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Fractional-order Sparse Representation for
Image Denoising

Leilei Geng, Zexuan Ji, Yunhao Yuan, and Yilong Yin

Abstract—Sparse representation models have been shown
promising results for image denoising. However, conventional
sparse representation-based models cannot obtain satisfactory
estimations for sparse coefficients and the dictionary. To address
this weakness, in this paper, we propose a novel fractional-order
sparse representation (FSR) model. Specifically, we cluster the
image patches into KKK groups, and calculate the singular values
for each clean/noisy patch pair in the wavelet domain. Then the
uniform fractional-order parameters are learned for each cluster.
Then a novel fractional-order sample space is constructed using
adaptive fractional-order parameters in the wavelet domain to
obtain more accurate sparse coefficients and dictionary for image
denoising. Extensive experimental results show that the proposed
model outperforms state-of-the-art sparse representation-based
models and the block-matching and 3D filtering algorithm in
terms of denoising performance and the computational efficiency.

Index Terms—Fractional-order, image denoising, multi-scale,
sparse representation.

I. INTRODUCTION

IMAGE denoising is one of the most important research
subjects in image processing due to its fundamental role

in a number of applications, such as medical imaging, re-
mote sensing, surveillance and entertainment. Generally, the
observed noisy image y can be formulated as y = x + n,
where x is the clean image and n is an additive white Gaussian
noise with zero-mean and standard deviation σ. In the past
decades, extensive studies have been conducted to develop
various image denoising approaches, such as total variation
(TV) regularization [1], non-local means (NLM) algorithm
[2] and block-matching and 3D (BM3D) filtering algorithm
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[3]. Although classical approaches are effective in removing
noise artifacts, the TV regularization tend to over-smooth
images due to the piecewise constant assumption and the
computational complexity of the BM3D is extremely high.
As an alternative, sparse representation-based models have
recently led to promising results [4]−[7].

Sparse representation-based models assume that an image x
can be represented as x ≈ Dα, where D ∈ Rn×m is an over-
complete dictionary and most entries of the sparse coefficients
α are zero or close to zero. The sparse decomposition of
x can be obtained by solving an l0-minimization problem,
i.e., α = arg minα ‖α‖0, s.t. ‖x−Dα‖2 ≤ ε, where
‖ · ‖0 is a pseudo norm and ε is a small constant. Since
l0-minimization is a NP (none-deterministic polynomial)-hard
combinatorial optimization problem, it is often relaxed to
l1-minimization. The l1-norm based model can be solved
efficiently by convex optimization techniques, formulated as
{α,D} = arg minα{‖x−Dα‖22 + λ‖α‖1}, where λ denotes
the regularization parameter. Many efficient l1-minimization
techniques have been proposed, such as iterative thresholding
algorithms [8], [9], Bregman split algorithms [10], [11] and
so on.

Dictionary learning is a key problem of sparse
representation-based models. Comparing with analytically
designed dictionaries (e.g., the wavelet/curvelet dictionary),
dictionaries learned from example image can greatly improve
the denoising performance because they can better characterize
the image structures [12]−[16]. For example, [16] estimated
the sparse coefficients by exploiting nonlocal self-similarity
in the observed image. Recently, most conventional sparse
representation-based models concentrate on learning the
adaptive dictionary directly from the noisy image itself
instead of from the external image database. The main
advantages are that the self-structural information is exploited
and the trained dictionary is adaptive to the image of
interest. However, the training samples extracted directly
from the observed image are inevitably corrupted by noise.
Thus, accurate sparse coefficients and optimal dictionary
cannot be obtained efficiently in the noisy sample space.
Consequently, the performance and efficiency of conventional
sparse representation-based models are limited.

In this paper, we propose a fractional-order sparse represen-
tation (FSR) model to obtain better estimations for both the
sparse coefficients and the dictionary. First, we cluster external
training image patches into multiple groups to explore image
self-similarity. Then we calculate the singular values for each
clean/noisy patch pair in the wavelet domain and learn the uni-
form fractional-order parameters for each cluster. To deal with
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the noisy image, a novel sample space is constructed using
adaptive fractional-order parameters in the wavelet domain.
In this way, we can obtain more accurate sparse coefficients
and dictionary for image denoising. Comparing with several
state-of-the-art sparse representation-based models [4], [16]
and the BM3D algorithm [3], our proposed FSR model clearly
performs better in terms of both denoising performance and
computational efficiency.

II. BACKGROUND AND RELATED WORK

A. Sparse Representation-based Denoising Model

Given the dictionary Dx, an image patch xi = Rix,
extracted from the clean image x at the location i, can
be sparsely represented by solving the non-convex l1-
optimization:

{αx,i,Dx} = arg min
αi

{‖xi −Dαi‖22 + λ‖αi‖1}. (1)

Then, the target image x can be constructed by averaging
each image patch xi with a straightforward least-square solu-
tion in [12]:

x̂ ≈ Dx ◦αx = (
∑

i

RT
i Ri)−1

∑

i

(RT
i Dxαx,i). (2)

The conventional sparse representation (SR) denoising mod-
els recover x from noisy image y by solving the following
minimization problem:

{αy ,Dy} = arg min
α
{‖y −Dα‖22 + λ‖α‖1}. (3)

Then, by adding auxiliary variable xi = Dyαy,i, the
denoised image x̂ is reconstructed with a closed-form solution
in [17]:

x̂ ≈ Dy ◦αy = (λI +
∑

i

RT
i Ri)−1

∑

i

(λy + RT
i Dyαy,i).

(4)

B. Fractional-order Technique

In recent years, the fractional-order technique has been
widely used in image denoising [18], texture enhancement
[19], image reconstruction [20], face representation [21],
and other applications. Reference [18] proposed a fractional-
varying-order differential-based method for image denoising.
This method varied the gradient of images to suppress the
blocky effect. Moreover, it retained more texture details than
the integral order partial differential denoising model due to
the fractional differential amplitude frequency. Reference [19]
presented a fractional differential-based method for multi-scale
texture enhancement. This method could nonlinearly enhance
complex texture details, which has been proven superior to tra-
ditional integral-based algorithms. Reference [20] incorporated
fractional derivatives and edge detection in a method called
fractional-order partial differential-based image reconstruction.
The fractional derivative has been demonstrated to be superior
to the integer derivative. In face representation, [21] proposed
a fractional-order embedding canonical correlation analysis to
reduce the dimensionality of multi-view data. This method

constructed the fractional-order both within-set and between-
set scatter matrices to alleviate the deviation of the eigenvalues
and singular values in the corresponding sample covariance
matrices. We can conclude that the fractional-order technique
targets at a more general framework of nonlinear and flexible
data processing mode. Therefore, we introduce the fractional-
order technique into the sparse representation model to obtain
more accurate sparse coefficients and dictionary.

III. MODELING OF FRACTIONAL-ORDER
SPARSE REPRESENTATION

A. Motivation

For effective image denoising, the dictionary Dy and the
sparse coefficients αy obtained by solving the minimization
problem in (3) are respectively expected to be as close as
possible to the Dx and the αx obtained by (1). However, due
to the noise in the observed image, Dy and αy will deviate
from their true values. Thus, both Dy and αy cannot be con-
sidered as good approximations, and would directly decrease
the quality of the denoised image. To further illustrate these
difference, we define the deviation degree of the dictionary
Dy as Dev(Dx, Dy) and the deviation degree of the sparse
coefficients αy as Dev(αx,αy).

Definition 1: Suppose Dx = {dx,1,dx,2, . . . ,dx,m}
is an over-complete dictionary containing m dictionary
atoms learned from the original image x, and Dy =
{dy,1,dy,2, . . . ,dy,m} is an over-complete dictionary contain-
ing m dictionary atoms learned from the noisy image y. Then,
the deviation degree of the dictionary Dy is defined as:

Dev(Dx, Dy) = {devi}m
i=1 =

{
1− max

1≤j≤m

|dx,j · dy,i|
|dx,j | · |dy,i|

}m

i=1

(5)
where Dev(Dx, Dy) denotes the deviation degree vector of the
dictionary Dy , devi denotes the ith deviated element referring
to the ith dictionary atom dy,i, and dx,j · dy,i denotes the
inner product of dx,j and dy,i. The definition of Dev(Dx, Dy)
describes the ability that the dictionary Dy express the noisy
image y. When the Dev(Dx, Dy) is zero, the Dy is as the
same as the Dx and the noise can be restrained effectively.

Definition 2: Suppose that αx is the sparse coefficients of
the clean image patch and αy is the sparse coefficients of the
noise image patch. Then, the deviation degree of the sparse
coefficients αy is defined as:

Dev(αx,αy) =
‖αy −αx‖F

‖αx‖F
(6)

where ‖ · ‖F denotes the Frobenius norm. The definition of
Dev(αx,αy) describes the similarity between αx and αy . As
the Dev(αx,αy) is close to zero, the sparse coefficients αy

is similar to its corresponding true value αx.
To show the deviation degrees, we conducted experiments

using the Lena image. We added Gaussian white noise (σ =20)
to the original image x to obtain the noisy image y. For
fair comparison, both αx and αy were obtained using fixed
discrete cosine transform (DCT) bases. Figs. 1(a) and 1(b)
plot the distributions of Dev(Dx, Dy) and Dev(αx,αy),
respectively.
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Fig. 1. Distributions of Dev(Dx, Dy) and Dev(αx, αy) when the Lena image is noisy (σ = 20).

Fig. 2. Flowchart of the proposed FSR model.

Note that most deviation degrees of dictionary atoms are
over 0.1 and the highest value is about 0.71. As shown in
Fig. 1(b), more than 80 % of Dev(αx,αy) concentrated in
0.05−0.12. Hence the accurate αy and optimal Dy cannot
be obtained from the noisy image by the SR models. The
definitions of Dev(Dx, Dy) and Dev(αx,αy) indicate that it
is possible to further improve the denoising performance by
improving the accuracy of both αy and Dy . However, it is
difficult to directly improve the accuracy of αy and Dy in the
observed sample space due to noise disturbance. To address

this problem, we construct a novel sample space by correct-
ing singular values utilizing the cluster-based fractional-order
technique with adaptive parameters in the wavelet domain.

B. Fractional-order Sparse Representation Model

The FSR model involves the training phase and the denois-
ing phase:

In the training phase, we learn the fractional-order parame-
ters from external image database including four steps:



558 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 2, MARCH 2018

Step 1: We cluster the training image patches into K clusters
(typically K=10) using K-means algorithm and decompose
those patches into frequency sub-patches by the discrete Haar
wavelet transform;

Step 2: We calculate singular values for each patch;
Step 3: The fractional-order parameter ηij of each patch is

obtained given the clean/noisy patch pairs;
Step 4: We compute the uniform fractional-order parameter

ηi for each training patch group with similar textures.
In the denoising phase, the noisy image is first decomposed

into Haar wavelet images. Then the fractional-order parameter
is employed to construct the novel fractional-order sample
space, and the denoised image is reconstructed by sparse
coefficients and dictionary. The flowchart of the FSR model
is shown in Fig. 2.

1) Deviation Degree of Singular Values: For an im-
age patch xi, we have the singular value decomposition
(SVD) [22] as xi = PiΛiQi, where Pi and Qi are
the left and right singular matrices, respectively, Λi =
diag{si,1, si,2, . . . , si,

√
n} is a singular value matrix, and

si,1 ≥ si,2 ≥ · · · ≥ si,
√

n are the descending order singular
values. The singular values can be interpreted as the variance
estimation and they expose the geometric structure of the
image. Hence, the singular values represent the intrinsic and
algebraic properties containing illumination, noise and texture.
Due to the disturbance of noise, the singular values obtained
from the noisy image deviate from their true values. Similarly,
we can define the deviation degree of singular values as
Dev(Λx,Λy).

Definition 3: Suppose Λx = diag{sx,1, sx,2, . . . , sx,
√

n}
denotes the singular value matrix of the original image patch,
and Λy = diag{sy,1, sy,2, . . . , sy,

√
n} denotes the singular

value matrix of the noise image patch. Then, the deviation
degree of the singular values is defined as:

Dev(Λx,Λy) =
‖Λy − Λx‖F

‖Λx‖F
. (7)

Fig. 3. Deviation degree of singular values.

To show the deviation degree of the singular values, we
plotted the distribution of Dev(Λx,Λy) in Fig. 3, where Λy

was computed from the noisy Lena image (σ = 20). As
observed in Fig. 3, it is evident that the singular values differ
greatly from their true values and most Dev(Λx,Λy) are over
4. Recently, this deviation has been demonstrated to have a
negative effect on classification systems [21]. Motivated by

the above situation, we re-estimate the singular values using
fractional-order techniques.

2) Multi-scale Decomposition: As mentioned above, due
to disturbance of noise, the singular values deviate from their
true values. The denoised image would involve unexpected
perturbations when the singular values are directly obtained
from the noisy image space. As illustrated in Fig. 4, the re-
estimated image Fig. 4(c) is directly reconstructed using the
corresponding singular values obtained from the original Lena
image Fig. 4(a). Although the extrinsic disturbance (noise) is
restrained (e.g., Fig. 4(b)), other new disturbances are involved.
Because the extrinsic factor (noise) can be largely isolated
from the intrinsic factor (texture) in the frequency sub-spaces,
the re-estimated sample space can avoid these unexpected
perturbations. Thus, it is necessary to correct the singular
values of noisy image patches in the wavelet domain.

Fig. 4. Comparison of experimental results.

Fig. 5. Comparison of PSNRs with various cluster numbers and various noise
levels.

3) Fractional-order Parameter Learning: Since the pro-
posed FSR model involves the fractional-order technique,
the key problem is that how to choose the fractional-order
parameter η. In this paper, we first cluster the training im-
age patches into K groups using the K-means clustering
method. For each patch in the ith cluster, we calculate the
fractional-order by ηij = arg min Dev(Λx,Λy). Then the
uniform fractional-order parameter ηi for each training group
is obtained by ηi = arg minηi

∑ ‖ηi − ηij‖2F . Furthermore,
the cluster number K (typically K=10) is determined by a
series of experiments. We utilize the cross-validation method
to determine the parameter K with optimal peak signal to
noise ratio (PSNR) of the denoised image. Fig. 5 plots the
distribution of PSNR average results over five typical images
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(e.g., Lena/Barbara/Boat/House/Pepper). We can see that there
is little improvement of the image denoising performance over
all noise levels as the cluster number increases. Therefore, we
cluster the samples into 10 groups in terms of the effectiveness
and efficiency.

4) Fractional-order Image Denoising: With the trained
fractional-order parameters, we denoise the image in the novel
fractional-order sample space. Now, we define the fractional-
order patch as follows:

Definition 4: Suppose η = {η1,η2, . . . ,η√n} is a
fractional-order parameter, and each fractional element ηk

satisfies 0 ≤ ηk ≤ 1. Then, the fractional-order patch yη
i

is referred to as:

yη
i = PiΛ

η
i Qi, Λη

i = diag(sη1
i,1, s

η2
i,2, . . . , s

η√n

i,
√

n
) (8)

where Pi and Qi are respectively the left and right singular
matrices of the noisy patch yi, and Λη

i denotes the fractional-
order singular value matrix. In Definition 4, it is obvious that
the decomposition in (8) subsume the thin SVD as a special
case when η = {1, 1, . . . , 1}. Based on Definition 4, the
following properties are observed:

Property 1: The rank of yη
i is equal to the rank of yi, i.e.,

rank (yη
i ) = rank(yi).

Property 2: ‖yη
i −yi‖2F =

∑√
n

m=1(s
ηm
m −sm)2, where ‖·‖F

denotes the Frobenius norm.
Property 1 shows the basic characteristics of the novel

fractional-order sample. Property 2 reveals that the space
distance between yη

i and yi can be controlled by adjusting
the fractional-order parameter η.

After constructing fractional-order patches, we build a novel
sparse representation-based model for image denoising. The
proposed fractional-order image denoising phase is an itera-
tive algorithm that alternates between fractional-order sample
space construction and dictionary learning. In the fractional-
order sample space construction stage, the noisy image is first
decomposed into different frequency sub-spaces by the dis-
crete Haar wavelet transform with 2 levels. For a noisy patch,
we calculate the distance between it and all clustering centers
of groups. Then we construct the fractional-order patch using
the corresponding fractional-order parameter of the nearest
patch group. In the sparse coding and dictionary learning stage,
we calculate sparse coefficients for fractional-order patches
and update dictionary atoms. Finally, the denoised image can
be reconstructed by overlapping image patches. Therefore, the
proposed algorithm can be summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To demonstrate the superior performance of the proposed
FSR model, in this section, we presented extensive experiment
results on five typical images with simple and complex textures
with various noise levels. We compared the proposed FSR
model with three current state-of-the-art image denoising
approaches: the conventional sparse representation (SR) de-
noising model [4], nonlocally centralized sparse representation
(NCSR) denoising model [16] and the BM3D image denoising
with shaped-adaptive principal component analysis (SAPCA-
BM3D) algorithm [3] (it is an enhanced version of BM3D

denoising in which local spatial adaptation is achieved by
shaped-adaptive principal component analysis (PCA)).
—————————————————————————
Algorithm 1 Fractional-order Image Denoising Algorithm
—————————————————————————
Input: Noisy image y .
Output: Denoised image x̂(t+1).
Initialization: Set x̂(0) = y, D(0) = DCT dictionary.
while not converge do

1. Construct novel fractional-order sample space.
1) Decompose the noisy image into frequency sub-spaces using

the discrete Haar wavelet transform.
2) Construct the novel fractional-order sample space using

adaptive fractional-order parameters.
2. Sparse coding and dictionary learning.

1) Calculate sparse coefficient for each fractional-order patch.
2) Update atom dl, l = 1, 2, . . . , k by

a) Find the set of patches: ωl = {(i, j)|αij(l) 6= 0} and
calculate the error matrix by

El = {el
ij |el

ij = (x̂
(t+1)
ij )ηi −∑

m6=l dmαij(m)}(i,j)∈ωl

b) Update the dictionary atom and the coefficient values.
3. If ‖x̂(t+1) − x̂(t)‖22 ≤ ε, break.

end while
————————————————————————————

In the proposed FSR model, 40 000 overlapping image
patches of size 8×8 were directly extracted from noisy images
and were clustered into 10 groups. The fraction-order patches
in each cluster were constructed using their corresponding
fraction-order parameters in the discrete Haar wavelet domain.
Then we trained a redundant dictionary of size 64×256 based
on the initial DCT dictionary. Finally, the denoised patches
were averaged using the Lagrange multiplier λ = 30/σ, as
described in (4). The SR denoising model trained a dictionary
based on the 40 000 image patches of size 8×8 extracted from
the noisy images using the same parameters as those of the
proposed FSR model. The NCSR denoising model clustered
patches into 70 groups and computed the sparse coefficients
using iterative shrinkage algorithm (parameters details in [16]).
The SAPCA-BM3D algorithm was applied to the noisy image
using a shape-adaptive transform basis. In this method, similar
blocks were found in a 25×25 local neighborhood using block
matching with the maximum d-distance τ = 2500. In the
collaborative filtering stage, PCA was employed as part of
the 3D transform.

A. Comparison of Denoising Performance

To demonstrate the denoising performance of the proposed
FSR model, we performed a set of experiments on five
typical images: Lena, Barbara, Boat, House and Pepper. The
experiments were performed 10 times, and the average results
were reported for five noise levels σ = 5, 10, 20, 35, 50. We
evaluated the quality of the denoised images using the popular
PSNR (in dB) and structural similarity index measurement
(SSIM).

The PSNR results are listed in Table I. As seen in Ta-
ble I, the proposed FSR model obtains excellent denoising
performance, and 72 % PSNR results are the best among
four comparison approaches. Although the SAPCA-BM3D
algorithm obtains 20 % of the best PSNR results, the approach
is very time-consuming as described in Section IV-B. Note
that, with little disturb of the noise, most textures are preserved
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at the lowest noise level σ = 5. For the smooth Pepper im-
age, the SAPCA-BM3D algorithm can sufficiently exploit the
self-similarities of patches. Hence, the SAPCA-BM3D result
(38.30 dB) is superior to sparse representation-based results,
i.e., the SR result (37.79 dB), the NCSR result (38.06 dB) and
the proposed FSR result (37.78 dB).

TABLE I
AVERAGE DENOISING RESULTS (PSNR IN DB) FOR VARIOUS

NOISY LEVELS, OBTAINED BY THE SAPCA-BM3D, SR, NCSR
AND FSR MODEL. THE BEST RESULT IS HIGHLIGHTED.

Method σ
PSNR (dB)

Lena Barbara Boat House Pepper
(5122) (5122) (5122) (2562) (5122)

SAPCA-BM3D

5 38.86 38.38 37.50 40.13 38.30
10 36.07 35.07 34.10 37.06 34.94
20 33.20 31.97 31.02 34.03 31.61
35 30.55 28.97 28.42 31.36 28.51
50 29.07 27.51 26.89 29.53 26.94

SR

5 38.61 38.27 37.18 39.65 37.79
10 35.56 34.65 33.73 36.26 34.84
20 32.36 30.92 30.42 33.33 32.29
35 29.59 27.69 27.61 30.41 29.94
50 27.83 25.42 25.93 28.03 27.99

NCSR

5 38.70 38.36 37.35 39.91 38.06
10 35.81 34.98 33.90 36.80 34.66
20 32.92 31.72 30.74 33.97 31.26
35 30.56 28.69 28.14 31.49 28.30
50 28.89 27.10 26.60 29.63 26.53

FSR

5 40.55 39.86 37.57 41.19 37.78
10 37.13 36.82 35.68 37.12 36.38
20 33.61 32.56 32.53 33.69 33.98
35 30.78 28.65 29.67 31.00 31.46
50 28.93 26.40 27.87 29.11 29.69

To better visualize the experimental comparison, Fig. 6(a)
presents the average PSNR results over all test images for each
noise level. Note that the FSR model leads to the best denois-
ing performance on all noise levels. Although the FSR does not
exploit image self-similarities as the SAPCA-BM3D algorithm
does, the FSR outperforms SAPCA-BM3D by 0.96 dB. The
FSR model outperforms other two sparse representation-based
models: the SR model by up to 1.35 dB and the NCSR model
by up to 1.0 dB, respectively. Furthermore, the NCSR model
performs almost the same as the SAPCA-BM3D algorithm. In
terms of the PSNR standard deviation, as depicted in Fig. 6(b),
the FSR model improves the robustness for four out of five
noise levels. Due to the weak capacity of the FSR model for
the smooth Pepper image, the FSR model falls behind other
three models at the low noise level σ = 5.

For further evaluation of the denoising performance, we
calculated the SSIM results of the denoised images. Table
II shows that 56 % of the SSIM results obtained by our
proposed FSR model are higher than those obtained by other
three approaches. Note that, for the smooth Pepper image, the
average SSIM result is 0.87 for the SAPCA-BM3D algorithm,
0.84 for the SR model, 0.88 for the NCSR model and 0.85 for

the FSR model. Thus, for a smooth image, the NCSR model
achieves a better result than other two sparse representation
models (e.g., SR/FSR). However, the proposed FSR model
outperforms best in most cases.

TABLE II
AVERAGE DENOISING RESULTS (SSIM) FOR VARIOUS NOISY

LEVELS, OBTAINED BY THE SAPCA-BM3D, SR, NCSR AND

FSR MODEL. THE BEST RESULT IS HIGHLIGHTED.

Method σ

SSIMs
Lena Barbara Boat House Pepper

(5122) (5122) (5122) (2562) (5122)

SAPCA-BM3D

5 0.94 0.96 0.93 0.95 0.95
10 0.91 0.94 0.88 0.92 0.92
20 0.87 0.90 0.82 0.87 0.88
35 0.82 0.84 0.75 0.83 0.83
50 0.79 0.79 0.70 0.81 0.79

SR

5 0.95 0.96 0.93 0.96 0.93
10 0.91 0.94 0.88 0.91 0.88
20 0.86 0.88 0.80 0.86 0.84
35 0.81 0.79 0.72 0.82 0.80
50 0.76 0.71 0.66 0.77 0.76

NCSR

5 0.95 0.94 0.94 0.96 0.95
10 0.92 0.94 0.88 0.92 0.92
20 0.87 0.90 0.81 0.87 0.88
35 0.83 0.85 0.74 0.84 0.84
50 0.72 0.78 0.69 0.82 0.79

FSR

5 0.96 0.97 0.93 0.97 0.91
10 0.93 0.95 0.91 0.92 0.90
20 0.87 0.92 0.86 0.86 0.86
35 0.80 0.85 0.78 0.83 0.80
50 0.73 0.79 0.72 0.78 0.77

Figs. 7(a) and 7(b) show the visual comparison of the
average SSIM and their standard deviation. Fig. 7(a) shows
that the FSR is slightly better than other three methods
for low and moderate noise levels (σ = 5, 10, 20). Because
the SAPCA-BM3D algorithm and NCSR model utilize the
structural similarity among numerous similar image patches,
the corresponding results are superior to the FSR results at the
high noise levels (σ = 35, 50). In terms of the SSIM standard
deviation, as depicted in Fig. 7(b), the proposed FSR model
improves the robustness except at the low noise level (σ = 5).

Figs. 8–10 illustrate the visual comparison of denoised
results for three typical images (Pepper, Boat and Barbara)
at moderate noise levels (σ = 20). Figs. 8(a)−8(e) show the
denoised images, and Figs. 8(g)−8(j) show the corresponding
noisy components. It can be observed from Fig. 8 that the FSR
model delivers the best visual quality. The SAPCA-BM3D and
SR methods tend to suffer from noticeable artifacts around the
smooth areas, as shown in Fig. 9. Furthermore, for regions with
complex textures, the superiority of the FSR model is visually
justified by Fig. 10.

Thus, the FSR model can both preserve the sharpness of
edges and suppress undesirable artifacts. Based on the above
discussion in this sub-section, we can conclude that the FSR
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Fig. 6. Comparison of the average and the standard deviations of PSNR on various noise standard deviations.

Fig. 7. Comparison of the average and the standard deviations of SSIM for various noise standard deviations.

Fig. 8. Denoising performance comparison on the Pepper image with moderate noise corruption. (a) Noisy image (σ = 20); denoised images by (b) SAPCA-
BM3D (PSNR = 31.61 dB, SSIM = 0.88); (c) SR (PSNR = 32.29 dB, SSIM=0.84); (d) NCSR (PSNR = 31.26 dB, SSIM = 0.88); (e) FSR (PSNR = 33.98 dB,
SSIM = 0.86); (f) real noisy component; corresponding noisy components by (g) SAPCA-BM3D; (h) SR; (i) NCSR; (j) FSR.
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Fig. 9. Denoising performance comparison on the Boat image with moderate noise corruption (σ = 20). (a) Original image; denoised images by (b) SAPCA-
BM3D (PSNR = 31.02 dB, SSIM = 0.82); (c) SR (PSNR = 30.42 dB, SSIM = 0.80); (d) NCSR (PSNR = 30.74 dB, SSIM = 0.81); (e) FSR (PSNR = 32.53 dB,
SSIM = 0.86).

Fig. 10. Denoising performance comparison on the Barbara image with moderate noise corruption (σ = 20). (a) Original image; denoised images
by (b) SAPCA-BM3D (PSNR = 31.97 dB, SSIM = 0.90); (c) SR (PSNR = 30.92 dB, SSIM = 0.88); (d) NCSR (PSNR = 31.72 dB, SSIM = 0.90); (e) FSR
(PSNR = 32.56 dB, SSIM = 0.92).

model improves the denoising performance and robustness in
terms of the PSNR and SSIM.

B. Comparison of Computational Efficiency

In this section, we discussed the computational cost of our
FSR model in comparison to the SAPCA-BM3D algorithm
and the sparse representation-based models (e.g., SR, NCSR).
To make a fair comparison, the FSR model and the sparse
representation-based models used the same stopping scalar
controlling the convergence of the iterative. All the experi-
ments were implemented on a personal computer (Intel i7-
4790 CPU, 3.60 GHz, 16 GB RAM) with MATLAB 8.3 on
64-bit Windows 8. The experiments were repeated 10 times,
and the results were reported with the average running time
values for different noise levels σ = 5, 10, 20, 35, 50.

The computational cost of the proposed FSR model with
comparison to other competing methods is reported in Table
III. We can see that the SAPCA-BM3D algorithm and the
NCSR model are time-consuming. For the SAPCA-BM3D
algorithm, there is little difference in running time among
the five noise levels. Note that the running time is directly
proportional to the size of the image: 331.55 s for the House
image of size 256×256 and 1329.63 s for the Lena image of
size 512×512 at σ = 5. And the NCSR model requires more
time for image denoising when the noise level increases. By
contrast, the running time for both FSR and SR model declines
with the increasing of noise, because the seriously corruption
of noisy images at heavy noise levels σ = 35, 50, these models
can only learn few image texture details during the dictionary
learning stage and converge quickly. The FSR model is more
than 100 times faster than the SAPCA-BM3D and is over 30

TABLE III
TIME CONSUMPTION RESULTS (IN SECONDS) FOR VARIOUS

NOISY LEVELS OBTAINED BY THE SAPCA-BM3D, SR, NCSR
AND FSR MODEL. THE LAST COLUMN PRESENTS THE AVERAGE

RUNNING TIME RESULTS OVER ALL TEST IMAGES. THE BEST

RESULT IS HIGHLIGHTED.

Method σ

Running time (s)
Lena Barbara Boat House Pepper

Average
(5122) (5122) (5122) (2562) (5122)

SAPCA
-BM3D

5 1329.63 1403.72 1375.73 331.55 1355.65 966.88
10 1331.62 1352.91 1387.30 332.89 1354.90 961.60
20 1334.86 1348.03 1377.07 333.39 1353.00 961.06
35 1339.29 1355.45 1384.13 338.13 1357.21 968.20
50 1318.81 1336.48 1386.97 341.64 1330.25 960.69

SR

5 48.20 99.43 84.30 51.97 52.94 67.37
10 16.82 29.42 25.68 17.14 16.05 21.02
20 6.76 9.62 9.54 6.21 6.38 7.70
35 3.50 4.29 4.60 2.88 3.24 3.70
50 2.78 2.54 2.79 1.77 2.08 2.39

NCSR

5 677.65 687.39 699.47 154.73 674.60 578.77
10 650.09 676.66 645.27 150.54 653.84 555.28
20 859.17 804.57 755.78 189.36 797.76 681.33
35 1859.78 1643.56 1598.92 424.71 1728.76 1451.15
50 1891.67 1708.95 1757.39 431.92 1769.44 1511.87

FSR

5 12.88 23.88 23.17 10.41 13.73 16.81
10 4.34 6.35 6.74 3.72 4.27 5.08
20 2.66 3.17 2.59 1.81 2.48 2.54
35 2.28 2.42 2.41 1.65 2.01 2.15
50 2.14 2.15 2.20 1.26 1.54 1.86
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times faster than other sparse representation-based models.
Consequently, the running time of the FSR model is sig-
nificantly reduced, and the FSR model exhibits the best
computational efficiency among the four approaches.

V. CONCLUSION

To obtain more accurate sparse coefficients and optimal
dictionary, we presented a new model for image denoising
called the fractional-order sparse representation (FSR) model.
The proposed FSR model has been evaluated on the basis
of five typical images with various noise levels. A series
experimental results show that, in most cases, the FSR model
significantly outperforms the SAPCA-BM3D and other two
sparse representation-based models (e.g., SR, NCSR). Further-
more, the FSR model performs with remarkable computational
efficiency. Therefore, we can conclude that the proposed FSR
model achieves state-of-the-art performance in terms of both
denoising effectiveness and computational efficiency. How-
ever, the fractional-order parameters are learned from external
images database. It remains unclear how to set fractional-order
parameters automatically, which is out of scope of this paper
and will lead to our future work.
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