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A Novel Approach for Enhancement of Geometric
and Contrast Resolution Properties of

Low Contrast Images
Koushlendra Kumar Singh, Manish Kumar Bajpai, and Rajesh Kumar Pandey

Abstract—The present work encompasses a new image en-
hancement algorithm using newly constructed Chebyshev frac-
tional order differentiator. We have used Chebyshev polynomials
to design Chebyshev fractional order differentiator. We have
generated the high pass filter corresponding to it. The designed
filters are applied for decomposing the input image into four
bands and low-low (L-L) sub-band is updated using correction
coefficients. Reconstructed image with updated L-L sub-band
provides the enhanced image. The visual results obtained are
encouraging for image enhancement. The applicability of the
developed algorithm is illustrated on three different test images.
The effects of order of differentiation on the edges of images
have also been presented and discussed.

Index Terms—Chebyshev polynomial based approximation,
contrast enhancement, fractional order differentiator.

I. INTRODUCTION

THE image enhancement is a process to improve the
visual interpretation or perception of information con-

tained in an image for human viewers or to provide better
input image for any automated image processing systems.
Image enhancement is widely applicable in many real life
applications such as medical imaging, criminal investigation,
astronomy, geographical information system, satellite imaging
etc.

Several image enhancement techniques have been proposed
in literature. These techniques are application dependent. One
particular technique is not applicable for all types of applica-
tions, e.g., removing blurring effect of an image, improving
contrast of an image, removing the blocky effects of an image
etc. Contrast, brightness and sharpness plays crucial role in any
image. Contrast is created by difference in luminance reflected
from two adjacent surfaces with in an image. It enables user
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to distinguish between objects present in the image and its
background. Contrast depends on various factors, such as,
quality of camera, weather condition in geographical imaging,
density of tissues in medical imaging and distance in satellite
imaging.

The resultant images will not provide all the details and
some information may be washed-out and also it will give
unnatural look. Contrast enhancement algorithms target to
eliminate these issues [1], [2].

Contrast enhancement algorithms can be categorized in
two categories: 1) direct method; and 2) indirect method.
Direct contrast enhancement algorithms comprise with the
use of original contrast value. Two important direct contrast
enhancement measures are: 1) Michelson contrast measure;
and 2) Weber contrast measure [3], [4]. Michelson contrast
measure is used to measure the periodic pattern while Weber
contrast measure is used to calculate a large uniform lumi-
nance background by use of a small target. These algorithms
are not able to measure the contrast value of complex images
[5].

Indirect contrast enhancement algorithms include improve-
ment in the intensity span of the pixels by assigning it
specified mapping function. The indirect contrast enhancement
algorithms can be categorized in three categories: 1) transform
based contrast enhancement algorithms; 2) histogram based
contrast enhancement algorithms; 3) filter decomposition al-
gorithms for image enhancement. Many transform based im-
age enhancement algorithms have been proposed in [1], [2],
[6]−[9]. These algorithms are computationally efficient. It is
easy to view and handle frequency composition of the image
without direct dependence on spatial domain. These algorithms
suffer with blocking effect; hence, we are unable to enhance
every part of image simultaneously.

The histogram based algorithms are quite popular among the
researchers. We are naming few like histogram equalization,
adaptive histogram equalization (AHE), generalized histogram
equalization (GHE), local histogram equalization (LHE), dy-
namic histogram equalization (DHE), brightness preserving
bi-histogram equalization (BPBHE), brightness preserving dy-
namic histogram equalization (BPDHE), equal area dualistic
sub-image histogram equalization (DSIHE), minimum mean
brightness error bi-histogram equalization (MMBEBHE) algo-
rithm [10]−[18]. These algorithms are sensitive to noise and
also not able to adjust the level of enhancement.

Filter based image enhancement algorithms are proposed by
many researchers to overcome the histogram spikes present in
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an image. The special low-pass, high pass and band pas filter-
ing, unsharp masking and crisping, directional smoothing, me-
dian filtering, local-mean-weighted adaptive filter, weighting
high pass filter and many more adoptive filtering algorithms
have been developed [19]−[26]. These algorithms preserve
the original histogram profile features and also improve the
contrast dynamically.

Demirel et al. used discrete wavelet transform (DWT) and
singular value decomposition (SVD) for contrast enhancement
[27], [28]. Illumination problem has been solved with SVD
in literature. It uses the ratio of largest singular value of the
generated normalized matrix with mean zero and variance
of one over a normalized image which can be calculated
according to following equation

ξ =
max(ΣN(µ=0,var=1))
max(Σ(µ=0,var=1))

where Σ(µ=0,var=1) is the singular value matrix of the syn-
thetic intensity matrix. This coefficient can be used for regen-
eration of an equalized image.

Σeq = UA(ξΣA)V 1
A.

This operation reduces the effect of illumination problem.
Chen et al. proposed a new image enhancement algorithm
based on the fractional order Savitzky-Golay differentiator
[25]. Fractional order calculus is generalization of integral
order calculus from integer order to fractional order. It is very
old concept in mathematics and given by Leibniz (1695) to
a response of L Hospital letter [29]. It translates the reality
of nature in better way because of their non-local distributed
effects. Mathematicians are very keen in this area for last
three centuries. Researchers, across the globe, have started
working on the application of this field in engineering and
sciences. From theoretical point of view, it extends the order
of image processing from integral to fraction which means an
extension of information processing methods and ways. Real
world problem can be expressed better in term of real order
as compared to integer order.

The most popular application of fractional order derivatives
are in nuclear science, design of controller, boundary value
problems, description of physical system, practical application
of semi-infinite line in circuits, electrical circuit analysis and
electromagnetics, electrochemistry and optics, etc. [30], [31].
Fractional order derivatives are also used in field of image
processing and signal processing. Image sharpening, image
enhancement, motion detection, de-blurring, edge detection in
iris and many more application of fractional derivatives have
already been developed [31]. Design of finite impulse response
(FIR) filter, infinite impulse response (IIR) filter and fixed
fractional delay FIR filter are very popular in the field of signal
processing [25], [31]. Design of filter and differentiator helps
us in different applications and increases the acceptability of
filter.

Fractional order derivative of any function has been cal-
culated by different derivative definitions which exist in lit-
erature. The most popular ones among them are Riemann-
Liouville definition, Grunwald-Letnikov definition, Caputo
definition (1967), Oldham and Spanier definition (1974), K.

S. Miller and B. Ross method (1993), Kolwankar and Gangal
definition (1994) [29]−[31]. Fractional order differentiator
has been designed for continuous as well as for discrete
time domain. Carlsons method, Dutta Roys method, Chareffs
method, Matsudas method and Oustaloups method are most
popular methods for continuous time domain [25]. Least
square method, Newton series method, Tustin method, Tay-
lor method, fractional differencing formulas and continued
fractional expansion, etc., are some example of discrete time
domain method [26]. These methods are unable to accurately
estimate the derivative of noisy data or signal. Genetic al-
gorithms have been developed for estimation of derivative
of contaminated signals. Genetic algorithms have complex
mathematical calculations [32]. Savitzky-Golay proposed a
differentiator based on polynomial regression for estimation
and fitting of data. They have used least square polynomials
for approximation of the contaminated signals. Integer order
derivatives of contaminated signal have been easily estimated
by it [25], [26], [33].

The Chebyshev polynomials have wide applications in the
field of numerical analysis, interpolation of data, approxi-
mation, integration using Chebyshev polynomials, boundary
value problems, solution of differential equations, signal pro-
cessing specially for variable bandwidth finite length filter and
filter designing, etc. [34]−[36]. It has been first introduced by
P. L. Chebyshev in 1854 [37]. Chebyshev polynomials are
a sequence of orthogonal polynomials which can be defined
recursively. Chebyshev polynomials have been wildly useful
because of their orthogonal properties [36].

We have proposed an algorithm which uses a Chebyshev
polynomial based approximation of fractional order differen-
tiator. This differentiator is further used for generation of low-
pass and high-pass filter. This filter enables us to enhance
the geometrical as well as contrast resolution properties of
an image [38]. We have applied our algorithm only on L-L
sub-band of the image.

The structure of paper is as follow. Section II discussed
the proposed Chebyshev polynomial based fractional order
differentiator (CPBFOD) algorithm. Section III presents the
detail of experiments. Section IV reports the results obtained
from experiments. Section V gives the conclusions.

II. POLYNOMIAL BASED FRACTIONAL ORDER
APPROXIMATION OF FILTER FUNCTION FOR IMAGE

ENHANCEMENT

Consider two higher order differentiable functions in as
Ŷ (t) and Y (t) which are observed function and original
function respectively. The observed function can be written
as

Ŷ (t) = Y (t) + ξ(t) (1)

where ξ(t) is an error. The present work encompasses smooth-
ing of observed function by the use of nth order derivative, L
point filtering window and n-degree polynomial approxima-
tion.
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Any function Ŷ (t) can be obtained by polynomial expansion
expressed as follows:

Ŷ (t) =
n∑

k=0

ckTk(t) (2)

t = 1, 2, 3, . . ., L is the position of the tth point in the filtering
window and ck is the kth coefficient of polynomial function.
Least-square method is used for the estimate of the coefficients
ck. Equation (2) can expanded in the following form

T0(1)c0 +T1(1)c1 +T2(1)c2+ · · · +Tn(1)cn = y1

T0(2)c0 +T1(2)c1 +T2(2)c2+ · · · +Tn(2)cn = y2

T0(3)c0 +T1(3)c1 +T2(3)c2+ · · · +Tn(3)cn = y3

...
...

...
...

...
T0(L)c0+T1(L)c1+T2(L)c2+ · · ·+Tn(L)cn= yL

(3)

where Y = [y1, y2, . . . , yL] denotes the measured function
points in the filtering window. T is a matrix of order L×(n+1)
and can be defined as



T0(1) T1(1) T2(1) · · · Tn(1)
T0(2) T1(2) T2(2) · · · Tn(2)

...
...

...
. . .

...
T0(L) T1(L) T2(L) · · · Tn(L)


 . (4)

The elements of matrix T are calculated by using Cheby-
shev polynomial [37]. The Chebyshev polynomial is solution
of following differential equation

(1− t2)
d2y

dt2
− t

dt

dy
+ t2y = 0. (5)

The solution of the above differential equation is given as
follows:

y(t) = Tn(t) =
{

cos(n arccos(t)), if |t| ≤ 1
cosh(n arccos(t)), if |t| ≥ 1.

(6)

The Chebyshev polynomial of first kind can be obtained by
the following recursive relation

Tn+1(t) = 2tTn(t)− Tn−1(t) (7)

where T0(t) = 1, T1(t) = t.
The vectors C storing the coefficients of the polynomial are

obtained by following expression.

C = (TT T )
−1

TT Y. (8)

Equations (7) and (8) are used to solve (3). It will result

ˆY (t) = TC = (TT T )
−1

TT Y = WY. (9)

where W denotes windows coefficient matrix. Smoothing can
be performed by use of different window coefficient matrix.

Mainly, there are three most popular definition of frac-
tional derivative which are frequently used in the various
applications, i.e., Riemann Liouville (RL) definition, Grnwald
Letnikov (GL) definition and Caputo definition. The fractional
derivative of constant (α > 0) is not zero when evaluated using
RL and GL definition but it is zero for Caputo definition. This
is the main difference between Caputo and other two. The
fractional derivative of constant, which is non-zero, is the most
useful fact regarding image processing perspective. Hence we

are not going to use Caputo definition. RL definition provides
the exact solution of fractional derivative of any function while
GL provide the approximate solution for same. This plays a
vital role in choosing the RL definition for our purpose.

Riemann-Liouville fractional order derivative can be ex-
pressed as

0Dα
xY (t) =

1
Γ(l − α)

dl

dtl

∫ x

0

(t− x)l−α−1f(x)dx (10)

where 0 ≤ l − 1 < α < l, and Γ(l − α) is the Gamma
function of (l − α). α is the positive order of differentiation
and its value lies between l − 1 to l. It is called the first
order derivative when value of α becomes 1 and for other
integer values it becomes normal integer order differentiation.
The fractional order differentiator, corresponding to window
coefficient matrix W , can be obtained by (10). Different
properties of fractional order differentiation are applied on
(9) especially the properties of linearity and property for
integer order derivative. The fractional order derivative is
generalization of integral order derivative. This concept is used
for calculation of fractional order differentiator. We will get
[29]−[31].

Ŷ α
t = Tα

t C = Wα
t Y = c(TT T )

−1
TT Y. (11)

It is generalized form. Here Ŷ α
t denotes the αth derivative

of the tth point in the filtering window, Wα
t denotes the αth

derivative coefficient vector of the tth point in the filtering
window.

The proposed algorithm uses generalized histogram
technique (GHT) technique to generate the equalized image
I ′. The image is decomposed into four sub band images by
newly designed digital fractional order differentiator. The
newly designed fractional order digital differentiator behaves
like a one-dimensional filter of filter length L. It works as
a low pass filter. The high pass filter, for proposed digital
fractional order filter, has been calculated by mirror image of
low pass filter. The low pass and high pass filters, used in
analysis section, are G0(n) and h0(n), respectively. The high
pass filter h0(n) is a mirror image of low pass filter G0(n)
and can be expressed as

h0(n) = (−1)n
G0(n). (12)

The corresponding filters belonging to reconstruction sec-
tion are G1(n) and h1(n), respectively.

The input image is first filtered row wise using newly
designed filter into sub bands. The output image has been
decimated by two. The input image has been also filtered row
wise with high pass filter. The each sub images has been dec-
imated by 2. The same processes has been repeated columns
wise also for both low pass filter and also for high pass filter.
The process results into four sub bands as shown in Fig. 1.
Four bands, labeled as low-low (L-L), low-high (L-H), high-
low (H-L), and high-high (H-H) shown in decomposed image,
are known as approximation, vertical detail, horizontal detail
and diagonal detail sub bands, respectively. High frequency
sub bands L-H, H-L, and H-H contain the edge information
of the image. The main focus of the present work is on
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Fig. 1. Image decomposition by fractional order differentiator.

Fig. 2. Flow chart for calculation of correction coefficient.

illumination information of an image; hence we are only
focusing on L-L sub band [19]. Singular value decomposition
(SVD) applied on the L-L sub band. Block diagram of
calculating correction coefficient is shown in Fig. 2.

Correction coefficient for any singular value matrix is equal
to ratio of maximum singular value of the original input
image I to the maximum singular value of output image I ′.
Input image has been processed with generalized histogram
equalization. The decomposition of image has been performed
by applying one dimensional newly designed filter coefficient
along the rows of image first and then the results are de-
composed along the columns. It produces four decomposed
sub-band images referred to as L-L, L-H, H-L and H-H. The
original input image has been also processed with the newly
designed filter and followed by SVD on L-L band of resultant
image.

The correction coefficient is calculated by using the follow-
ing equation

µ =
max(ΣLLI′ )
max(ΣLLI

)
(13)

where ΣLLI′ is L-L sub band singular value matrix I ′ and
ΣLLI

is the L-L singular value matrix of input image.
The new L-L sub band of image I is can be computed as

follows
ΣLLInew

= µΣLLI
(14)

LLInew = ULLI
ΣLLInew

VLLI
. (15)

Enhanced image Ienhanced has been reconstructed by using
new LLInew , L-H, H-L and H-H sub bands.

The Algorithm 1 describes the detail about design process of
filter and their application for image enhancement. Algorithm
1 clearly shows that,there are total five input parameters input
image, size of image, length of filter, order of polynomial, and
order of derivative.

There are some intermediate variables in algorithm, e.g., T
as intermediate matrix, a is constant, W is window matrix,

Gamma function. Order of Chebyshev polynomial and length
of filter has been taken for initial approximation of given func-
tion. We have used the least square polynomial approximation
method for approximation of filter function.

—————————————————————————
Algorithm 1 (I, M, L, n, α, Ien)
—————————————————————————
M, L, n, α

L: Length of differentiator
n: Order of polynomial
α: Order of derivative
M : Size of matrix
I: Input image M
T : Matrix
a: Constant
W : Window matrix
Γ : Gamma function

Output: Ien

Begin
i = 1 to L
j = 0 to n
Calculate matrix Tij

T (i, j) = 2iT (i, j) − T (i, j − 1)(Here T (i, 0) = 1,
T (i, 1) = i)

Calculate a = Γ(n + 1)in−α/Γ(n + 1− α), i = 1 to L
Wα

i = a(TT )−1TT

I ′ = GHE(I)
Decompose image I ′ by using 1D filter
Apply SVD on L-L sub-band of I ′

Calculate µ = max(LLI′)/max(LLI)
ΣLLInew

= µΣLLI

LLInew = ULLI
ΣLLInew

VLLI

Replace LLI with LLInew in image I
End
—————————————————————————
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The proposed algorithm has two major parts; one is cal-
culation of filter coefficient by use of Chebyshev polynomial
and fractional order derivative algorithm which is based on
the approximation concept. The second part accomplishes
the decomposition of image by newly designed filters and
calculation of correction coefficient by applying SVD on
L-L sub band decomposed images. The singular value of L-L
sub band has been updated by the new value of correction
coefficient.

Proposed algorithm is only affecting the L-L sub-band of
image. It has been expected that the algorithm has minimum
effect on the edges of input image. The edge of image has
been found by applying the Canny edge detection algorithm
[39]. The detail analysis of effect of order of differentiation
on edges has been also analyzed in the proposed article.

III. EXPERIMENT

The algorithm has been validated with three test cases. Each
test case is having one test image. Images have been chosen in
such a way that they should represent the contrast properties
as well as geometric properties.

A. Test Case 1
Fig. 3 shows the test image chosen to validate our algorithm.

This image has geometrical resolution properties built in it.
The contrast of the image is very low. Contrast enhancement
has been performed by using our algorithm with different
values of α.

Fig. 3. Image for test case 1.

The effect of the contrast enhancement performed by the
algorithm on the edges has been analyzed.

B. Test Case 2
The image shown in Fig. 4 is used for validation of the algo-

rithm. This image represents the contrast resolution properties.
The experiment has been performed on the low contrast mars
images taken from the website of Jet Propulsion Laboratory
of California Institute of Technology [40]. Enhancement has
been performed for different fractional order differentiators.
The average grey scale value, of edges of image shown in fig.
4,has been studied after performing the enhancement.

Fig. 4. Image for test case 2.

C. Test Case 3
Fig. 5 represents an image which is also used for validation.

This image has geometric as well as contrast properties.
Different values of α have been used for enhancement. This
experiment has been performed on Lena image. The study of
average grey scale values of edges has been performed for this
image also.

Fig. 5. Image for test case 3.

IV. RESULTS AND DISCUSSION

The algorithm has been tested on the images shown in
Figs. 3−5. Chen et al. [26] have proposed the optimal values
of α as 0.29, 0.40 and 0.53, hence; we have chosen three
different values of α, i.e., 0.29, 0.40 and 0.53 for our experi-
ments. Coefficients of newly designed differentiator have bee
n calculated for L = 9 and n = 2. Table I shows the values of
all the coefficients of newly designed one-dimensional filter
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TABLE I
VALUE OF DIFFERENTIATOR FOR DIFFERENT α

α L = 9, n = 2

0.29 −0.35554 −0.0736 0.137466 0.277735 0.347194 0.345803 0.273623 0.130594 −0.08324
0.40 −0.05025 −0.1535 0.111836 0.293182 0.390673 0.404309 0.334061 0.179929 −0.05809
0.53 −0.77047 −0.0302 0.061378 0.318261 0.469104 0.513952 0.41318 0.28557 0.012432

for three different order of differentiation. The order of differ-
entiation has been taken for performing these experiments are
α = 0.29, 0.40 and 0.53. Coefficient for the high pass filter
can be obtained by using (10). These filters coefficients have
been used for the enhancement purpose. Figs. 6−8 represent
the enhanced images belonging to test case 1, test case 2 and
test case 3, respectively. Fig. 7 clearly shows that the enhanced
images are much better in visual quality. The experimental
results also show the effect of order of differentiation on
enhancement quality of input image for both type contrast
resolution as well as geometrical resolution types.

Fig. 6. (a) Original low-contrast image. (b) Enhanced image with α = 0.29.
(c) Enhanced image with α = 0.4. (d) Enhanced image with α = 0.53.

Fig. 7. (a) Original low-contrast image. (b) Enhanced image with α = 0.29.
(c) Enhanced image with α = 0.4. (d) Enhanced image with α = 0.53.

Fig. 8. (a) Original low-contrast image. (b) Enhanced image with α = 0.29.
(c) Enhanced image with α = 0.4. (d) Enhanced image with α = 0.53.

We have found that visual contrast enhancement has been
achieved by our algorithm. We have applied our algorithm only
on L-L band of original image. It is expected that the effect of
enhancement should be minimum on the edges. Average grey
scale value study has been performed on the edges on the
images shown in the Figs. 3−5. It has been observed that the
order of derivative also affect the quality of enhancement. The
enhancement quality by proposed algorithm also depend on
the type of image, i.e., image belonging to contrast resolution

property or geometrical resolution property or image contain
both types of properties.

Enhancement has been performed with different values
of α. Canny edge detection algorithm is an effective and
popular algorithm for edge detection of any image. It has been
performed on the enhanced images obtained by our algorithm.
Average grey scale values of the edges have been calculated
from result obtained from canny edge detection algorithm.
Table II shows different average grey scale values obtained for
different α. The grey scale value of edges has been calculated
for ten different orders of differentiation ranging from 0.1
to 1. The average grey scale value of edges of original test
images is 0.0984, 0.1631 and 0.0962 for test case 1, test case
2 and test case 3, respectively. It has been found that the
average scale value of edges of enhanced image is closed to
the original grey scale value of edges at α = 0.1. Table II
describes the average grey scale values of edges of enhanced
images. Average grey scale value of edges for case 1, 2 and 3 at
different order of differentiation has been shown in column 2, 3
and 4 of Table II, respectively. It has been found in case 1 that
average grey scale value of edges increases with the increase
in order of differentiation. This increase is continuous until the
order of differentiation is 0.9. The average grey scale value of
edges decreases sharply for the order of differentiation from
0.9 to 1.0. Case 1 represents the images having geometrical
resolution properties. The column 3 in Table II describes the
average grey scale values for test case 2 image which contain
the contrast resolution properties. Numerical values of average
grey scale of edges of enhanced images have been constantly
increases from the 0.1th order of differentiation to 0.6th order
of differentiation. Sharp change has been noticed in average
grey scale value of edges of enhanced images when order
of differentiation lies between 0.6 and 0.8. A decrement in
the numerical values of average grey scale has been found
for higher order of differentiator. The column 4 of Table II
shows the average grey scale values of edges of enhanced
images for test case 3 image which contains the geometrical
properties as well as the contrast properties of an image. A
similar behaviour has been found in numerical values of grey
scale. The sharp decline starts at 0.8th order of differentiation.
The value of grey scale at α = 0.7 is 0.1886, 0.2037 and
0.1473 for test case 1, test case 2 and test case 3, respectively.
We have found that the average grey scale value of edges is
increasing for different higher fractional order differentiator. It
starts decreasing when α is greater than 0.7 in all these cases.
The average grey scale value of edges of enhanced images is
increases from 0.7th to 0.8th order and starts deceasing when
order of differentiation lies from 0.8 to 0.9. Figs. 9−11 show
the pictorial behaviour of average grey scale value of edges
verses fractional order.
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TABLE II
VARIATION OF AVERAGE GRAY SCALE VALUE OF EDGES

Test case 1 Test case 2 Test case 3

Original 0.0984 0.1631 0.0962

α = 0.1 0.1128 0.1644 0.1234

α = 0.2 0.1303 0.1707 0.1251

α = 0.3 0.1427 0.1766 01253

α = 0.4 0.1512 0.1873 0.1254

α = 0.5 0.1680 0.1960 0.1304

α = 0.6 0.1737 0.2047 0.1402

α = 0.7 0.1886 0.2037 0.1473

α = 0.8 0.1913 0.2679 0.1688

α = 0.9 0.1961 0.2270 0.0757

α = 1.0 0.0865 0.1307 0.2452

Performance of proposed algorithm has been compared with
traditional enhancement algorithms like histogram equaliza-
tion (HE), contrast limited adaptive histogram equalization
(CLAHE). Fig. 9 shows pictorial form of variation of the
average grey value of edges for test case 1 with order of
differentiation. The length of filter and order of Chebyshev
polynomial is 9 and 2, respectively. It has been observed that
average grey scale value of edges first increases with increase
in the order of differentiator upto 0.9 and then decreases
sharply. The rate of change of average grey scale value is less
for order of differentiation between 0.7 to 0.9 as compared to
rate of change for order of differentiation between 0.1 and 0.7.
The average grey scale value is again close to the original grey
scale value when we choose the order of differentiator close
to 1. Fig. 9 indicates that if we choose order of differentiator
in between 0.9 to 1.0, then we will have the average grey
scale value close to original one. Table III describes the values
of mean absolute error (MAE), absolute mean brightness
error (AMBE) and peak signal to noise error (PSNR). These
parameters are defined as follows

meansquarederror(MSE)

=
1

MN

M−1∑

i=0

N−1∑

j=0

(I(i, j)− Ie(i, j))
2

PSNR = 10log10(
max(I(i, j))2

MSE
)

MAE =
1

MN

M−1∑

i=0

N−1∑

j=0

|(I(i, j)− Ie(i, j)|

AMBE = |µI − µIe |
where

µI =
1

MN

M−1∑

i=0

N−1∑

j=0

I(i, j)

µIe
=

1
MN

M−1∑

i=0

N−1∑

j=0

Ie(i, j)

σIIe =
1

MN − 1

M−1∑

i=0

N−1∑

j=0

((I(i, j)− µI)− (Ie(i, j)− µIe))

where I(i, j) and Ie(i, j) represents the original image and
enhanced image, respectively.

TABLE III
VALUE OF MAE, AMBE AND PSNR FOR ALL TEST CASES

Test case MAE AMBE PSNR

Test case 1 0 0 inf.

Test case 1, = 0.40 18.4177 45.4054 11.1306

Test case 1, = 0.29 15.0702 58.7300 9.827

Test case 1, = 0.53 25.9287 22.9993 13.72

Test case 1, HE 3.0956 53.3458 10.8188

Test case 1, AHE 0.5877 41.4853 9.0193

Test case 2 0.000 0.000 inf.

Test case 2, = 0.40 3.4830 3.5776 11.6380

Test case 2, = 0.29 0.6984 93.5775 18.3914

Test case 2, = 0.53 3.5776 76.7401 19.5310

Test case 2, HE 1.0340 39.5644 14.2956

Test case 2, AHE 4.9199 8.6830 20.0933

Test case 3 0.000 0.00 inf.

Test case 3, = 0.40 50.8832 4.0622 13.2729

Test case 3, = 0.29 20.0411 53.4692 15.0045

Test case 3, = 0.53 33.9262 48.4328 9.2125

Test case 3, HE 1.1228 25.4804 10.4481

Test case 3, AHE 2.2551 23.1623 10.2607

The change of average grey scale values with respect to or-
der of differentiation for images chosen in test case 2 has been
shown in Fig. 10. Order of Chebyshev polynomial and length
of filter has been taken as 2 and 9, respectively for performing
this experiment. Fig. 10 clearly shows that the value of average
grey scale of edges of enhanced images increases from 0.1th
order of differentiation to 0.7th order of differentiation. It has
been observed that when order of differentiation lie between
0.7 to 0.9 the average grey scale value, of edges of enhanced
images, is showing different behaviour. We have performed
0.8th order of differentiation. The average grey scale of edges
is decreasing and then increasing up to 0.9th order. Fig. 11
shows the plot between the order of the grey scale value of
edges sharply decrease from 0.9th order of differentiation to
1.0th order of differentiation. The average grey scale values
of edges of enhanced image will be approximately equal to
original grey scale value of edges of original image when
order of differentiation lies between 0.9th to 1.0th. Table III
clearly shows that the value of PSNR is lower with respect
to traditional values for all three test cases. We know that
the value of PSNR increases when image quality increases.
The value of MAE is also decreases. The value of AMBE
has been tabulated in Table III for all three test cases. It has
been observed that its value is lowest when order of derivative
becomes 0.4 for test case 2 and test case 3. Differentiation and
the average grey scale value of edges of enhanced images for
test case 3 image.

Parameters, order of Chebyshev polynomial and length of
filter, for performing this experiment has been taken as 2
and 9, respectively. Fig. 11 clearly show that when order of
differentiation varies from 0.1 to 0.7 then the nature of graph
is almost same.
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Fig. 9. Average gray value of edges of test case 1.

Fig. 10. Average gray value of edges of test case 2.

Fig. 11. Average gray value of edges of test case 3.

The value of average grey scale of edges of enhanced image
slightly increases from 0.7th order of differentiation to 0.8th
order of differentiation. The value of average grey scale of
edges of enhanced images has sharply decreased at 0.8th order
of differentiation.

It has been noticed that when order of differentiation varies
from 0.8th to 0.9th the value of average grey scale of edges
of enhanced image is showing decreasing behaviour. There
are sharp changes in average grey scale value of edges of
enhanced images at 0.9th order of differentiation and value is
of increasing nature. The test case 3 contains the geometrical
resolution properties as well as the contrast resolution prop-

erties. We have found similar trend here also and have found
that average grey scale value of edges of enhanced image,
which is close to original one, lies between the orders of
differentiator of 0.9th to 1.0th. Fig. 12 shows the results for
test case 1 with different existing approaches. Figs. 12 (a)−(h)
show results with adaptive Gamma correction with weighting
distribution (AGCWD) [41], bi-histogram equalization with
a plateau limit (BHEPL) [42], BHEPL [43], recursive sub-
image histogram equalization (RSIHE) [44], with CLAHE,
with HE and proposed method at order of differentiation 0.7,
respectively.

Fig. 13 shows the comparison of proposed technique with
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Fig. 12. (a) Original image of test case 2. (b) AGCWD [41]. (c) BHEPL [42]. (d) BHEPL [43]. (e) RSIHE [44]. (f) With CLAHE. (g) With HE. (h) Proposed
method with order 0.7.

Fig. 13. (a) Original image of test case 3. (b) AGCWD [41]. (c) BHEPL [42]. (d) BHEPL [43]. (e) RSIHE [44]. (f) With CLAHE. (g) With HE. (h) Proposed
method with order 0.7.

some well known techniques for test case 2. Figs. 13 (a)−(h)
show results with AGCWD [41], BHEPL [42], BHEPL [43],
RSIHE [44], with CLAHE, with HE and proposed method
at order of differentiation 0.7, respectively. It is noticed that
AGCWD produces better quality images however it becomes

over enhanced in case of test case 2 [41]. It has been observed
that BHEPED failed to enhance the images [42]. Fig. 14 shows
the comparison of proposed technique with some well known
techniques for test case 3. Figs. 14 (a)−(h) show results with
AGCWD [41], BHEPL [42], BHEPL [43], RSIHE [44], with



SINGH et al.: A NOVEL APPROACH FOR ENHANCEMENT OF GEOMETRIC AND CONTRAST RESOLUTION PROPERTIES OF LOW CONTRAST IMAGES 637

Fig. 14. (a) Original image of test case 3. (b) AGCWD [41]. (c) BHEPL [42]. (d) BHEPL [43]. (e) RSIHE [44]. (f) With CLAHE. (g) With HE. (h) Proposed
method with order 0.7.

CLAHE, with HE and proposed method at order of differen-
tiation order 0.7, respectively. Test image 2 and test image
3 becomes dark as compared to original images. BHEPL
gives significant enhancement but the boundaries of the images
become blur [43]. The enhancement is not better than the pro-
posed technique. Enhancement produced by RSIHE approach
preserves the quality but no significant change in contrast has
been noticed [44].

V. CONCLUSION

The major part of algorithm is calculation of T which is
O(n×L), application of GHE, decomposition of input image
by one-dimensional filter and SVD. It has been reported in
literature that the time complexity of GHE is O(M2)where
M is the number of pixels in one side of image. The time
complexity of decomposition of images by one-dimensional
filter and SVD are O(M2)and O(M3), respectively, for an
image of M ×M size.

The time complexity of the proposed algorithm is O(M3)
for an image of M×M size. The proposed algorithm has been
tested for three different cases. It has been observed that when
test image contains only geometrical resolution properties
the average grey scale value of edges of enhanced image is
showing same behaviour up to 0.9th order of differentiation. A
test image which has contrast resolution properties, the average
grey scale value of edges of enhanced image is increasing
up to 0.7th order of differentiation. Average grey scale value
of edges of enhanced image is constant up to 0.7th order of
differentiation, slightly increases from 0.7th to 0.8th and sharp
decrease from 0.8th to 0.9th and from 0.9th to 1.0th order
of differentiation sharp increase in images which has both
contrast resolution properties as well as geometrical resolution
properties.

Following conclusions are derived from the proposed work:
1) Algorithm is applicable for images having geometric as

well as contrast resolution properties.

2) Effect of enhancement on edges is minimum at 0.7
fractional order of differentiator as compared to integer order
differentiator.

3) Algorithm is performing better than integer order algo-
rithms.
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