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LMI Consensus Condition for Discrete-time
Multi-agent Systems
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Abstract—This paper examines a consensus problem in multi-
agent discrete-time systems, where each agent can exchange
information only from its neighbor agents. A decentralized
protocol is designed for each agent to steer all agents to the same
vector. The design condition is expressed in the form of a linear
matrix inequality. Finally, a simulation example is presented and
a comparison is made to demonstrate the effectiveness of the
developed methodology.

Index Terms—Consensus algorithms, discrete-time systems,
linear matrix inequalities, multi-agent systems.

I. INTRODUCTION

RECENTLY the problem of distributed consensus in
networked multi-agent systems has received significant

attention due to its important applications [1]. The purpose
of the consensus problem is to design a distributed protocol
in the presence of limited information communication such
that a group of agents achieves some agreement between the
states [2]. A number of recent papers are devoted to the
consensus of multiple LTI systems [3]−[10]. However, most of
these results [11]−[18], [19] mainly focus on fixed interaction
topology, rather than time-varying topology. How the switches
of the interaction topology and agent dynamics jointly affect
the collective behavior of the multi-agent system? Attempts
to understand this issue had been hampered by the lack of
suitable analysis tools. The results of Scardovi et al. [20]
and Ni and Cheng [21] are mentioned here, because of their
contributions dealing with switching topology.

The consensus of multi-agent systems under fixed and
switching topology was studied in [21]. In [21], the dynamics
of each agent and the leader are considered to be linear and
in a continuous time domain. The design technique was based
on Riccati inequality, algebraic graph theory and Lyapunov
inequality. In [22] distributed consensus problem for multi-
agent systems was considered in the discrete-time domain.
The interaction topology among the agents was assumed to
be switching and undirected.
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By using Schur orthogonal transformation, the closed-loop
system was decomposed into two subsystems: one for the
leader and the other for a leader-following subsystem. Com-
mon Lyapunov function (CLF) approach was employed to
investigate the consensus problem. In [23], authors proposed
the control of a multi-agent system with state measurement
and input disturbances. Distributed dynamic output feedback
protocol and linear matrix inequality (LMI) approach were
used to address control problem.

The main contributions and primary distinctions of this
paper with other works can be given as follows.

1) A more realistic and accurate discrete time model is
proposed which is relevant for many practical sampled data
systems;

2) A new form for state-feedback control based on the
aggregate Laplacian is proposed in this paper;

3) Sufficient conditions of stabilization are established using
Lyapunov stability theory. The solution to the decentralized
consensus problem is provided in terms of LMI;

4) A comparison is made between the developed algorithm
and the existing results.

The organization of this paper is as follows: Firstly, nota-
tions, communication graph and preliminaries are introduced
in Section II, which are useful throughout this paper. Then
in Section III, stability analysis of a multi-agent system is
carried out, where in Theorem 1, decentralized consensus
problem in multi-agent system is solved by using Schur
complement and controller gain matrix is obtained. Later in
Section IV, a simulation example is presented along with
some comparison to demonstrate the effectiveness of proposed
technique. Finally, the conclusion is made.

II. PROBLEM FORMULATION

A. Notations

Throughout this paper, Rn is used to denote the n-
dimensional Euclidean space equipped with ∥ · ∥, the standard
L2 norm on vectors or their induced norms on matrices and
R{m×n} is the set of all m × n real matrices. Let Ir be the
unit matrix of order r. The superscript “T ” denotes matrix
transposition and “·” denotes the transpose of corresponding
elements introduced by symmetry. X > 0 means that it
is real symmetric and positive definite; Moreover, X > Y
means X − Y > 0 Given a matrix W , let ρ(W ) denote
its spectral radius. For any positive integer N , let IN =
{1, . . . , N}, diag(W1, . . . ,WN ) is a block diagonal matrix
with main diagonal block matrices Wj , j ∈ IN and the off-
diagonal blocks are zero matrices. The Kronecker product [24]
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of A ∈ Rp×q := [aij ] and B ∈ Rm×n is denoted by A ⊗ B
and is a pm× qn matrix defined by

A⊗B := [aijB].

The Kronecker product further facilitates the manipulation
of matrices by the following expansion properties

1) (A⊗B)(C ⊗D) = AC ⊗BD
2) (A⊗B)T = AT ⊗BT

3) Let A ∈ Rr×s and B ∈ RN×N .
Then (IN ⊗A)(B ⊗ Is) = (B ⊗ Ir)(IN ⊗A) = B ⊗A.

B. Communication Graph

Depending on the information flow (unidirectional or bidi-
rectional [24], a graph can be used to express the topology
of communication network, either directed or undirected. Let
G = (V,E,A) be a weighted directed graph (digraph) of
order N , where V = {v1, . . . , vN} is the set of nodes and
E ⊆ V × V is the set of edges. The node indexes belong
to a finite index set I = {1, 2, . . . , N}. An edge of G is
denoted by eij = (vi, vj), where the first element of vi of vij
is referred as tail of the edge and the other vj to be the head.
Weighted adjacency matrix is denoted by A = [aij ] ∈ RN×N ,
where the adjacency elements associated with the edges are
positive, that is eij ∈ E ⇔ aij > 0. A directed graph is said
to be undirected if, it satisfies the condition that aij = aji
for any i, j ∈ I . The set of neighbors of node vi is denoted
by INi = {vj ∈ V : (vi, vj) ∈ E} which the index is set
of the agents from which the ith agent can obtain necessary
information. The Laplacian L = [lij ]N×N associated with the
directed graph is defined as

lij =

 −1, if j ∈ INi

|INi|, if j = i
0, otherwise

where INi denotes the number of neighbors of the ith agent
(the in-degree of agent i). It turns out that L = Λ−A ∈ Rn×n,
where Λ = [Λij ] is a diagonal matrix with Λii =

∑n
j=1 aij .

Laplacian matrix L has the property that, all the row sums of
L are zero and thus an eigenvector of L associated with the
zero eigenvalue is 1n = [1, 1, 1, . . . , 1].

Lemma 1: Given integers n,N and A ∈ Rn×n, R ∈ RN×N .
Let A0 = IN ⊗A and R0 = R⊗ In. Then R0A0 = A0R0.

Proof: Using the expansion properties, we obtain

R0A0 = (R⊗ In)(IN ⊗A) = (RIN )⊗ (InA)

= (INR)⊗ (AIn) = (IN ⊗A)(R⊗ In)

= A0R0. �

C. Preliminaries

The multi-agent system (MAS) under study is a group of n
agents (1, . . . , N) with the same dynamics:

xi(k + 1) = Axi(k) +Bui(k), i = 1, . . . , N (1)

where xi(k) ∈ Rn is the state of agent i and ui(k) ∈ Rm

is the associated control input, through which the interactions
or coupling between agent i and other agents are realized.
A ∈ Rn×n and B ∈ Rn×m are the state and input matrices,

where B is of full column rank. The state information is
transmitted among these agents, and the agents together with
the transmission channels form a network. The following
assumption is used throughout the paper.

Assumption 1: The pair (A, B) is stabilizable [4].
Assumption 2: The interconnection graph of system (1) has

a directed spanning tree to guarantee that consensus among
agents is possible [9].

Observe that the models of all N agents can be stacked
together in the form:

x(k + 1) = A0x(k) +B0u(k)

A0 = IN ⊗A,B0 = IN ⊗A (2)

where x = [xT
1 , x

T
2 , . . . , x

T
N ] ∈ RnN , u = [uT

1 , u
T
2 , . . . , u

T
N ] ∈

RmN are the group state and group control input, respectively.
The consensus problem is to design the individual state
feedback controls ui(k) such that all agents state converge
to the same vector, that is∑

k→∞

∥xi(k)− xj(k)∥ → 0,∀i, j. (3)

To facilitate further development, we introduce a decentral-
ized control input as

u(k) = K0L0x(k), L0 = L⊗ In

K0 = diag{K1,K2, . . . ,KN},Ki = Rn×n (4)

which ensures that the control input of the ith agent depends
only on states of its neighbor agents and itself. It is important
to emphasize that designing K0 aims at steering all states to
the same vector.

III. STABILIZATION

On combining (2) and (4), the closed-loop system becomes:

x(k + 1) = [A0 +B0K0L0](k). (5)

Recalling the properties of L, there exists a vector xs(k)
such that

xs(k) = L0(k) = 0 ⇔ x(k) = α1n (6)

for some α. It follows with the help of Lemma 1, replacing
R0 by L0, that

xs(k + 1) = L0x(k + 1) = L0[A0 +B0K0L0]x(k)

= A0L0x(k) + L0B0K0xs(k)

= [A0 + L0B0K0]xs(k). (7)

Considering the stabilization of system (7), we invoke
Lyapunov stability theory and reach the following result:

Theorem 1: The controller (4) solves the decentralized
consensus problem in system (2) if and only if there exists
matrices 0 < X, 0 < R, Y satisfying[

−X +R XAt
0 + Y tBt

0L
t
0

∗ −X

]
< 0 (8)

where K0 the gain matrix is given by K0 = Y X−1.
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Proof: The stability of the closed-loop system (7) implies
the existence of matrices 0 < P, 0 < Q such that

−P + [Â0 + L̂0K̂0]
TP [Â0 + L̂0BK̂0] +Q < 0. (9)

Invoking the Schur complements, inequality (9) is equiva-
lent to [

−P +Q At
0 +Kt

0B
t
0L

t
0

∗ −P

]
< 0. (10)

Introducing X = P−1, R = XQX and applying the
congruent transformation T = diag{X,X} to (10), we readily
obtain inequality (8) with K0X = Y .

IV. NUMERICAL SIMULATION

In this section, a numerical simulation is presented to illus-
trate the effectiveness of the developed methodology. Multi-
agent system with six agents is considered, where each agent
is modeled by following linear dynamics:

xi(k + 1) =

 −2.42 1.423 5.2343
−7.23 3.483 9.454
5.33 6.23 −5.23

xi(k)

+

 −4.24 −1.832
−0.23 0.354
3.23 1.097

ui(k), (11)

i = 1, . . . , 6.

It is simple to test that matrix pair (A,B) is stabilizable
which satisfies Assumption 1. Consider the communication
topology graph as given by Fig. 1. Accordingly the Laplacian
matrix L is defined as

3 0 0 −1 −1 −1
−1 −1 0 0 0 0
−1 −1 2 0 0 0
−1 0 0 1 0 0
0 0 0 −1 −1 0
0 0 0 0 −1 1


whose non-zero eigenvalues are given by 1, 1.33760,
+0.5623j,−0.5623j, 2, 3.2347. For the purpose of simulation,
the following initial conditions were selected

xi(0) = (0.3, 0.15, 0.002,−0.1, 0.05,−0.09)T .

Considering Theorem 1, it turns out that the feasible solu-
tion of LMI (8) yields that gain matrix:

K0 =

[
−0.00724 −0.002751 0.00153
−0.0086311 −0.081 −0.02343

]
.

The decentralized control input u(k) (4) with feedback gain
matrices given as above solves the consensus problem for the
communication graph in Fig. 1. The states of the network (11)
with the decentralized control input protocol (4) is depicted
in Fig. 2. A similar problem has been discussed in [25], [26]
where authors investigate average consensus problems in a
class of second-order continuous-time multi-agent systems
with switching and jointly connected topologies respectively
with time-delay, in terms of linear matrix inequalities (LMIs).
The simulation results of the state responses obtained in [25],

[26] are shown in Figs. 3 and 4 respectively. Also in [27],
average event triggered discrete consensus control for discrete-
time multi-agent systems (MASs) is investigated. Stability
criteria were established using Lyapunov matrix inequality.
In order to avoid Zeno-behavior certain restriction has been
imposed on event condition, which led to conservativeness in
the developed algorithm. The simulation results of the state
responses obtained in this case are shown in Fig. 5.

Fig. 1: The communication topology.

Fig. 2: The state of the network for ith agents where i =
1, 2, 3, . . . , 6 under the decentralized control input.

Several observations can be made from Figs. 3−5. Firstly,
our proposed control algorithm demonstrates that the consen-
sus condition can be achieved asymptotically with six agents
being steered to the same vector. Secondly, the proposed
algorithm takes less time to achieve consensus of the multi-
agent network. Thirdly, the MAS oscillates with smaller mag-
nitude. Therefore, from the above simulation results, it can be
concluded that the proposed technique of decentralized control
input can be successfully employed to achieve a consensus of
multi-agent network steered to the same vector.

V. CONCLUSIONS

In this paper, a state feedback protocol is designed to solve
the consensus problem in discrete-time multi-agent systems
in terms of a linear matrix inequality. Feedback gain matrix
is obtained by solving the simple LMI. Consensus condition
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Fig. 3: The state of the network for ith agents, using the
algorithm developed in [25].

Fig. 4: The state of the network for ith agents, using the
algorithm developed in [26].

Fig. 5: The state of the network for ith agents, using the
algorithm developed in [27].

is achieved with six agents being steered to the same vector.
In order to show the improved performance of the proposed
methodology, the simulation results obtained in this paper are
compared with those in [25]−[27]. Future work will focus
on solving observer based model where the dynamics of the
followers are subjected to perturbations as well as leader-
following tracking for multi-agent systems with nonlinear
dynamics.
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