 0.6

According to Table II, the sixth solution is regarded to be
the best one, while the fifth solution is the best in Table III. As
to the human experience, the solution is to reduce the usage
of #3PP for 50 km3 first, then reduce the usage of #4PP for
30 km3 after 10 minutes. The comparison of the results for 60
minutes in the future by the three methods, i.e., the proposed
one, the generic FCM and the human experiences applied in
the current production is illustrated in Fig. 6. The gas tank level
can be pulled back to the safety region by the proposed method
and can last for at least 60 minutes. The FCM based method
can also pull the gas tank level back to the safety region, but
it may lack stability. The human experience method results
in a second operation due to the uncompleted scheduling in
the first time, and the accuracy is apparently the lowest. The
scheduling evaluation of the three methods are shown in
Table IV.

In Table IV, we can see the evaluation result clearly.
The proposed method makes the gas tank no diffusion and
no second scheduling, while the other two methods contain
second, even third operation in the next 60 minutes.

Fig. 6. Comparison of the three scheduling solutions.

TABLE IV
SCHEDULING EVALUATION OF THE THREE METHODS

Method Objective value

Proposed method 0

FCM based method 0.03

Human experience 0.2

B. Approaching the Upper Boundary

The upper boundary of the gas tank is 115 km3. A typical
situation is here studied, in which the tank level is becoming
higher than the boundary and the gas generation, however,
continually higher than the consumption.

As the value of Padjust is above zero, the result of the two
clustering methods using 54 historical samples is shown in
Fig. 7, where the average of the total amount is 95 km3 and
the running states of the scheduling units are shown in Table
V, where t represents the current moment.

Table V lists that #1PP is at stopping stage, so the maximal
adjusting ranges of the first three scheduling units are 60 km3,
0 km3, 50 km3, respectively. In order to ensure the regular
running of #4PP and LPB, the maximal adjustment range
of them are 0 km3 and 50 km3 respectively. Therefore, the
new solutions with special scheduling units, the corresponding
amount and the causal probability are shown in Table VI and
Table VII.

According to Table VI, the first solution is the best one,
while in Table VII, the first solution is also the best one. The
human experience is to increase the usage of #3PP for 50 km3.
The comparison of the results for 60 minutes in the future is
shown in Fig. 8 and the scheduling evaluation of the three
methods is listed in Table VIII, where the proposed method
makes the gas tank no diffusion and no second scheduling,
while the FCM based method causes the level lower than the
lower boundary. As compared to the human experience, the
proposed method produces the scheduling amount in advance,
which can prevent the gas tank level from going higher than
the upper boundary.
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Fig. 7. Clustering results of the historical solutions. (a) Clustering result with
CFCM. (b) Clustering result with normal FCM.

TABLE V
CURRENT RUNNING STATES OF THE SCHEDULING UNITS

Time #1PP #2PP #3PP #4PP LPB
t−9 0.61 84.08 197.59 746.67 28.28
t−8 0.61 84.59 198.26 745.60 24.64
t−7 0.61 84.78 198.49 746.47 20.72
t−6 0.64 85.39 200.52 746.64 17.24
t−5 0.64 85.57 201.09 746.30 14.73
t−4 0.64 84.96 199.52 745.54 13.68
t−3 0.61 84.35 197.96 746.61 12.93
t−2 0.64 84.38 198.71 747.25 12.72
t−1 0.58 84.63 199.38 746.47 12.26
t 0.61 84.66 200.05 746.04 12.28

TABLE VI
SOLUTIONS OBTAINED BY CFCM

Solution
number

Total amount
(km3)

Solution
(amount (km3))

Causal
probabilities

1 50 #1PP (+50) 0.6
2 50 #2PP (+50) 0
3 50 #3PP (+50) 0.55
4 50 #4PP (+50) 0

TABLE VII
SOLUTIONS OBTAINED BY NORMAL FCM

Solution
number

Total amount
(km3)

Solution
(amount (km3))

Causal
probabilities

1 60 #1PP (+60) 0.55
2 60 #2PP (+60) 0
3 60 #3PP (+60) 0
4 60 #4PP (+60) 0

Fig. 8. Comparison of the three scheduling solutions.

TABLE VIII
SCHEDULING EVALUATION OF THE THREE METHODS

Method Objective value

Proposed method 0

FCM based method 0.03

Human experience 0.05

V. CONCLUSION

Considering that the scheduling solution is fairly critical in
BFG system, a causality diagram-based scheduling approach
is proposed in this study to provide the total scheduling
amount and allocate it to the reasonable scheduling units. The
proposed method takes the running states of the scheduling
units into account to ensure the practicability of the suggested
scheduling solution. An evaluation method is also proposed to
evaluate all the suggested scheduling solutions. To verify the
effectiveness of the proposed method, a set of experiments
are conducted based on the real-world data from an iron
and steel enterprise. The experimental results illustrate that
the proposed method exhibits higher accuracy in comparison
with the human experience based approach and provides an
effective guidance for energy balancing.
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