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Cyber Attack Protection and Control of Microgrids
Md Masud Rana, Li Li, and Steven W. Su

Abstract—Recently, the smart grid has been considered as a
next-generation power system to modernize the traditional grid
to improve its security, connectivity, efficiency and sustainability.
Unfortunately, the smart grid is susceptible to malicious cyber
attacks, which can create serious technical, economical, social
and control problems in power network operations. In contrast to
the traditional cyber attack minimization techniques, this paper
proposes a recursive systematic convolutional (RSC) code and
Kalman filter (KF) based method in the context of smart grids.
Specifically, the proposed RSC code is used to add redundancy in
the microgrid states, and the log maximum a-posterior is used to
recover the state information, which is affected by random noises
and cyber attacks. Once the estimated states are obtained by KF
algorithm, a semidefinite programming based optimal feedback
controller is proposed to regulate the system states, so that the
power system can operate properly. Test results show that the
proposed approach can accurately mitigate the cyber attacks and
properly estimate and control the system states.

Index Terms—Cyber attack, Kalman filter (KF), optimal feed-
back control, renewable microgrid, smart grid.

I. INTRODUCTION

THE smart grid can provide an efficient way of supplying
and consuming energy by providing two-way energy flow

and communication [1]. It can integrate multiple renewable
distributed energy resources (DERs) which are environment
friendly, has low green house emission and is effective to al-
leviate transmission power losses. The associated connectivity
and advanced information/communication infrastructure make
the smart grid susceptible to cyber attacks [1], [2]. Statistics
in the energy sector show that more than 150 cyber attacks
happened in 2013 and 79 in 2014 [1]. As a result, the power
outage cost is about $ 80 billion per year in the USA. Usually,
the utility operators amortize it by increasing the energy
tariff, which is unfortunately transferred to consumer expenses
[3]. The renewable microgrid incorporating DERs can be a
potential solution, but it needs to be properly monitored as its
generation pattern depends on the weather and surrounding
conditions. One of the smart grid features is that it can
integrate multiple microgrids and monitor them using reliable
communication networks.

Since the generation pattern of a microgrid varies on the
time-place basis so its operating condition should be closely
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monitored. Therefore, the microgrid state estimation is an
important function in the smart grid energy management
system (EMS). As shown in Fig. 1 the system state estimation
is an essential task for the monitoring and control of the
power network. In order to monitor the grid information, the
utility company has deployed a set of sensors around the
smart grid. The communication infrastructure is used to send
grid information from sensors to the EMS. The accurately
estimated states can also be used in other functions of EMS
such as contingency analysis, bad data detection, energy theft
detection, stability analysis, and optimal power dispatch [4].

However, it is not economical or even infeasible to measure
all states, so the state estimation is also a key task in this regard
[5]. More importantly, cyber attacks can cause major social,
economical and technical problems such as blackouts in power
systems, tampering of smart meters reading and changing
the forecasted load profiles [3]. These types of catastrophic
phenomena are much easier to be committed in microgrids,
so they create much more serious problems in the smart
grid compared with the traditional grid [6]. Therefore, the
system state estimation under cyber attacks for smart grids has
drawn significant interests in the energy industry and signal
processing based information and communication societies.

Many studies have been carried out to investigate the cyber
attacks in smart grid state estimations. To begin with, most of
the state estimation methods use the weighted least squared
(WLS) technique under cyber attacks [7]−[9]. Chi-Square
detector is also used to detect those attacks. Even though this
approach is easy to be implemented for nonlinear systems, it
is computationally intensive and it cannot eliminate the attacks
properly [5], [7]. To this end, the WLS based l1 optimization
method is explored in [4]. Furthermore, a new detection
scheme to detect the false data injection attack is proposed
in [2]. It employs a Kullback-Leibler method to calculate the
distance between the probability distributions derived from the
observation variations. A sequential detection of false data
injection in smart grids is investigated in [2]. It adopts a
centralized detector based on the generalized likelihood ratio
and cumulative sum algorithm. Note that this detector usually
depends on the parametric inferences so is inapplicable to the
nonparametric inferences [10]. A semidefinite programming
based AC power system state estimation is proposed in [11].
Thereafter, a Kalman filter (KF) based microgrid energy theft
detection algorithm is presented in [3].

A lot of efforts have been devoted towards the power
system state estimation under the condition of unreliable
communication channels. Generally, the attackers have limited
attacking energy to jam the channel in order to achieve the
desired goals [12]. So, the sensor data scheduling for state
estimation with energy constraints is studied in [13]. In this
research, the sensor has to decide whether to send its data to
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Fig. 1. Flow of electricity and information between different sections of smart grid [3].

a remote estimator or not based on its energy and estimation
error covariance matrix. This idea is further extended in [14],
where both the sensor and attacker have energy constraints
for sending information. The considered attack is on the com-
munication channel between a sensor and a remote estimator.
Basically, the sensor aims to minimize the average estimation
error covariance matrix, while attackers try to maximize it.
So, an iterative game theory is used to solve the optimization
problem. Due to the motivation of unknown attacking patterns,
authors in [12], [15] investigated how the attacker can design
the attacking policy so the estimation performance can be
deteriorated. Then the average estimation error covariance
based optimal scheduling strategy is proposed to avoid such
kind of attacks.

Many feedback control algorithms have been proposed to
regulate the system. The linear quadratic Gaussian (LQG)
based detecting techniques for cyber integrity attacks on the
sensors of a control system is proposed in [12], [16]. It
shows that the residual error based chi-squared detection
technique is not suitable when the attacker does not know
the system dynamics. Based on this analysis, they consider
the cyber attack model as an i.i.d (independent, identically
distributed) Gaussian distribution, and then the LQG objective
function is modified. At the end, they developed a sufficient
condition to detect the false alarm probability and proposed an
optimization algorithm to minimize it. In [17], a new strategy
is recommended for designing a communication and control
infrastructure in a distribution system based on the virtual
microgrid concept. It is shown in [18], [19] that designing
a state feedback control framework for a general case of
polynomial discrete-time system is quite challenging because
the solution is non-convex. Thus, the convex optimization
based controller design has gained growing interest in the
research community.

The key contributions of this paper are summarized as

follows:
1) A microgrid incorporating multiple distributed energy

resources (DERs) is modeled as a discrete time linear state-
space equation considering the uncertainty and cyber attack in
the measurement.

2) A recursive systematic convolutional (RSC) code is pro-
posed to mitigate the impairments and introduce redundancy
in the system states. The log maximum a posterior is adopted
to recover the state information which is affected by random
noises and cyber attacks.

3) After estimating the system states, a feedback control
strategy for voltage regulation of the microgrid is proposed
based on semidefinite programming. This proposed control
scheme acts as a precursor in terms of network stability and
the operation of DERs.

The remainder of this paper is organized as follows. A
microgrid system model is presented in Section II. The ob-
servation model and cyber attack process are described in
Section III. Moreover, the KF based dynamic state estimation
is described in Section IV. The proposed control technique is
derived in Section V, followed by the simulation results and
discussions in Section VI. Finally, the paper is wrapped up
with conclusions and future work in Section VII.

Notations: Bold face lower and upper case letters are used
to represent vectors and matrices, respectively; x′ denotes the
transpose of x, E(·) denotes the expectation operator and I
is the identity matrix.

II. MICROGRID SYSTEM MODEL

The considered N micro-sources in this study are connected
to the main grid. For simplicity, we assume that N = 4 solar
panels are connected through the IEEE-4 bus test feeder as
shown in Fig. 2 [20], [21]. Here, the input voltages are denoted
by vp = (vp1 vp2 vp3 vp4)′, where vpi is the ith DER input
voltage. The four micro-sources are connected to the power
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network at the corresponding points of common coupling
(PCCs) whose voltages are denoted by vs = (v1 v2 v3 v4)′,
where vi is the ith point of common coupling (PCC) voltage.

Now by applying Laplace transformation, the nodal voltage
equation can be obtained:

Y (s)vs(s) =
1
s
L−1

c vp(s) (1)

Fig. 2. Micro-sources are connected to the power network [21].

where Lc = diag{Lc1 , Lc2 , Lc3 , Lc4} and Y (s) is the
admittance matrix of the entire power network incorporating
four micro-sources [21]. Now we can convert the transfer
function form into the linear state-space model [21]. The
discrete-time linear dynamic system can be derived as follows:

x(k + 1) = Adx(k) + Bdu(k) + nd(k) (2)

where x(k) = vs − vref is the PCC state voltage deviation,
vref is the PCC reference voltage, u(k) = vp − vpref is the
DER control input deviation, vpref is the reference control
effort, nd(k) is the zero mean process noise whose covariance
matrix is Qn, the state matrix Ad = I+A∆t and input matrix
Bd = B∆t with

A =




175.9 176.8 511 103.6
−350 0 0 0
−544.2 −474.8 −408.8 −828.8
−119.7 −554.6 −968.8 −1077.5


 (3)

B =




0.8 334.2 525.1 −103.6
−350 0 0 0
−69.3 −66.1 −420.1 −828.8
−434.9 −414.2 −108.7 −1077.5


 (4)

and ∆t is the discretization parameter. For discretizing a
continuous-time system into a discrete-time system, there
are several techniques available in the literature such as
traditional approximation method, delta operator and shift
operator [22]−[25]. Similar to [22], [25], this paper adopts
the traditional approximation method ignoring discretization
errors. In the following section, the observation model and
attack process is explored.

III. OBSERVATION MODEL AND CYBER ATTACK

The measurements of the microgrid states are obtained by
a set of sensors and can be modeled as follows:

z(k) = Cx(k) + w(k) (5)

where z(k) is the measurements, C is the measurement matrix
and w(k) is the zero mean sensor measurement noise whose

covariance matrix is Rw. Generally, the objective of attackers
is to insert false data into the observations as follows:

y(k) = Cx(k) + w(k) + a(k) (6)

where a(k) is the false data inserted by the attacker [1]−[3].
The attackers have complete access to the system infrastructure
so that they can hijack, record and manipulate data according
to their best interest. In this paper, the cyber attack pattern is
similar to those illustrated in [1], [2], [26]. Fig. 3 shows the
observation model and cyber attack process in the context of
smart grid state estimations.

Fig. 3. Observation model with cyber attack in the microgrid.

To secure the system states, in the signal processing re-
search community, the channel code is used. Motivated by the
convolutional coding concept [27], [28], the microgrid state-
space and observation models are regarded as the outer code.
Then, the standard uniform quantizer performs quantization
to get the sequence of bits b(k). b(k) is encoded by RSC
channel code which is regarded as the inner code. The main
reason for using RSC code is to mitigate impairments and
introduce redundancy in the system to protect the grid in-
formation. Generally speaking, RSC code is characterized by
three parameters: the codeword length n, the message length
l, and the constraint length m, i.e., (n, l, m). The quantity
l/n refers to the code rate which indicates the amount of
parity bits added to the data stream. The constraint length
specifies m−1 memory elements which represents the number
of bits in the encoder memory that affects the RSC generation
output bits. If the constraint length m increases, the encoding
process intrinsically needs a longer time to execute the logical
operations. Other advantages of the RSC code compared
with the convolutional and turbo encoder include its reduced
computation complexity, systematic output features and no
error floor [29]. From this point of view, this paper considers
a (2, 1, 3) RSC code and (1 0 1, 1 1 1) code generator
polynomial in the feedback process. According to the RSC
features, the code rate is 1/2 and there are two memories in
the RSC process. As shown in Fig. 4, this RSC code produces
two outputs and can convert an entire data stream into one
single codeword [30]. The codeword is then passed through
the binary phase shift keying (BPSK) to obtain s(k). s(k) is
passed through the additive white Gaussian noisy (AWGN)
channel. To illustrate, Fig. 4 shows the proposed cyber attack
protection procedure in the context of smart grids.

At the end, the received signal is:

r(k) = s(k) + e(k) (7)
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Fig. 4. An illustration of the cyber attack protection in smart grids.

where e(k) is the AWGN noise. The received signal is fol-
lowed by the log-maximum a posteriori (Log-MAP) decoding
for this dynamic system. The Log-MAP works recursively
from the forward path to the backward path to recover the
state information [27]. The Log-MAP output information is
sent for demodulation and dequantization processes, followed
by the state estimation scheme.

IV. PROPOSED FRAMEWORK FOR CYBER ATTACK
MINIMIZATION IN SMART GRIDS

The proposed framework uses the KF to estimate the system
states in the context of smart grids. The KF operates recur-
sively on observation information to produce the optimal state
estimation. Generally, the forecasted system state estimate is
expressed as follows [31]:

x̂−(k) = Adx̂(k − 1) + Bdu(k − 1) (8)

where x̂(k − 1) is the estimated state of the last step. Then
the forecasted error covariance matrix is given by:

P−(k) = AdP (k − 1)A′
d + Qn(k − 1) (9)

where P (k − 1) is the estimated error covariance matrix of
the last step. The observation innovation residual d(k) is given
by:

d(k) = yrd(k)−Cx̂−(k) (10)

where yrd(k) is the dequantized and demodulated output bit
sequence. The Kalman gain matrix can be written as:

K(k) = P−(k)C ′[CP−(k)C ′ + Rw(k)]−1. (11)

The updated state estimation is given by:

x̂(k) = x̂−(k) + K(k)d(k). (12)

Finally, the updated estimated error covariance matrix P (k)
is expressed as follows:

P (k) = P−(k)−K(k)CP−(k). (13)

After estimating the system state, the proposed control
strategy is applied for regulating the microgrid states as shown
in the next section.

V. PROPOSED OPTIMAL FEEDBACK CONTROLLER

In the simulation section, it has been shown that the
proposed method is able to well estimate the system states. So,
here we assume the microgrid state information is available.
In order to regulate the microgrid states, define the following
feedback control law [32]−[34]:

u(k) = Fx(k) (14)

by minimizing the following cost function:

J = E
[

lim
N→∞

1
N

N−1∑

k=0

{x′(k)Qzx(k) + u′(k)Rzu(k)}
]

(15)

where E(·) denotes the expectation operator and F is the state
feedback gain matrix, Qz and Rz are positive-definite state
weighting matrix and control weighting matrix.

Then the closed loop system is:

x(k + 1) = (Ad + BdF )x(k) + nd(k). (16)

By using (14) and standard trace operator (m′Dn =
tr[Dnm′]), (15) can be expressed as:

J =E
[

lim
N→∞

1
N

N−1∑

k=0

tr{Qzx(k)x′(k) + F ′RzFx(k)x′(k)}
]

=tr
[
Qz + F ′RzF

]
P (17)

where P = E
[
limN→∞

1
N

∑N−1
k=0 x(k)x′(k)

]
and it can be

written as follows:

P =E
[

lim
N→∞

1
N

N−2∑

k=0

x(k+1)x′(k+1)
]
+ lim

N→∞
1
N

E[x(0)x′(0)]

=E
[

lim
N→∞

1
N

N−2∑

k=0

(Ad+BdF )x(k)x′(k)(Ad+BdF )′
]
+Qn.

(18)

Then (18) can be written as follows:

P = (Ad + BdF )P (Ad + BdF )′ + Qn. (19)

Now one can consider the following inequality,

(Ad + BdF )P (Ad + BdF )′ − P + Qn < 0
(Ad + BdF )PP−1P (Ad + BdF )′ − P + Qn < 0. (20)
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Now one can introduce a new variable H = FP and
rewrite the (20) as follows:

(AdP + BdH)P−1(AdP + BdH)′ − P + Qn < 0. (21)

Now according to the Schur’s complement, (21) can be
transformed into the following form:

[
Qn − P AdP + BdH

(AdP + BdH)′ −P

]
< 0. (22)

From (17), F and P can be found by minimising the
following expression:

minimise
P ,F

tr[Qz + F ′RzF ]P

s. t. (22).
(23)

Based on the H = FP , (23) can be transformed as follows:

minimise
P ,S,H

tr[QzP ] + tr[S] (24)

s. t. S > R
1
2
z HP−1H ′R

1
2
z (25)

Hold (22).

According to the Schur’s complement, we can rewrite (25)
as follows: [

S R
1
2
z H

H ′R
1
2
z P

]
> 0. (26)

Then we can formulate the proposed optimization problem
as follows [30]:

minimise
P ,S,H

tr[QzP ] + tr[S]

s. t. Hold (22), Hold (26).
(27)

Finally, the feedback gain matrix is computed as:

F = HP−1. (28)

The proposed convex problem can be solved effectively
and efficiently using a number of available softwares such as
YALMIP [35].

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
approaches under cyber attacks in smart grids. An overall
system level diagram for system state estimation and control
is illustrated in Fig. 5. After sensing and quantizing the system
states, RSC code is proposed to add redundancy into the data
stream in a controlled manner to give the Log-MAP decoder
to correct errors at EMS. Once the estimated system states are
obtained, a semidefinite programming based optimal feedback
controller is proposed to regulate the system states [30]. The
simulation is performed using the microgrid connected to
IEEE 4-bus distribution feeder. The simulation parameters are
summarized in Table I.

The mean squared error (MSE) versus signal-to-noise ratio
(SNR) is presented in Fig. 6. It can be observed that the
proposed method provides significant performance improve-
ment compared with the existing method [1]. The reason is
that the RSC code is used to protect the system from cyber
attacks and noises by adding redundancy in the system states.

It can also protect the state information from the unreliable
lossy communication networks. Furthermore, the Log-MAP
decoding can also facilitate the accurate extraction of the
system state. For better visualization of the cyber attack, the
states versus time step are illustrated in Figs. 7−10. It can
be observed and expected that the cyber attack still affects
the system states seriously when the existing method is used
to estimate system states [1]. In other words, there is a
significant fluctuation due to the random noises and cyber
attacks. Interestingly, the proposed RSC based cyber attack
protection technique can tolerate the system impairments by
introducing redundancy and protection in the system states. As
a result, the proposed method can estimate microgrid states
accurately even if there are cyber attacks and noises.

Fig. 5. System level diagram for system state estimation and control.

TABLE I
PARAMETERS FOR THE SIMULATION

Parameters Values Parameters Values

Qz diag{10−2, 10−2, 101, 10−3} Rz 0.01 ∗ I4

Codes generator 5/7 ∆t 0.0001
Quantization Uniform 16 bits Decoding Log-MAP

Code rate 1/2 Channel AWGN
Qn 0.005 ∗ I4 Rw 0.05 ∗ I4

Fig. 6. MSE versus SNR performance comparison using microgrid.
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Fig. 7. State trajectory of ∆v1 and its estimate.

Fig. 8. State trajectory of ∆v2 and its estimate.

Fig. 9. State trajectory of ∆v3 and its estimate.

Fig. 10. State trajectory of ∆v4 and its estimate.

Fig. 11. Controlling the states trajectory.

Fig. 12. Control input trajectory.

Unfortunately, it is noticed that the actual PCC state devi-
ations increase dramatically (Figs. 7−10), which is very dan-
gerous in terms of network stability and microgrid operation.
Thus, it is necessary to apply a suitable control technique, so

that the PCC voltage deviations are driven to zero. After apply-
ing the proposed control method to the microgrid connected
to the IEEE 4-bus distribution system, it can be seen from
Figs. 11 and 12 that the proposed controller is able to keep



608 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018

the voltage deviations to zero by the time k = 200, which
acts as a precursor in terms of network stability and proper
operation of microgrids. Besides, the corresponding control
input of each DER is shown in Fig. 12, which implies that it
requires a small amount of control input.

VII. CONCLUSION

This paper proposes a cyber attack minimization based
dynamic state estimation technique and feedback control al-
gorithm in smart grids. An RSC coded cyber attack protection
technique is proposed to add redundancy in the system states.
Then a Log-MAP decoding can assist to extract the system
states from the received signal which is polluted by random
noises and cyber attacks. In order to regulate the voltage
deviation, this study proposes a semidefinite programming
based optimal feedback control method. The effectiveness of
the developed approaches is verified by numerical simulations.
These findings can help to design the future smart control
center under cyber attacks. Consequently, it is encouraged to
use an environmentally friendly renewable microgrid and the
utility operator can monitor and control the power network
properly. In the future work, packet losses and delay will be
investigated in terms of system performance.
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