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A Novel Distributed Optimal Adaptive Control
Algorithm for Nonlinear Multi-Agent Differential

Graphical Games
Majid Mazouchi, Mohammad Bagher Naghibi-Sistani, and Seyed Kamal Hosseini Sani

Abstract—In this paper, an online optimal distributed learning
algorithm is proposed to solve leader-synchronization problem of
nonlinear multi-agent differential graphical games. Each player
approximates its optimal control policy using a single-network
approximate dynamic programming (ADP) where only one critic
neural network (NN) is employed instead of typical actor-
critic structure composed of two NNs. The proposed distributed
weight tuning laws for critic NNs guarantee stability in the
sense of uniform ultimate boundedness (UUB) and convergence
of control policies to the Nash equilibrium. In this paper, by
introducing novel distributed local operators in weight tuning
laws, there is no more requirement for initial stabilizing control
policies. Furthermore, the overall closed-loop system stability is
guaranteed by Lyapunov stability analysis. Finally, Simulation
results show the effectiveness of the proposed algorithm.

Index Terms—Approximate dynamic programming (ADP),
distributed control, neural networks (NNs), nonlinear differential
graphical games, optimal control.

I. INTRODUCTION

RESEARCH on distributed control of multi agent systems
linked by communication networks has been well studied

in [1]−[7]. This growing field, is mainly applicable to a
variety of engineering systems such as formation of a group
of mobile robots [8], distributed containment control [9],
vehicles formation control [10], sensor networks [11], [12],
networked autonomous team [13], distributed electric power
system control [14], [15] and synchronization of dynamical
processes. There are many advantages for distributed control
such as less computational complexity and no need for a
centralized decision-making center.

Distributed control problems can be classified into two main
groups, namely leaderless consensus (distributed regulation)
and leader-follower concensus (distributed tracking) problems.
In the leaderless consensus all agents converge to an uncon-
trollable common value (consensus value) which depends on
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their initial states in the communication network [16]−[19].
On the other hand, the problem of leader-follower consensus
[20]−[23], which is the problem of interest in this paper,
requires that all agents synchronize to a leader or control agent
who generates the desired reference trajectory [20], [24].

Game theory [25], [26] provides a proper solution frame-
work for formulating strategic behaviors, where the strategy of
each player depends on the actions of itself and other players.
Therefore, it has become the theoretical framework in the field
of multi-player games [27]−[30]. Differential game is a branch
of game theory which addresses dynamical interacting multi-
agent decision control problems. A new class of differential
games is called differential graphical game [31], where the
error dynamics and performance index of each player depends
on itself and its neighbors in the game communication graph
topology. In differential graphical game, the players’ goal
is to find a set of policies that are admissible, i.e., control
policies that ensure the stability of the overall system, in
order to guarantee global synchronization, local optimization
and Nash equilibrium achievement. In order to find the Nash
equilibrium, one has to solve a set of coupled Hamilton-Jacobi
(HJ) equations. These coupled HJ equations are difficult or
impossible to solve analytically and they depend on the graph
topology interactions. Therefore, in order to approximately
solve the coupled HJ equations in an online fashion, numerical
methods such as reinforcement learning (RL) methods [32] are
required. Approximate dynamic programming (ADP) [33] is
an efficient and forwarded in time RL method which can be
used to generate approximate online optimal control policies.

ADP has been fruitfully used to develop adaptive optimal
controllers for single-agent systems [35]−[39] and multi-agent
systems [31], [40]−[48] online in real time. While noticeable
progress has been made on ADP in field of distributed control
in multi-agent systems, fewer results consider the differential
graphical game. In [31], [43]−[47], concepts of ADP and
differential graphical game are brought together to find an
online optimal solution for distributed tracking control of
continuous-time linear systems.

In [31], an online cooperative policy iteration (PI) algorithm
is developed for graphical games of continuous-time linear
systems by using the actor-critic architecture [49], composed
of two neural networks referred to as actor NN and critic
NN. A PI algorithm based on integral reinforcement learning
technique [35] is proposed in [43] to learn the Nash solution
of linear graphical games in real time. In [44], an online PI
algorithm is proposed to solve linear differential graphical
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games in real time. A cooperative PI algorithm is proposed
in [45] to solve linear differential graphical games where all
players are heterogeneous in their dynamics. The authors in
[46] formulate linear output regulation problem in the linear
differential graphical game framework. Moreover, an online
PI algorithm is proposed in [46] to obtain the solution of
coupled HJ equations by using actor-critic structure in real
time. An online PI algorithm is provided in [47] to find the
solution of coupled Hamilton-Jacobi-Isaacs (HJI) equations in
zero-sum continuous-time linear differential graphical game
where the players were influenced by disturbances. In [40], an
ADP algorithm was developed to solve differential graphical
games of continuous-time nonlinear systems. The authors in
[40] solved the problem by using actor-critic architecture. In
[31], [40], [43]−[47], the initial admissible control policies are
required to guarantee the stability of the differential graphical
game. However, finding the set of initial stabilizing control
policies for the players is not a direct and simple task.

In [50], the authors proposed an online optimal single-
network ADP method to solve zero-sum differential game
without the requirement of initial stabilizing control policies
and [42] extends the results of [50] to obtain the Nash
equilibrium of two-player nonzero sum differential game. To
our knowledge, there has not been any result on solving
the N -player differential graphical games of continuous-time
nonlinear systems using single-network ADP without the
requirement of initial stabilizing control policies.

In this paper, an online optimal distributed learning al-
gorithm is proposed to approximately solve the coupled HJ
equations of N -player differential graphical game in an online
fashion. Each player approximates its optimal control policy
using a single-network ADP. The proposed distributed weight
tuning laws of critic NNs guarantee the closed-loop stability
in the sense of uniform ultimate boundedness (UUB) and
convergence of control policies to the Nash equilibrium. By
introducing novel distributed local operators in distributed
weight tuning laws, the requirement for initial stabilizing
control policies is eliminated.

The contributions of the paper are as follows:
1) This paper extends the results of [42], [50] to the N -

player differential graphical games of continuous-time nonlin-
ear systems which have more complexity due to the distributed
graphical based formulation of the game and the number of
players in comparison with the two-player nonzero-sum [42]
and zero-sum [50] differential games. Moreover, the stability
of the overall closed-loop system is guaranteed.

2) The distributed learning algorithm proposed in this paper
employs only one critic network for each player. As results,
this algorithm is less computationally demanding and simpler
to implement in comparison with [31], [40], [44]−[47], which
used actor-critic structure composed of two NNs for each
player.

3) By introducing novel distributed local operators in
distributed weight tuning laws, in contrast with [31], [40],
[43]−[47], there is no more requirement for initial stabilizing
control policies.

The paper is organized as follows. The problem formulation
of N -player graphical differential games of nonlinear systems

is described in Section II. Section III develops the online
optimal distributed learning algorithm to solve the N - player
graphical differential games of continuous-time nonlinear sys-
tems using single-network ADP. Section IV, presents simu-
lation examples that show the effectiveness of the proposed
approach. Finally, the conclusions are drawn in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graphs

Let the topology of the interactions among leader and
followers be represented by digraph G(V, Σ), where V =
{ν0, ν1, . . . , νN} is a nonempty finite set of N + 1 nodes
and Σ is a set of edges belonging to the product space of
V (i.e., Σ ⊆ V × V ). Denote the edge from node j to
node i as γij = (νj , νi). The leader node is denoted by
ν0 and the leader node does not have any incoming edge.
There is at least one outgoing edge from the leader node to
one of the followers νi in the graph G (i.e., γi0 > 0). We
assume that the graph is simple i.e. There are no self-loops or
multiple edges. Consider graph G′(V ′,Σ′), as the sub-graph
of G, obtained by removing node ν0 and its relating edges.
The weighted adjacency matrix of graph G′ is denoted by
Γ = [γij ] ∈ RN×N with γij ∈ Σ ⇔ γij > 0 ; otherwise
γij = 0. The set of neighbors of node νi and the set of
nodes which contains νi in its neighborhood is denoted by
N I

i = {νj : (νj , νi) ∈ Σ′} and NO
i = {νj : (νi, νj) ∈ Σ′}

, respectively. The in-degree matrix of graph G′ is defined
as D = diag(di) ∈ RN×N , where di =

∑
j∈NI

i
γij is the

weighted in-degree of node νi. A direct path is an ordered
sequence of nodes in the graph. A digraph is said to contain
a spanning tree rooted at νi, if there is a directed path from
the νi to any other nodes in the graph. A digraph is called
detail balanced if there exist scalars τi > 0, τj > 0 such that
τiγij = τjγji for all i, j ∈ N [7].

In this paper, a detail balanced digraph containing a span-
ning tree rooted at the leader node is considered as the players
interactions graph in the game.

B. Problem Formulation

Consider a group of N -players distributed on a directed
interaction graph, whose dynamics are described as follows

ẋi(t) = fi(xi(t)) + gi(xi(t))ui, t ≥ 0 (1)

for i = 1, . . . , N , where xi(t) ∈ Rn is the state vector of
player i and ui(t) ∈ Rm is its control input vector. Also
consider the leader agent dynamics x0(t) ∈ Rn given by

ẋ0 = f0(x0(t)) , t ≥ 0. (2)

Assumption 1: f0(x0), fi(xi) and gi(xi) for i = 1, . . . , N
are locally Lipschitz.

Remark 1: Assumption 1 requires fi(xi(t))+gi(xi(t))ui for
i = 1, . . . , N be locally Lipschitz which is a standard assump-
tion (For instance see [36], [40], [42], [51]) to guarantee the
uniqueness of the solution of system (1) for any finite initial
condition.
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The local tracking error δi for player i, i = 1, . . . , N , is
defined by

δi =
∑

j∈NI
i

γij(xi − xj) + γi0(xi − x0). (3)

The dynamics of the local tracking error [40] for player i,
i = 1, . . . , N , is given by

δ̇i =
∑

j∈NI
i

γij(fi(xi)− fj(xj)) + γi0(fi(xi)− f0(x0))

+ (di + γi0)gi (xi) ui −
∑

j∈NI
i

γijgj (xj) uj . (4)

Note that, local tracking error dynamics (4) is an interacting
dynamical system driven by the control actions of agent i and
all of its neighbors.

In differential graphical game, players wish to achieve
synchronization while simultaneously optimizing their local
cost functions. The distributed local cost function for each
player i, i = 1, . . . , N , is defined by

Ji(δi, ui, uNI
i
) =

∞∫

t

ri

(
δi (τ) , ui (τ) , uNI

i
(τ)

)
dτ (5)

where ri(δi, ui, uNI
i
) = Qi(δi)/2 + ui

T Riiui/2 +∑
j∈NI

i
uj

T Rijuj/2, uNI
i

=
{

uj | j ∈ N I
i

}
, Qi(δi) > 0 and

the constant weighting matrices Rii > 0 and Rij > 0 are
symmetric.

Definition 1 [26], [31]: The set of policies {u∗1, u∗2, . . . , u∗N}
is a global Nash equilibrium solution for N -player differential
graphical game if the following inequalities hold for all i,
i = 1, . . . , N , and ∀ui, uGr−i

J∗i ≡ Ji(u∗i , u
∗
Gr−i) ≤ Ji(ui, u

∗
Gr−i) (6)

where uGr−i = {uj | j 6= i}. The N -tuple of the distributed
local cost functions {J∗1 , J∗2 , . . . , J∗N} is known as the Nash
equilibrium of the differential graphical game.

Given policies of player i and its neighbors, the value
function for each player i, i = 1, . . . , N , is given by

Vi(δi) ≡ Vi(δi, ui, uNI
i
)

=

∞∫

t

ri

(
δi (τ) , ui (τ) , uNI

i
(τ)

)
dτ.

(7)

In differential graphical game, the goal of player i, for i =
1, . . . , N , is to determine

V ∗
i (δi) = min

ui

∞∫

t

ri

(
δi (τ) , ui (τ) , uNI

i
(τ)

)
dτ. (8)

The differential equivalent formulation of (7) is given by
[40]

∇V T
i

( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)
+ γi0

(
fi(xi)− f0(x0)

)

+ (di + γi0)gi (xi) ui −
∑

j∈NI
i

γijgj (xj)uj

)
+

1
2
Qi (δi)

+
1
2
uT

i Riiui +
1
2

∑

j∈NI
i

uT
j Rijuj = 0 (9)

where Vi (0) = 0 and ∇Vi
∆=

∂Vi

∂δi
∈ Rn, i = 1, . . . , N .

Hamiltonian function for the distributed local cost function
of player i, i = 1, . . . , N , is defined as below

Hi(δi, ui, uNI
i
) ≡ 1

2
Qi (δi) +

1
2
uT

i Riiui +
1
2

∑

j∈NI
i

uT
j Rijuj

+∇V T
i

( ∑

j∈NI
i

γij(fi(xi)− fj(xj)) + γi0(fi(xi)− f0(x0))

+ (di + γi0)gi (xi) ui −
∑

j∈NI
i

γijgj(xj)uj

)
. (10)

Based on Hamiltonian (10), the optimal feedback control
policies can be derived by the stationary condition [52], ∂Hi

∂ui
=

0 , as follows

ui
∗ = −(di + γi0)R−1

ii gT
i (xi)∇Vi (11)

for i = 1, . . . , N , where the ∇Vi is the solution of coupled
Hamilton-Jacobi (HJ) equations (12).

Substituting optimal feedback control policy (11) into (10),
we have the coupled Hamilton-Jacobi (HJ) equations for i =
1, . . . , N as follows

1
2

∑

j∈NI
i

(dj + γj0)
2∇V T

j gj (xj) R−1
jj RijR

−1
jj gT

j (xj)∇Vj

+
1
2
Qi (δi) +

1
2
(di + γi0)2∇V T

i gi (xi) R−1
ii gT

i (xi)∇Vi

+∇Vi
T
( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)
+ γi0

(
fi(xi)

− f0(x0)
)−(di + γi0)

2
gi (xi) R−1

ii gT
i (xi)∇Vi

+
∑

j∈NI
i

γij(dj + γj0)gj (xj)R−1
jj gT

j (xj)∇Vj

)
= 0. (12)

Generally, finding analytical solutions for these coupled
HJ equations is difficult or impossible. Therefore, an online
optimal distributed learning algorithm is proposed using only
single network ADP for each player to solve the coupled
HJ equations of (12) in order to obtain the optimal feedback
control policies (11) and reach the Nash equilibrium.

Remark 2: The approaches proposed in [50] and [42] cannot
be extended directly to solve N -player differential graphical
game (11) and (12), due to the distributed graphical based
formulation of the game and the number of players.

Before we present the online optimal distributed learning
algorithm, the following assumptions and lemma are needed.

Assumption 2: The coupled HJ equations (12) have non-
negative smooth solutions Vi > 0.

Remark 3: The coupled HJ (12) may have non-smooth or
non-continuous value functions. However, under Assumption
2, which is a standard assumption in neural adaptive control
literature [31], [40]−[42], [51], [53], solutions to the coupled
HJ equations (12) are guaranteed to be smooth. This allows
us to use the Weierstrass high-order approximation theorem
[39], [51, Remark 1].
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Assumption 3: For each player i, there exists a continuously
differentiable radially unbounded Lyapunov candidate Li(δi)
such that

L̇i = ∇LT
i δ̇i

= ∇LT
i

( ∑

j∈NI
i

γij

(
fi(xi)−fj(xj)

)
+γi0

(
fi(xi)−f0(x0)

)

+ (di + γi0)gi(xi)u∗i −
∑

j∈NI
i

γijgj(xj)u∗j
)

< 0 (13)

for i = 1, . . . , N , where ∇Li , ∂Li

∂δi
∈ Rn.

Remark 4: The requirement of Li(δi) being radially un-
bounded can be fulfilled by its proper choice as quadratic poly-
nomials [42], [50]. Although, the existence of continuously
differentiable and radially unbounded Lyapunov candidates
is not usually required in Lyapunov theory, however their
existence have been shown by converse Lyapunov theorems
[54].

Lemma 1: Consider the system given by (4) with the dis-
tributed local cost functions (7) and optimal feedback control
policies (11). Let Assumption 3 holds. Now assume that C̄i

is a positive constant and satisfies the following inequality

∇V ∗
i
T C̄i∇Li ≤ ri(δi, u

∗
i , u

∗
NI

i
) (14)

then, we have

∇LT
i

( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)
+ γi0

(
fi(xi)− f0(x0)

)

+ (di + γi0)gi(xi)u∗i −
∑

j∈NI
i

γijgj(xj)u∗j
)

≤ −∇LT
i C̄i∇Li. (15)

Proof: By applying optimal feedback control policies (11)
to nonlinear systems (4), the distributed local cost function
Vi(δi, u

∗
i , u

∗
NI

i
) (7) becomes a Lyapunov function. Then, by

using Hamiltonian function (10) and differentiating the dis-
tributed local cost function V ∗

i ≡ Vi(δi, u
∗
i , u

∗
NI

i
) with respect

to t, we obtain
.

V ∗
i = ∇V ∗

i
T
( ∑

j∈NI
i

γij

(
fi(xi)−fj(xj)

)
+γi0

(
fi(xi)−f0(x0)

)

+ (di + γi0)gi(xi)u∗i −
∑

j∈NI
i

γijgj(xj)u∗j
)

= −ri(δi, u
∗
i , u

∗
NI

i
). (16)

Using (14), we can rewrite (16) as
∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)
+ γi0

(
fi(xi)− f0(x0)

)

+ (di + γi0)gi(xi)u∗i −
∑

j∈NI
i

γijgj(xj)u∗j

= −(∇V ∗
i ∇V ∗

i
T )−1∇V ∗

i ri(δi, u
∗
i , u

∗
NI

i
)

≤ −(∇V ∗
i ∇V ∗

i
T )−1∇V ∗

i ∇V ∗
i
T C̄i∇Li

≤ −C̄i∇Li. (17)

Finally, by multiplying ∇Li
T to the both sides of (17), we

obtain (15), which completes the proof. ¥

III. ONLINE SOLUTION OF N-PLAYER NONLINEAR
DIFFERENTIAL GRAPHICAL GAMES USING

SINGLE-NETWORK ADP

According to the Weierstrass higher-order approximation
theorem [55], assume that there exist critic NN constant
weights Wi ∈ RKi , such that the smooth value functions

Vi(δi), and its gradient ∇Vi , ∂Vi

∂δi
are approximated as

Vi , Vi(δi) = WT
i σi(δi) + εi(δi) (18)

∇Vi = ∇σT
i Wi +∇εi (19)

for i = 1, . . . , N , where Ki is the number of hidden-layer
neurons of player i, εi(δi) are the NN approximation errors,
σi(δi) : Rn → RKi , are critic NN activation function vectors

and ∇σi , ∂σi

∂δi
, ∇εi , ∂εi

∂δi
.

The critic NN activation function vectors σi(δi) are selected
so that σi(δi) provides complete independent basis sets, for
i = 1, . . . , N , such that σi(0) = 0, ∇σi(0) = 0. The
approximation errors εi(δi) and its gradient ∇εi(δi) converge
to zero uniformly as Ki →∞ [55].

Using (19), we can rewrite the optimal feedback control
policies (11) and the coupled HJ equations (12), respectively,
as follows

u∗i =− (di + γi0)Rii
−1gT

i (xi)∇σi
T Wi

− (di + γi0)Rii
−1gT

i (xi)∇εi (20)

1
2
Qi (δi)− 1

2
(di + γi0)2WT

i ∇σiDi∇σT
i Wi

+
1
2

∑

j∈NI
i

(dj + γj0)
2
WT

j ∇σjSij∇σT
j Wj

+ WT
i ∇σi

( ∑

j∈NI
i

γij

(
fi(xi)−fj(xj)

)
+γi0

(
fi(xi)−f0(x0)

)

+
∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j Wj

)
− εHJi

= 0 (21)

for i = 1, . . . , N , where

Di = gi(xi)R−1
ii gT

i (xi) (22)

Sij = gj(xj)R−1
jj RijR

−1
jj gT

j (xj). (23)

The residual error of player i, i = 1, . . . , N , in the coupled
HJ equations (21), denoted by εHJi

, is given by

εHJi
=

1
2
(di + γi0)2∇εT

i Di∇εi + (di + γi0)2∇εT
i Di∇σT

i Wi

− 1
2

∑

j∈NI
i

(dj + γj0)
2∇εT

j Sij∇εj

−
∑

j∈NI
i

(dj + γj0)2∇εT
j Sij∇σT

j Wj
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−∇εT
i

( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)
+ γi0

(
fi(xi)− f0(x0)

)

+
∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j Wj

)

−WT
i ∇σi

∑

j∈NI
i

γij(dj + γj0)Dj∇εj . (24)

The weights of the critic NNs, Wi, i = 1, . . . , N are
unknown and must be estimated. Let Ŵi be the current
estimated value of Wi for each player i, i = 1, . . . , N .
Therefore, the output of every critic NN for i = 1, . . . , N
is

V̂i = ŴT
i σi(δi). (25)

Substituting (25) into (11), we can rewrite the estimates of
optimal control policies, for i = 1, . . . , N , as

ûi = −(di + γi0)R−1
ii gT

i (xi)∇σi
T Ŵi. (26)

Applying (26) to system (4), yields the closed-loop system
dynamics as follows

δ̇i ≡δ̇i(Ŵi, Ŵj)

=
∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)

+ γi0

(
fi(xi)− f0(x0)

)− (di + γi0)2Di∇σT
i Ŵi

+
∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j Ŵj . (27)

By replacing (25) and (26) into (10), we obtain the approx-
imate Hamiltonian functions as follows

eHi ≡Hi

(
δi, Ŵi, Ŵj

)

=
1
2
(di + γi0)2ŴT

i ∇σiDi∇σT
i Ŵi

+
1
2
Qi (δi) +

1
2

∑

j∈NI
i

(dj + γj0)
2
ŴT

j ∇σjSij∇σT
j Ŵj

+ ŴT
i ∇σi

( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)

+ γi0

(
fi(xi)− f0(x0)

)− (di + γi0)2Di∇σT
i Ŵi

+
∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j Ŵj

)
. (28)

In order to derive the critic NN weights toward their ideal
values i.e. Ŵi → Wi , we utilize normalized gradient descent
algorithm to minimize the squared residual error of eHi , for
i = 1, . . . , N .

E ≡
N∑

i=1

Ei =
1
2

N∑

i=1

eHi

T eHi . (29)

Here, we propose the distributed weight tuning laws of critic
NNs (30) for N players, which minimize the squared residual
error (29) and guarantee the system stability.

˙̂
Wi =− αi

B̄i

msi

(
1
2
Qi (δi) +

1
2
(di + γi0)2ŴT

i ∇σiDi∇σT
i Ŵi

+
1
2

∑

j∈NI
i

(dj + γj0)
2
ŴT

j ∇σjSij∇σT
j Ŵj

+ ŴT
i ∇σi

( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)
+ γi0

(
fi(xi)

− f0(x0)
)− (di + γi0)2Di∇σT

i Ŵi

+
∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j Ŵj

))

+
1
2
αi(di + γi0)2∇σiDi∇σT

i Ŵi
B̄T

i

msi

Ŵi

+
1
2
αiλ

−1
i (di + γi0)2∇σi

∑

j∈NO
i

λjŴ
T
j

B̄j

msj

Sji∇σT
i Ŵi

− χ̄i

(
λ−1

i αi(di+γi0)∇σiDi

( ∑

j∈NO
i

γji∇Lj−(di+γi0)∇Li

))

+ λ−1
i αi(di+γi0)∇σiDi

(
χ̄i

∑

j∈NO
i

γjiχj∇Lj−χi

∑

j∈NO
i

γjiχ̄j∇Lj

)

− αiF1i
∇σi∇σT

i

1 +
∥∥∇σi∇σT

i

∥∥Ŵi

− αiF2i




γi1
∇σ1∇σT

1

1+‖∇σ1∇σT
1 ‖Ŵ1

...

γiN
∇σN∇σT

N

1+‖∇σN∇σT
N‖ŴN


 (30)

for i = 1, . . . , N , where

Bi =∇σi

( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)
+ γi0

(
fi(xi)

− f0(x0)
)

+
∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j Ŵj

)

−∇σi(di + γi0)
2
Di∇σT

i Ŵi (31)

msi
= 1 + Bi

T Bi, B̄i = Bi/msi
, αi > 0 is the learning rate,

∇Li is explained in Assumption 3. λi, F1i ∈ RKi×Ki and
F2i ∈ RKi×NKi , for i = 1, . . . , N are tuning parameters.

The distributed local operators χ̄i ≡ χ̄i(S, S̄) and χi ≡
χi(S, S̄) are defined as follows

χ̄i(S, S̄) =
{

0, i ∈ S
1, i ∈ S̄

(32)

χi(S, S̄) =
{

1, i ∈ S
0, i ∈ S̄

(33)

for i = 1, . . . , N , where S =
{

i : ∇Liδ̇i < 0& ∇Lj δ̇jj∈NO
i

< 0
}

and S̄ = {i : i /∈ S}.
Remark 5: In this paper, each player has its own distributed

local operators χ̄i(S, S̄) and χi(S, S̄), which adopts with
distributed nature of differential graphical games problem.
Moreover, for each player the introduced distributed local
operators only depend on the states of the associated player,
its neighbors and the players which the associated player is in
their neighborhood. Note that, χi(S, S̄) = 1 and χ̄i(S, S̄) = 0
imply that the local error dynamics of player i, its neighbors
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and the players which the player i is in their neighborhood
are stable. On the other hand, χ̄i(S, S̄) = 1 and χi(S, S̄) = 0
imply that at least one of the local error dynamics of player
i, its neighbors and the players which the player i is in their
neighborhood is unstable.

Assumption 4: The systems’ state given by (4) is persistently
excited (PE).

Remark 6: The requirement of PE condition is a standard
assumption in adaptive control literature [56]. In the adaptive
control and learning literature, Assumption 4 is fulfilled by
injecting a probing noise into the control input.

The following assumption will be used in the remaining part
of the paper.

Assumption 5:
1) gi(xi) are bounded by positive constants, i.e., ‖gi (.)‖ ≤

giM , for i = 1, . . . , N .
2) The critic NN approximation errors and their gradients

are bounded by positive constants, i.e., ‖εi‖ ≤ εiM and
‖∇εi‖ ≤ εidM , for i = 1, . . . , N .

3) The critic NN activation functions and their gradients are
bounded by positive constants, i.e., ‖σi‖ ≤ σiM and ‖∇σi‖ ≤
σidM , for i = 1, . . . , N .

4) The critic NN weights are bounded by positive constants,
i.e., ‖Wi‖ ≤ WiM , for i = 1, . . . , N .

5) The residual errors εHJi are bounded by positive con-
stants, i.e., ‖εHJi‖ ≤ εHJiM

, for i = 1, . . . , N .
Remark 7: Assumption 5 is a standard assumption in neural

adaptive control literature [39], [41], [42], [53]. Although
Assumption 5.1 restricts the considered class of nonlinear sys-
tems, many practical systems (e.g., robotic systems [57] and
aircraft systems [58]) satisfy such a property ([31], [40]−[42],
[51] for a similar assumption). According to Assumption 2
and the Weierstrass high-order approximation theorem, it is
known that the NNs approximation error and their gradient
are bounded, i.e., Assumption 5.2 holds. Note further that, the
NNs used in this paper are so-called Functional Link NNs (See
[53] for more details), for which activation functions σi for
i = 1, . . . , N can be some squashing functions, such as the
standard sigmoid, Gaussian, and hyperbolic tangent functions.
In fact, Assumption 5.5 can be satisfied under Assumptions 2,
3 and 5.1−5.4, if Lemma 1 holds. Furthermore, the bounds
mentioned above are only used for the stability analysis and
they are actually not used in the controller design.

Theorem 1: Let the dynamics be given by (4) and the control
policies be given by (26). Let the Assumptions 1−5 hold and
the critic NN weight tuning law of each agent be provided
by (30). Let the tuning parameters be selected properly. Then,
the local tracking error states δi and the critic NNs weight
estimation errors W̃i = Wi − Ŵi, for i = 1, . . . , N are UUB,
for a sufficiently large number of NN neurons.

Proof: See Appendix A. ¥
Corollary 1: Let the Theorem 1 and Assumptions 1−5 hold.

Then, the control policies ûi, for i = 1, . . . , N form a Nash
equilibrium solution.

Proof: See Appendix B. ¥
Remark 8: It can be seen from (54) that by increasing

ζmin(M) or C̄i, BZ and consequently ∈ui are reduced.
Therefore, by choosing proper tuning parameters λi, F1i and

F2i, we can increase ζmin(M) and reduce the convergence
errors ∈ui , for i = 1, . . . , N . Also, by choosing proper Li in
Lemma 1, we can increase C̄i and consequently reduce the
convergence errors ∈ui

, for i = 1, . . . , N .

IV. SIMULATION

Consider a graph of five followers with a leader as shown
in Fig. 1. In communication graph the pinning gains and
the edge weights are chosen to be one. The dynamics of
all the followers are expressed by ẋi = fi(xi) + gi(xi)ui,
xi , [xi1, xi2]

T , for i = 1, . . . , 5, where

fi(xi) =
(

xi2

−xi1 + ε(1− x2
i1)xi2

)
, i = 1, . . . , 5

g1(x1) =
[

0
−0.8x11x12

]
, g2(x2) =

[
0

x21x22

]

g3(x3) =
[

0
0.5x31x32

]
, g4(x4) =

[
0

−0.2x41x42

]

g5(x5) =
[

0
1.4x51x52

]
(34)

with ε = 0.5 and the leader dynamics is given as follows

f(x0) =
(

x02

−x01 + ε(1− x2
01)x02

)
. (35)

Fig. 1. The multi-agent systems communication graph.

Define the distributed local cost functions of followers, for
i = 1, . . . , 5, as in (5), where Qi(δi) = δT

i δi, Rii = 10,
Rij = 1, (i 6= j, j ∈ Ni). The learning rates are selected as
αi = 1, for i = 1, . . . , 5. The tuning parameters are selected as
F1i = 0.1I , F2i = [F11, F12, F13, F14, F15], for i = 1, . . . , 5,
and λ1 = 0.6, λ2 = 10, λ3 = 10, λ4 = 0.7, λ5 = 12 .

The critic NN activation functions for i = 1, . . . , 5 are
chosen as follows

σi = [δ2
i1, δi1δi2, δ

2
i2, δ

4
i1, δ

3
i1δi2, δ

2
i1δ

2
i2, δi1δ

3
i2, δ

4
i2]. (36)

To show that no initial stabilizing control policies are needed
for implementing the proposed learning algorithm, all critic
NNs weights are initialized to zero. To ensure PE condition,
a small exponentially decreasing probing noise is added to
control inputs. Figs. 2 and 3 show the local tracking errors of
followers.
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Note that in Figs. 2 and 3 the local tracking errors of all
followers vanish and all of them synchronize to the leader.
Fig. 4 shows the phase plane plots of the followers’ states. It
is shown that in Fig. 4 the followers are being synchronized
to the leader.

Figs. 5 and 6 show the followers critic NN weights con-
vergence. Simulation results show that the proposed learning
algorithm can learn the policies which guarantee the synchro-
nization and the closed-loop stability without the requirement
for initial stabilizing control policies.

As we claimed earlier, the proposed scheme has less com-
putational demanding in comparison with the method in [40].
To justify our claim, the method in [40] and our method are
applied to the systems (34) and (35) with the communication
graph as shown in Fig. 1. Moreover, initial condition for states

Fig. 2. Local tracking errors of the first, second and third followers.

Fig. 3. Local tracking errors of the fourth, fifth followers.

Fig. 4. The evolution of the followers states.

and critic NN weights of followers are chosen similarly. The
critic NN activation functions for i = 1, . . . , 5 are chosen as
(36). For the method in [40], the actor NN activation functions
are σactor

i = ∇σi for i = 1, . . . , 5. For both methods, One
select Qi(δi) = δT

i δi, Rii = 10, Rij = 1, (i 6= j, j ∈ Ni) for
i = 1, . . . , 5. For the method in [40], the tuning gains picked
all as one. For our method, αi = 1 and the tuning parameters
are selected as F1i = 0.1I , F2i = [F11, F12, F13, F14, F15],
for i = 1, . . . , 5, and λ1 = 0.6, λ2 = 10, λ3 = 10, λ4 =
0.7, λ5 = 12 . For comparison of performances, the evaluation
functions are defined as follow

J(i) =
NS∑

K=1

{
‖δi(K)‖+ Rii ‖ûi(K)‖+

∑

j∈Ni

Rij ‖ûj(K)‖
}

(37)

for i = 1, . . . , 5, where NS is the number of samples.

Fig. 5. Crititc NN weights convergence of the first, second and third follow-
ers.

Fig. 6. Crititc NN weights convergence of the fourth and fifth followers.

Table I compares the proposed method and the method in
[40] regarding the evaluation functions (37) and the amount
of time taken by these two methods. As can be seen in Table
I, the method proposed in this paper in comparison with the
method in [40] has less computational demand and hence it
obtains better performance.
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TABLE I
COMPARISON BETWEEN THE PROPOSED METHOD AND

THE ONE PROPOSED IN [40]

Method in this paper Method in [40]
J(1) 458.6638 530.4192
J(2) 754.4604 802.2001
J(3) 800.1485 876.4293
J(4) 502.2877 511.8870
J(5) 453.4012 504.7867

Time (S) 12.9386 15.3271

V. CONCLUSION

In this paper, an online optimal distributed learning algo-
rithm is developed to solve leader-synchronization problem of
nonlinear multi-agent differential graphical games using single
network ADP for every agent. The proposed algorithm guaran-
tees the overall closed-loop system stability and convergence
of the policies to the Nash equilibrium without the requirement
of initial stabilizing control policies. Lyapunov stability theory
is employed to show the uniform ultimate boundedness of
closed-loop signals of the system. Finally, simulation results
show the effectiveness of the proposed algorithm.

For future work, we intend to extend the approach of this
paper to obtain the online optimal distributed synchronization
control for nonlinear networked systems subject to dynamics
uncertainties in the differential graphical games framework.

APPENDIX A
PROOF OF THEOREM 1

Take the Lyapunov function

L =
N∑

i=1

{
Li(δi) +

1
2
λiW̃

T
i αi

−1 W̃i

}
(38)

where Li(δi), for i = 1, . . . , N are given in Lemma 1.
The derivative of Lyapunov function is given by

L̇ =
N∑

i=1

{
∇Li

T δ̇i + λiW̃
T
i αi

−1 ˙̃Wi

}
. (39)

By using (21), (30) and (31), we have

˙̃Wi =αi
B̄i

msi

(1
2
(di + γi0)2W̃T

i ∇σiDi∇σT
i W̃i − W̃T

i Bi

+
1
2

∑

j∈NI
i

(dj + γj0)
2
W̃T

j ∇σjSij∇σT
j W̃j + εHJi

−
∑

j∈NI
i

(dj + γj0)
2
WT

j ∇σjSij∇σT
j W̃j

−WT
i ∇σi

∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j W̃j

)

− 1
2
αi(di + γi0)2∇σiDi∇σT

i Ŵi
B̄T

i

msi

Ŵi

− 1
2
αiλ

−1
i (di + γi0)2∇σi

∑

j∈NO
i

λjŴ
T
j

B̄j

msj

Sji∇σT
i Ŵi

+ χ̄i

(
λ−1

i αi(di + γi0)∇σiDi

( ∑

j∈NO
i

γji∇Lj

− (di + γi0)∇Li

))− λ−1
i αi(di + γi0)∇σiDi

×
(
χ̄i

∑

j∈NO
i

γjiχj∇Lj − χi

∑

j∈NO
i

γjiχ̄j∇Lj

)

+ αiF1i
∇σi∇σT

i

1 +
∥∥∇σi∇σT

i

∥∥Ŵi

+ αiF2i




γi1
∇σ1∇σT

1

1+‖∇σ1∇σT
1 ‖Ŵ1

...

γiN
∇σN∇σT

N

1+‖∇σN∇σT
N‖ŴN


 . (40)

Substituting (40) in (39), yields

L̇ =
N∑

i=1

{
∇LT

i

( ∑
j∈NI

i

γij

(
fi(xi)− fj(xj)

)

+ γi0

(
fi(xi)− f0(x0)

)− (di + γi0)2Di∇σT
i Ŵi

+
∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j Ŵj

)

− W̃T
i B̄iλiB̄

T
i W̃i + λiW̃

T
i B̄i

εHJi

msi

− 1
2
W̃T

i λi(di + γi0)2∇σiDi∇σT
i Wi

B̄T
i

msi

Wi

+
1
2
λiW̃

T
i (di + γi0)2∇σiDi∇σT

i Wi
B̄T

i

msi

W̃i

+
1
2
λiW̃

T
i (di + γi0)2

B̄T
i

msi

Wi∇σiDi∇σT
i W̃i

− 1
2
W̃T

i (di + γi0)2∇σi

∑

j∈NO
i

λjSji∇σT
i Wi

B̄T
j

msj

Wj

+
1
2
W̃T

i (di + γi0)2∇σi

∑

j∈NO
i

B̄T
j

msj

WjλjSji∇σT
i W̃i

− 1
2
λiW̃

T
i

B̄i

msi

×




∇σ1Si1∇σT
1 W1

...
∇σNSiN∇σT

NWN




T 


ei1(d1 + γ10)
2
W̃1

...
eiN (dN + γN0)

2
W̃N




+ λiW̃
T
i F1i

∇σi∇σT
i

1 +
∥∥∇σi∇σT

i

∥∥Ŵi − λiW̃
T
i

B̄i

msi

WT
i ∇σi

×




∇σ1D1

...
∇σNDN




T 


γi1 (d1 + γ10) W̃1

...
γiN (dN + γN0) W̃N




+ λiW̃
T
i F2i




γi1
∇σ1∇σT

1

1+‖∇σ1∇σT
1 ‖Ŵ1

...

γiN
∇σN∇σT

N

1+‖∇σN∇σT
N‖ŴN




}

+
∑

i∈S̄

{
∇LT

i

∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j W̃j

− W̃T
i (di + γi0)2∇σiDi∇Li

}
(41)

where eij = 1, if γij > 0; otherwise eij = 0.
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We define ZT =
[
W̃T

1 , W̃T
2 , . . . , W̃T

N

]
and rewrite (41) as

follows

L̇ =− ZT

M︷ ︸︸ ︷


m11 · · · · · · M1j · · · M1N

...
. . .

...
...

Mi1 · · · mii Mij · · · MiN

...
. . .

...

...
. . .

...

MN1 · · · · · · MNj · · · mNN




Z

+ ZT d +
N∑

i=1

{
∇LT

i

( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)

+ γi0

(
fi(xi)− f0(x0)

)− (di + γi0)2Di∇σT
i Ŵi

+
∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j Ŵj

)}

+
∑

i∈S̄

{
− W̃T

i (di + γi0)
2∇σiDi∇Li

+∇LT
i

∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j W̃j

}
. (42)

The components of the M and dT =
[

dT
1 dT

2 · · · dT
N

]
are given by

mii =− 1
2
(di + γi0)2∇σi

∑

j∈NO
i

B̄T
j

msj

WjλjSji∇σT
i

− 1
2
λi(di + γi0)2∇σiDi∇σT

i Wi
B̄T

i

msi

− 1
2
λi(di + γi0)2

B̄T
i

msi

Wi∇σiDi∇σT
i

+ B̄iλiB̄
T
i + λiF1i

∇σi∇σT
i

1 +
∥∥∇σi∇σT

i

∥∥ (43)

Mij ,mij + mji
T

2
(44)

mij = λiγij(dj + γj0)
B̄i

msi

WT
i ∇σiDj∇σT

j

+ λiF2i




0 · · · 0 0

0 0 γij

...
... 0

. . . 0
0 · · · 0 0



⊗IKi




∇σ1∇σT
1

1+
∥∥∇σ1∇σT

1

∥∥
...

∇σN∇σT
N

1+
∥∥∇σN∇σT

N

∥∥




+
1
2
λieij(dj + γj0)2

B̄i

msi

WT
j ∇σjSij∇σT

j (45)

di =− 1
2
λi(di + γi0)2∇σiDi∇σT

i Wi
B̄T

i

msi

Wi

− 1
2
(di + γi0)2∇σi

∑

j∈NO
i

λjSji∇σT
i Wi

B̄T
j

msj

Wj

+ λiB̄i
εHJi

msi

+ λiF1i
∇σi∇σT

i

1 +
∥∥∇σi∇σT

i

∥∥Wi

+ λiF2i




γi1
∇σ1∇σT

1

1+‖∇σ1∇σT
1 ‖W1

...

γiN
∇σN∇σT

N

1+‖∇σN∇σT
N‖WN


 (46)

where IKi denotes the identity matrix of dimension Ki ×Ki

and ⊗ represents the Kronecker product. Let the tuning
parameters λi, F1i and F2i, for i = 1, . . . , N be chosen such
that M > 0.

According to Assumption 4, we have ‖δi‖ > 0, which
guarantees the existence of constants δidmin satisfying 0 <

δidmin <
∥∥∥δ̇i

∥∥∥. Therefore, we have

∑

i∈S

{
∇LT

i

( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)
+ γi0

(
fi(xi)

− f0(x0)
)− (di + γi0)2Di∇σT

i Ŵi

+
∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j Ŵj

)}

< −
∑

i∈S

{δid min ‖∇Li‖} < 0. (47)

According to Assumption 5 and the fact that B̄i < 1, for
i = 1, . . . , N , it can be shown that ‖d‖ ≤ dM where dM is a
positive constant. Now, (42) becomes

L̇ ≤− ‖Z‖2ζmin(M) + ‖Z‖ dM −
∑

i∈S

{δid min ‖∇Li‖}

+
∑

i∈S̄

{
∇LT

i

( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)

+ γi0

(
fi(xi)− f0(x0)

)− (di + γi0)2Di∇σT
i Ŵi

+
∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j Ŵj

)}

+
∑

i∈S̄

{
∇LT

i

∑

j∈NI
i

γij(dj + γj0)Dj∇σT
j W̃j

− W̃T
i (di + γi0)2∇σiDi∇Li

}
(48)

where ζmin(M) is the minimum singular value of matrix M .
Using (11) and (20) as well as adding and subtracting the

following terms

∑

i∈S̄

{
∇Li

T
( ∑

j∈NI
i

γij(dj + γj0)Dj∇εj

−(di + γi0)2Di∇εi

)}
(49)
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to the right side of (48), we obtain

L̇ ≤− ‖Z‖2ζmin(M) + ‖Z‖ dM −
∑

i∈S

{δid min ‖∇Li‖}

+
∑

i∈S̄

{
∇LT

i

( ∑

j∈NI
i

γij

(
fi(xi)− fj(xj)

)

+ γi0

(
fi(xi)− f0(x0)

)
+ (di + γi0)gi(xi)u∗i

−
∑

j∈NI
i

γijgj(xj)u∗j + (di + γi0)2Di∇εi

−
∑

j∈NI
i

γij(dj + γj0)Dj∇εj

)}
. (50)

By employing Lemma 1, (50) is rewritten as follows

L̇ ≤−
∑

i∈S

{δid min ‖∇Li‖} −
∑

i∈S̄

{
C̄i(‖∇Li‖ − ηi

2C̄i
)
2
}

− ζmin(M)(‖Z‖ − dM

2ζmin(M)
)2 +

∑

i∈S̄

{ ηi
2

4C̄i
}

+
dM

2

4ζmin(M)
(51)

where ηi = (di + γi0)2DiMεidM +
∑

j∈NI
i

γij(dj +
γj0)DjMεjdM . It should be noted that d and ∇εi, for i =
1, . . . , N are bounded.

Now, if one of the following inequalities hold

‖∇Li∈S‖ >

√√√√ (
∑
i∈S̄

{ ηi
2

4C̄i
}+ dM

2

4ζmin(M) )

δid min
, BS

∇Li
(52)

‖∇Li∈S̄‖ >

√√√√ (
∑
i∈S̄

{ ηi
2

4C̄i
}+ dM

2

4ζmin(M) )

C̄i
+

ηi

2C̄i
, BS̄

∇Li

(53)

‖Z‖ >

√√√√√
(
∑
i∈S̄

{ ηi
2

4C̄i
}+ dM

2

4ζmin(M) )

ζmin(M)
+

dM

2ζmin(M)
, BZ

(54)

then L̇ < 0. Hence, according to Lyapunov’s stability the-
ory [54], we conclude that if ‖Z‖ > BZ or ‖∇Li‖ >
max(BS

∇Li
, BS̄

∇Li
) , B̄∇Li hold for any i, i = 1, . . . , N

then L̇ < 0, ‖∇Li‖ and ‖Z‖ are UUB, i.e., ‖∇Li‖ < B̄∇Li
,

for i = 1, . . . , N and ‖Z‖ < BZ . Note that, the critic NN
weight estimation errors

∥∥∥W̃i

∥∥∥ are also bounded by BZ , since
‖Z‖ < BZ . According to Assumption 3, ‖∇Li‖ < B̄∇Li

implies the boundedness of ‖δi‖, for i = 1, . . . , N .

APPENDIX B
PROOF OF COROLLARY 1

According to Assumption 4 and the boundedness of
∥∥∥W̃i

∥∥∥
and using (11) and (26), we have

‖ûi − u∗i ‖ ≤
∥∥∥(di + γi0)R−1

ii gT
i (xi)∇σT

i W̃i

∥∥∥
≤ (di + γi0)λmax(R−1

ii )giMσidMBZ , ∈ui

(55)

where λmax(R−1
ii ) is the maximum eigenvalue of matrix R−1

ii .
This completes the proof.
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