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Local Robust Sparse Representation for Face
Recognition With Single Sample per Person

Jianquan Gu, Haifeng Hu, and Haoxi Li

Abstract—The purpose of this paper is to solve the problem
of robust face recognition (FR) with single sample per person
(SSPP). In the scenario of FR with SSPP, we present a novel
model local robust sparse representation (LRSR) to tackle the
problem of query images with various intra-class variations,
e.g., expressions, illuminations, and occlusion. FR with SSPP
is a very difficult challenge due to lacking of information to
predict the possible intra-class variation of the query images.
The key idea of the proposed method is to combine a local
sparse representation model and a patch-based generic variation
dictionary learning model to predict the possible facial intra-
class variation of the query images. The experimental results on
the AR database, Extended Yale B database, CMU-PIE database
and LFW database show that the proposed method is robust
to intra-class variations in FR with SSPP, and outperforms the
state-of-art approaches.

Index Terms—Dictionary learning, face recognition (FR), il-
lumination changes, single sample per person (SSPP), sparse
representation.

I. INTRODUCTION

Face recognition (FR) has been one of the hot fields in
computer vision and biometrics, since it is a challengeable
work to identify a face image with varying expression, oc-
clusion, disguise, and illumination. Many typical solutions are
to collect plenty of training data for compensating the above
intra-class variation problems [1]. However, collecting abun-
dant data is hard to guarantee in many situations. In many real-
world applications, e.g., driving license, visas, or student card,
there may single training image of per subject is available, that
leads to the trouble of single sample per person (SSPP) [2]. It
is a bottleneck of FR since only limited face image information
we obtain to compensate the possible intra-class variations in
the query images. How to extract discriminative and robust
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features to achieve excellent performance of FR with SSPP is
a significant and difficult work.

For FR with SSPP, the generalization ability of the learned
classifiers may be seriously reduced for the fundamental rea-
son that the robustness of the extracted features is insufficient.
Furthermore, the intra-class variation of the query images is
hard to estimate and the traditional discriminative subspace
learning approaches [3], [4] fail to work.

The existing solutions for FR with SSPP can be approxi-
mately categorized into two types: patch-based methods and
generic learning methods.

Patch-based methods [5]−[8] divide face images into sev-
eral patches, so that the discriminative feature information
from all patches is extracted and the corresponding classi-
fication results of each patch are integrated to calculate the
final recognition result. The algorithms that extracting discrim-
inative feature information from all patches has considered
local binary pattern (LBP) [9], manifold learning [6], or Gabor
features [10]. In [5], Chen et al. learn a within-class matrix by
considering each patch of each individual as the distributions
of the current class. In [6], Lu et al. use the patches from each
individual to construct a manifold and maximize the manifold
margin to figure out a projection matrix. By obtaining the
weak classifiers on all patches, some methods joint the weak
classifiers to output the final classification result [7], [8]. In
[7], Kumar et al. employ the nearest neighbor classifier (NNC)
on all patches, and present a kernel plurality to combine the
classification results of each patch. In [8], Zhu et al. employ
the collaborative representation based classifier (CRC) [11] on
all patches, and utilize the majority voting for classification.
The patch-based algorithms such as [7], [8] enhance the FR
performance to a certain degree, but they still fail to settle the
matter of lacking the possible face variation information in the
training samples. In [12], Zhu et al. proposes a local generic
representation (LGR) based framework for face recognition
by considering the facts that different parts of human faces
have different importance. For the above patch-based methods,
the classification performance is deteriorated when large intra-
class variations exists between the probe images and the
gallery images. To solve this problem, we introduce the generic
variation data with weights for each patch to alleviate the loss
of intra-class variations.

Taking into account that different face images share
similarity in possible face variation, generic learning methods
encourage employing external data to compensate the
insufficient of gallery images in face recognition. The target of
these algorithms is to model the intra-class variation [13], [14]
and to learn the classifiers with promoted recognition abilities
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[15], [16]. For instance, adaptive generic learning (AGL) [15]
learned a within-class matrix by employing external data to
classify all query images. In [16], Kan et al. presented a
nonlinear framework to figure out the within-class matrix. The
extended sparse representation coding (ESRC) [13] directly
utilizes external data to consist of a generic dictionary to
compensate the variation in the query images for recognition.
In [14], Yang et al. link the external data by jointly learning
a projection matrix. In [17], Yang et al. proposed a sparse
representation classification based model by eliminating the
occlusion components in the dictionary and using a weighted
least absolute shrinkage and selection operator (LASSO) al-
gorithm.

The holistic methods cannot guarantee desire performance
on face recognition with the problem of varying illumination,
expression, occlusion, and so on. Fortunately, patch-based
discriminative feature learning and extraction is sensitive to
those face image variations. Abundant intra-class variation
feature information in the external data can be taken to
represent the unknown variations of a query image for the
reason that it brings useful information for discrimination..

Sparse representation based methods are broadly utilized
in face recognition. In [18], Fang et al. propose to exploit
local gabor features with multitask adaptive sparse repre-
sentation for face recognition. In [19], Li et al. propose a
customized sparse representation model for undersampled face
recognition. He et al. propose two models based on sparse
representation for face [20], [21]. In [20], a half-quadratic
(HQ) framework is proposed by defining different kinds of
half-quadratic functions, which aims to performing both error
correction and error detection. In [21], a sparse correntropy
framework is proposed for computing sparse representations
of face recognition. The sparse correntropy framework aims
to solve the problems of occlusion and corruption in face
recognition which is based on the maximum correntropy
criterion and a nonnegativity constraint. Different from He’s
methods, our method aims to solve the problem of single
sample per person by combining a local sparse representation
model and a patch-based generic variation dictionary learning
model with the weights of each patch. Note that both the above
two methods cannot solve the problem of face recognition with
single sample per person.

In this paper, a novel model local robust sparse represen-
tation (LRSR) is proposed to solve the inter-class variation
problems in FR with SSPP. The proposed model combines
the patch-based method and dictionary learning method to
extract robust feature information from external data. The
local face recognition methods are beneficial to extract more
image feature information for better tackling the problem of
local variation. Learning local generic dictionaries for FR
favor integrating the variation information of external data to
solve the problems related to various inter-class variations in
FR. For compensating the shortage of the face representation
information in the training set with single sample per person,
the proposed scheme collects a generic variation set from ex-
ternal data. Then we learn a generic variation dictionary from
the external data. By employing the patch-based approach,
the patches of each query sample are jointly represented by

the local gallery dictionary and the local generic variation
dictionary. Using patch-based approach is beneficial to cal-
culate the different weights of each patch of the face which
take into account different regions of the human face with
different structures. At last, the proposed model performs the
classification of the query image according to the sums of
the representation residuals of each patch over all subjects.
The experimental results demonstrate that LRSR provides the
highest recognition rates in FR with SSPP. Fig. 1 shows the
flowchart of LRSR. In [22], He et al. proposes a two-stage
sparse representation (TSR) framework, by decomposing the
procedure of face recognition into outlier detection stage and
recognition stage. TSR aims to solve the L1 minimization
problem in a low computation expensive. Our method is based
on L2 minimization by using a patch-based learning model,
which is different from the above TSR method.

Fig. 1. Flowchart of the proposed framework for FR with SSPP.

By combining patch-based local sparse representation and
the patch-based local generic variation dictionary learning
from the external data, the proposed method brings three-
fold benefits. First, the proposed method provides a novel
framework for classifying face images with varying illumi-
nation, occlusion and expression variations by feat of the
patch-based sparse coding and patch-based generic variation
dictionary which extract robust variation features from external
data to compensate the intra-class variation information of the
interested subjects. Second, the proposed method calculates
the class weights of each patch to balance the extremely local
variations for restricting the outlier patches which pay an
oversize contribution in the overall face classification. Third,
the proposed method is able to overcome the difficulties
of FR with SSPP, since just only single training image of
per individual is required. By using a unified framework to
integrate patch-based robust face recognition and local generic
dictionary learning, LRSR enhances the performance of FR
with SSPP.

The rest of this paper is organized as follows. In Section
II, we present the proposed model local robust sparse repre-
sentation (LRSR) for face recognition with single sample per
person. In Section III, we present the experimental results on
four benchmark face databases. In Section IV, we summarize
the concluding remarks.

II. OUR APPROACH

In the scenario of FR with SSPP, we collect a gallery set A
= [a1, . . . , a2, . . . , aj ] ∈ Rd×j , where aj ∈ Rd is the single
training sample of subject j, j = 1, 2, . . . , J . For a query
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image y ∈ Rd, we use the gallery dictionary A to represent
the query image in such a SRC [23] based manner as:

y = Axa + e (1)

where xa denotes the coding vector of y on the gallery
dictionary A, and e is the representation residual. Unfortu-
nately, the majority of possible intra-class variation in the
query image y is incapable of denoted by the single training
sample from the correct subject. Therefore, the representation
residual of y is large, and may lead to misclassification
when utilize the representation manner of (1). Taking into
account that the intra-class variation in face images share
across different individuals, we adopt an external generic
variation training dataset to learn a generic variation dictionary.
It may lead to noisy for directly applying raw pixels from
external data to consist of generic variation dictionary D,
such as ESRC. In the proposed method, we support utilizing
dictionary learning algorithm to extract representative feature
from external data, and [24] has demonstrated that the methods
employing dictionary learning algorithms from external data
outperforms the algorithm employing predefined ones. The
learned dictionaries are more suitable for image denoising and
ensure the generalization ability for the interested individuals.

The sparse variation dictionary learning (SVDL) [14] aims
to learn a generic variation dictionary by combining the gallery
data and the external data. Considering that the SVDL has
shown auspiciously performance in recent works of dictionary
learning in FR, thus, we apply the SVDL to learn the external
generic variation dictionary from external data. The SVDL
exploit the inter-class variation feature of the external data
by learning a compact dictionary with a projection matrix
from the external data to the gallery data. The following is
the learning process of the generic variation dictionary D
by employing SVDL algorithm. Thus, we collect a generic
variation training set [Dr, Dv] from external data, where DV

is the variation subset and Dr is the reference subset. The
reference subset Dr ∈ Rd×n is constructed by neutral face
images of each subject. For each external generic subject,
we obtain the reference subject Dv

i and a variation subject,
where Dv

i = [Dv
1 , . . . , Dv

k, . . . , Dv
K ], Dv

k is the subset of the
kth variation, k = 1, 2, . . . , K. Different gallery subjects may
have same or different external generic variation dictionary
representation since the generic dictionary is not related to
any subjects of interest. For the ith gallery sample, denoted as
Ai, i = 1, 2, . . . , J , the learning generic variation dictionary
model of SVDL can be expressed as

min
D

c∑

i=1

p(Ai, D
r
i , ri) + q(D, Dv

i , ri) (2)

where ri is the coding vector of Ai over Dr
i , p(Ai, D

r
i , ri)

is the adaptive projection learning term, which exploits the
relationship between the gallery subset and reference subset,
and q(D, Dv

i , ri) denotes the variation dictionary learning,
which is used for learning a sparse representation based
dictionary by using the projection of the face variation from
the external data over the projection matrix. D is the generic
variation dictionary, which is learned by utilizing this SVDL

model. With the projection ri, the variation matrix of gallery
set can be obtained by projecting the variation matrix Dv

i onto
the dictionary. Thus, ri connect the external data with the
gallery data, which guaranteeing the learned generic variation
dictionary D is adaptive to the gallery data.

When obtaining the generic variation dictionary D, we
represent the query sample y over the dictionary A and D
as following:

y = Axa + Dxd + e (3)

where xa and xd is the coding vectors of y over A and D,
and e denotes the residual.

Different face regions such as eye, mouth, and nose have
different features and it is appropriate to learn region-specific
features to obtain the essential information from the local
patches in classifying the identification of a query face image.
Considering this principle, we utilize a patch-based method on
(3) by proposing a patch-based generic representation model
to learn robust and discriminatively feature for different face
patches individually.

For our proposed patch-based method, the query image y is
divided into B patches which are represented as y1, y2, . . . ,
yB . In the same way, the gallery dictionary A is partitioned
as A1, A2, . . . , AB . For each local patch i, we independently
learn the local generic variation dictionary Di by utilizing the
SVDL algorithm at the corresponding patch of the external
data. For each local patch yi, i = 1, 2, . . . , B, it can be
represented by the local gallery dictionary Ai and the local
generic variation dictionary Di, respectively. To explore the
most of image information and enhance the representation
and generalization ability of local gallery dictionaries of each
patch, we extract the feature of the adjoining blocks at each
patch of the training sample, and append them to Ai for
constructing a dictionary with more gallery information. With
Ai and Di, we individually represent each local patch of query
image y as

yi = Aixia + Dixid + ei, i = 1, 2, . . . , B (4)

where xia and xid are the coding vector of yi over Ai

and Di, respectively, and ei is the representation residual
corresponding to local patch yi, as shows in Fig. 2.

Fig. 2. Local sparse representation. The query image is divided into several
blocks. The first image is the query image; the second image is recovered by
the gallery set; the third is represented by the external data; the last is the
representation residual.

It needs to define an appreciate loss function on the repre-
sentation residual ei and employ an appropriate regularization
on the representation to calculate the optimal solutions of cod-
ing vectors xia and xid. We take the following minimization
problem into account

min
x

B∑

i=1

(‖yi −Aixia −Dixid‖22
)

+ λ‖x‖2F (5)
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where x = x1, x2, . . . , xB with xi = [xia;xid]. The solution
of each xi = [xia;xid] on (5) can be calculated by using a
manner of least square regression, as following

[xia;xid] =
(
[Ai, Di]T [Ai, Di] + λI

)−1
[Ai, Di]T yi. (6)

When obtaining the optimal coding vectors {x̃i}B
i=1, we

calculate the recognition result of query sample y. Let Ai =
[A1

i , . . . , Aj
i , . . . , A

J
i ] where Aj

i is the sub-gallery dictionary
of ith patch associated with class j. The representation residual
of each patch yi on each class j can be calculated by utilizing
the class-specific local gallery dictionary Aj

i and the local
generic variation dictionary Di. The query image can be
classified by calculating the minimal sum of the representation
residuals on each patch in the following manner

IDENTITY (y) = arg min
j

B∑

i=1

∥∥∥yi − [Aj
i , Di][x

j
ia;xid]

∥∥∥
2

2

(7)
where xj

ia is the jth coefficient of xia, which means the
effect factor of jth subject in classification of ith patch. For
classifying y, if subject j has a larger ‖xia(j);xid‖22, it means
the ith patch of query image y maybe more close to the
position-specific gallery patch of subject j. However, it also
indicates that the classification result of the query image will
be controlled by the patches with the extremely situation when
‖xia(j);xid‖22 is too large or too small. To solve this problem,
we intend to figure out the class weights of each patch to adjust
the classification effect of the representation residual in each
patch. For the ith patch, the class weight is to weaken or to
enhance the classification effect of the representation residual
on each class as following

wj
i =

1
‖xia(j);xid‖22

(8)

where xid is a constant vector for each class in the same patch,
and different patch with different xid. xia(j) is a value specific
for the subject j in the ith patch. Our classification principle
is to find the smallest sum of representation residual over each
patch on each class weight wj

i as the following

IDENTITY (y)

= arg min
j

B∑

i=1

wj
i

∥∥∥yi − [Aj
i , Di][x

j
ia;xid]

∥∥∥
2

2
. (9)

When calculating the sums of the weighted representation
residuals of each patch over all classes, the query sample y is
classified to the class with the minimal sum.

III. EXPERIMENTS

We perform sufficient experiments to demonstrate the ro-
bustness of LRSR for FR with SSPP on four benchmark
face databases, including AR database [25], Extended Yale
B database [26], CMU-PIE database [27], and LFW database
[28].

In all our experiments, to guarantee robustness and simplic-
ity, the regularization parameter λ in (5) is fixed as λ = 0.013
throughout all the experiments. For all images throughout the
experiments, we fix the size of each patch as 20×20, and the

overlapped margin is 10 pixels. The three parameters λ1, λ2,
λ3 of the adopted local generic variation dictionary method
SVDL are set as 0.0002, 0.0008, 0.00001, respectively. The
face images on AR database, Extended Yale B database are
resized to 80× 80.

We compare LRSR with the state-of-art approaches based
on sparse representation including [11], SRC [23], ESRC [13],
SVDL [14], robust sparse coding (RSC) [17] and LGR [12]
to prove the performance of the proposed method for robust
sparse representation in FR with SSPP. Note that method
LRSR without using weight calculation (LRSRWW) means
the proposed method LRSR without using weight calculation.

A. AR Database

The AR [25] face database includes 126 subjects which
contains over 4000 images. For each individual, 13 face
images were taken in each of two sessions, covering different
expressions, illumination conditions, and occlusions.

In our SSPP experiments, the public available subset with
face images consisting of 50 males and 50 females is chosen.
In Session I, we choose the only 80 neutral images of the
first 80 individuals to construct gallery data, and the remaining
samples of these 80 subjects are used as probe data. The other
20 subjects from Session I are used as the external generic
variation data. We also apply the same operation to Session
II. Fig. 3 lists some examples of AR database.

Fig. 3. The first is the selected training image, and the remainder is four
query images with variations of one individual in AR database.

To prove the robustness and generalization ability of LRSR
with different external data, we add the experiments on the
selected 80 subjects of AR database with the local generic
variation dictionary learned from Multi-PIE database rather
than the AR database. In these additional experiments, the
external data is constructed by 20 subjects that are randomly
selected from the Session I of Multi-PIE database, and all
subjects have 40 face images from the POSE05 1, which
include neural face and a kind of expression variation and
20 kinds of illumination variations. Learning the local generic
variation dictionary by using Multi-PIE database [29] makes
the classification problem more challenging.

Table I lists the compared performance of FR with SSPP
on the AR database with different external data over dif-
ferent algorithms. Fig. 4 demonstrates different performance
on Session I of seven algorithms influenced by different
number of dictionary dimensions on different external data,
where the dimensionality is reduced by principal component
analysis (PCA) [4]. It can be seen that LRSR is more stable
under different dictionary dimensions compared with other
algorithms. Fig. 5 demonstrates different performance of seven
methods on Session II under different dictionary dimensions,
where the dimensionality is reduced by PCA. From these
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tables and figures, extensive experiments on AR database
with different external data prove that LRSR outperforms
the state-of-art methods. Although learning the local generic
variation dictionary by employing Multi-PIE database, LRSR
is also robust to the intra-class variations in the AR database.
When using Multi-PIE database as external data, there is
no occlusion information provide to predict the occlusion
variations, and LRSR made desire performance by calculating
the class weights of each patch on each class to classify the
query image. It is notable that the performance of ESRC
reduced singularly when the external data was chosen from
Multi-PIE database rather than the AR database. This can be
accounted for the reason that the generic variation dictionary
in ESRC is directly constructed by external data without
learning process. The Multi-PIE database does not contain
any occlusion information which leading to the generic intra-
class dictionary cannot compensate the occlusion information
of query images. Note that the proposed method would not
suffer from this problem.

TABLE I
PERFORMANCE COMPARISONS FOR FR WITH SSPP ON THE AR

DATABASE, NOTE THAT THE GENERIC TRAINING DATA OF
AR1 + MULTI-PIE AND AR2 + MULTI-PIE IS

FROM MULTI PIE DATABASE (%)

Method AR1 AR1 + Multi-PIE AR2 AR2 + Multi-PIE

SRC 60.62 60.62 41.46 41.46

CRC 60.42 60.42 41.15 41.15

RSC 74.24 74.24 57.19 57.19

ESRC 70.10 64.90 60.35 45.31

SVDL 80.21 65.42 60.62 47.60

LGR 97.81 93.42 90.73 85.10

LRSRWW 85.63 76.15 75.21 66.15

LRSR 98.12 96.88 90.04 88.23

Fig. 4. Performance comparisons on the Session I of AR database with dif-
ferent dictionary dimensions. The left figure shows the local generic variation
learned from AR database, and the right figure shows the performance with
the local generic variation dictionary learned from Multi-PIE.

It is noteworthy that in Table I, the performance of ESRC is

worse than that reported in [13]. In our experimental settings,
we use PCA to reduce the dimension of input features to 80
for further processing. Such dimension reduction process may
lose some useful discriminant information for face recogni-
tion. This may be the reason of the different classification
performance between our experiment and [13]. This further
reflects the fact that the proposed method is more robust to
the dimension reduction.

Fig. 5. Performance comparisons on the Session II of AR database with dif-
ferent dictionary dimensions. The left figure shows the local generic variation
learned from AR database, and the right figure shows the performance with
local generic variation dictionary learned from Multi-PIE database.

B. Extended Yale B Database

The Extended Yale B database [26] includes 38 individuals
with 2434 frontal images. They were taken under 64 illumi-
nation conditions. Fig. 6 lists some samples of the Extended
Yale B database. The first 30 subjects from Extended Yale B
database are used for training and testing, and the remaining 8
subjects are used external data. For each subject of interests,
the single image under the illumination condition: P00A +
000E + 00 are used as the training sample, and the remainder
63 images are used for testing.

Fig. 6. The first is the selected training image, and the remainder is four
query images with variations of one individual in Extended Yale B database.

Table II lists the superior performance of the compared
methods on Extended Yale B database. Fig. 7 shows the
recognition results of various approaches in the condition
with various training samples per subject, and the training
samples of per subject is selected from the first several ones
of each subject. With the augment of the training sample, the
proposed method is still keeping a best recognition rate. The
proposed method provides the highest performance for fully
utilizing the robust feature of each patch and the possible
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face variation information from external data. Note Extended
Yale B database contains some samples taken under extremely
illumination conditions. Therefore, this experiment shows the
strong robustness of LRSR to illumination problem.

TABLE II
PERFORMANCE COMPARISONS FOR FR WITH SSPP ON

THE EXTENDED YALE B DATABASE (%)

Method Extended Yale B

SRC 30.48

CRC 44.18

RSC 30.48

ESRC 56.93

SVDL 59.21

LGR 85.88

LRSRWW 92.37

LRSR 94.13

Fig. 7. Performance comparisons on Extended Yale B database with different
number of training images per subject.

C. CMU-PIE Database

The CMU-PIE database [27] includes 68 individuals with
41 368 images, which contain intra-class variations including
illumination, pose, and expression. Fig. 8 shows some samples
of the CMU-PIE database. In the experiments, three subsets
in CMU-PIE were selected, including: (C07 subset) where
there is little pose variation, which contains 68 individuals
and per individual with 24 samples; (C09 subset) where there
is little pose variation, which contains 68 individuals and per
individual with 24 samples; (C27 subset) where is the front
faces, which contains 68 individuals and per individual with
49 samples. For these three subsets, the first 50 individuals are
used for training and testing, and the remaining 18 individuals
are used as external data to learn the local generic variation
dictionary. For the C09 and C07 subsets, the 13th image of
each individual are used as train-ing sample and the remaining
23 images are used for testing. For each individual in the C27
subset, we take the 31th image as training sample and the rest
48 images as testing samples.

To prove the robustness of LRSR, we expand the exper-
iments on CMU-PIE database by employing Extended Yale
B database to learn the local generic intra-class dictionary.

20 individuals in Extended Yale B database were randomly
picked out to construct the external data. Learning the local
generic variation dictionary by using Extended Yale B data-
base makes the classification problem more challenging.

Fig. 8. The first is the selected training image, and the remainder is four
query images with variations of one individual in CMU-PIE database.

The comparison results of different algorithms on three sub-
sets of CMU-PIE are listed in Table III, Table IV, and Table V
respectively. These tables demonstrate that LRSR outperforms
other algorithms and provides the highest performance. By
using Extended Yale B database to learn local generic variation
dictionary, LRSR still keeps the best performance and the
recognition results do not declined much. The experiments on
CMU-PIE database prove that LRSR is robust to variations
with varying illumination, pose and expression.

TABLE III
PERFORMANCE COMPARISONS FOR FR WITH SSPP ON

C07 SUBSET OF CMU-PIE DATABASE, NOTE THAT
THE GENERIC TRAINING DATA OF THE C07 + EYB IS

FROM EXTENDED YALE B DATABASE (%)

Method C07 C07 + EYB

SRC 68.09 68.09

CRC 70.79 70.79

RSC 68.48 68.48

ESRC 90.59 86.61

SVDL 83.96 77.50

LGR 92.24 89.45

LRSRWW 91.63 88.43

LRSR 93.46 91.01

TABLE IV
PERFORMANCE COMPARISONS FOR FR WITH SSPP ON

C09 SUBSET OF CMU-PIE DATABASE, NOTE THAT
THE GENERIC TRAINING DATA OF THE C09 + EYB IS

FROM EXTENDED YALE B DATABASE (%)

Method C09 C09 + EYB

SRC 65.48 65.48

CRC 67.42 67.42

RSC 68.00 68.00

ESRC 88.61 88.40

SVDL 83.48 77.65

LGR 93.13 91.65

LRSRWW 91.39 88.26

LRSR 93.63 91.74

D. LFW Database

The LFW database [28] includes more than 13 000 face
images with 5749 individuals which are captured from web
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with unconstrict environment variations in pose, expression,
illumination, and so on. A subset of 100 individuals with
14 samples per person from LFW database is selected. The
selected images are cropped and resized to 80×80, and aligned
by [30]. For these subjects, we choose 80 subjects for training
and testing, and the remaining 20 subjects are used to learn the
local generic variation dictionary. We choose an image closed
to neural face to construct gallery set in these 14 samples.
Table VI shows the classification result of different methods
in LWF database. It can be seen that the performance of the
proposed method is better than the compared methods, but
still can not achieve a promising performance. The reason
can be explained by the fact that variation in LFW is yet
very deteriorated compared with the images in the controlled
environment although face alignment has been conducted.

TABLE V
PERFORMANCE COMPARISONS FOR FR WITH SSPP ON

C27 SUBSET OF CMU-PIE DATABASE, NOTE THAT
THE GENERIC TRAINING DATA OF THE C27 + EYB IS

FROM EXTENDED YALE B DATABASE (%)

Method C27 C27 + EYB

SRC 74.38 74.38

CRC 74.26 74.26

RSC 55.02 55.02

ESRC 86.69 85.27

SVDL 85.65 78.64

LGR 89.15 84.23

LRSRWW 89.07 87.28

LRSR 91.07 90.45

TABLE VI
PERFORMANCE COMPARISONS FOR FR WITH SSPP ON

THE LFW DATABASE (%)

Method LFW database

SRC 37.12

CRC 25.19

RSC 29.81

ESRC 43.46

SVDL 30.58

LGR 49.52

LRSRWW 47.02

LRSR 50.10

IV. CONCLUSION

We propose LRSR framework that fully extracts the ro-
bust feature information of gallery set and the possible face
variation information of external data. LRSR provides highest
performance by combining the benefits of local sparse rep-
resentation and local generic variation dictionary learning. By
calculating the class weight of each patch on all classes, LRSR
reduces the adverse effect of local extremely awful intra-
class variations. The sufficient experiments performed on the
AR database and Extended Yale B database demonstrate that

LRSR achieves the higher recognition performance compared
with the state-of-the-art SSPP approaches.
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