
IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 1, JANUARY 2018 251

Detecting Data-flow Errors Based on Petri Nets
With Data Operations

Dongming Xiang, Guanjun Liu, Member, IEEE, Chungang Yan, and Changjun Jiang

Abstract—In order to guarantee the correctness of business
processes, not only control-flow errors but also data-flow errors
should be considered. The control-flow errors mainly focus on
deadlock, livelock, soundness, and so on. However, there are not
too many methods for detecting data-flow errors. This paper
defines Petri nets with data operations (PN-DO) that can model
the operations on data such as read, write and delete. Based
on PN-DO, we define some data-flow errors in this paper. We
construct a reachability graph with data operations for each
PN-DO, and then propose a method to reduce the reachability
graph. Based on the reduced reachability graph, data-flow errors
can be detected rapidly. A case study is given to illustrate the
effectiveness of our methods.

Index Terms—Business process modeling, data-flow errors,
Petri nets, reachability graph.

I. INTRODUCTION

BUSINESS process models pay attention to both control-
flow and data-flow [1]. A good model contributes to

the correctness verification of control/data-flows. Control-flow
is concerned with the partial orders of tasks (e.g., workflow
process [2]), while data-flow focuses on data operations. Since
a large number of data operations are executed in a business
process, errors easily take place if the data-flow is designed
improperly. These errors include missing data, redundant data,
lost data, inconsistent data, and so on [3]. Therefore, it is nec-
essary and interesting to detect them. However, most existing
studies mainly focus on the control-flow error detection, such
as deadlock, livelock, infinite loop, lack of synchronization,
compatibility, and soundness [4]−[8]. This paper is about the
data-flow error detection.

There have been some studies on data-flows. Sadiq et al.
[9] propose seven kinds of data-flow anomalies, but do not
provide any detection methods. Sharma et al. [10] detect some
data-flow errors based on business process modeling notation
(BPMN). Guo et al. [11] address data exchange problems
in the inter-organizational workflow, and calculate an exact

Manuscript received November 8, 2016; accepted January 16, 2017. This
work was supported in part by the National Key R & D Program of China (20
17YFB1001804) and Shanghai Science and Technology Innovation Action
Plan Project (16511100900). Recommended by Associate Editor Zhiwu Li.
(Corresponding authors: Guanjun Liu.)

Citation: D. M. Xiang, G. J. Liu, C. G. Yan, and C. J. Jiang, “Detecting
data-flow errors based on Petri nets with data operations,” IEEE/CAA J. of
Autom. Sinica, vol. 5, no. 1, pp. 251−260, Jan. 2018.

D. M. Xiang, G. J. Liu, C. G. Yan, and C. J. Jiang are with the Key Labo-
ratory of Embedded System and Service Computing, Ministry of Education,
Tongji University, Shanghai 201804, China (e-mail: flysky xdm@163.com; li
ugj1116@163.com; yanchungang@tongji.edu.cn; cjjiang@tongji.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2017.7510766

data set to ensure that the integrated workflow is free of data-
flow errors. Sun et al. [12] use UML diagram to obtain the
dependence relationship of business processes according to
their data association, and then detect each process instance
under some given rules. Their work is generalized in [13] and
[6] where a systematic graph traversal approach is proposed to
detect data-flow errors. These studies lack a completely formal
semantics. The following work utilizes some formal methods
to detect some data-flow errors.

A dual flow net (DFN) [14] models the control- and data-
flows in an embedded system. Fan et al. [15] simplify DFN
into dual workflow net in order to detect the soundness of
business processes. Based on the work in [10], Awad et al.
[16] map a BPMN into a Petri net, and then detect and repair
its errors. Although these formal models can represent the
read/write operations, they are usually short of a complete se-
mantics of concurrent read and/or coverable write. Contextual
nets [17], [18] can represent concurrent read but not coverable
write. In addition, some formal models like workflow nets
with data (WFD-nets) [3] utilize label functions to describe
data operations. They check the data-flow errors based on
computation tree logic (CTL). However, this technique suffers
from the state space explosion problem.

There exist some reduction techniques to alleviate the state
space explosion problem. Partial-order methods, like persistent
sets [19], ample sets [20] and stubborn sets [21], do a state-
space search in which a subset of transitions are computed
and explored from each state. For an infinite state space of
an unbounded Petri net, a new reduced reachability graph
is proposed in [22] and [23]. Instead of enumerating all the
reachable states, symmetry reduction [24] gives equivalence
classes of states w.r.t. the symmetry relation. The state hashing
method (e.g., Hash compaction [25], bit-state hashing [26])
utilizes hash techniques to reduce memory usage, i.e., each
state is represented by hash values instead of full state repre-
sentations. In the sweep-line method [27], some certain states
of a system can be deleted based on a measure of progress. The
above reduction techniques are used to verify some classical
properties like reachability and deadlock rather than data-flow
errors. This paper utilizes the reduction technique to detect the
data-flow errors.

In this paper, we define a kind of Petri nets called Petri nets
with data operation (PN-DO) that can model both concurrent
read and coverable write. In order to detect data-flow errors,
we construct a reachability graph with data operations for
each PN-DO, and then present a detection algorithm. A new
method is proposed to reduce the reachability graph. Based
on the reduced reachability graph, the data-flow errors can be

252 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 1, JANUARY 2018

detected rapidly. Compared with our previous work in [28], we
further detect redundant data and lost data. Most importantly,
we propose a new method of reducing reachability graph to
alleviate the state space explosion.

The rest of this paper is organized as follows. Section II
introduces PN-DO. Section III defines 4 types of data-flow
errors based on PN-DO. Section IV proposes an algorithm
to detect data-flow errors based on the reachability graphs of
PN-DOs. Section V gives a method to reduce the reachability
graph in order to detect data-flow errors rapidly. Section VI
shows a case study. The last section summarizes this paper.

II. PN-DO MODEL

This section first introduces read arcs and write arcs, and
then gives the definition of PN-DO.

A. Read Arc

In the traditional Petri net, the operation of reading a data
is described as a self-loop [18]. For instance, t1 and t2 in
Fig. 1 (a) both read the data from the place v1. However, self-
loops cannot represent the concurrency semantics of reading
the shared data [29]. Since the place v1 has only one token,
only one of t1 and t2 is fired at one time, but they cannot be
fired concurrently. Therefore, read operations are represented
in the form of Fig. 1 (b) [30]. In Fig. 1 (b), the dot line between
v1 and t1 only represents that the token in v1 is a condition
of enabling t1, but it is not consumed when t1 is fired. Hence,
t1 and t2 can be fired concurrently. This paper uses the read
arc in [29], [30]. Notice that the two Petri nets in Fig. 1 have
the same reachability graph that is an interleaving-semantics-
based technique. If we indicate their differences under the
concurrency semantics, we can use other techniques such as
branching processes [17], [31], [32].

Fig. 1: (a) Self-loop representing a read operation. (b) Read
arcs.

B. Write Arc

Write operations usually consider data-generation and/or
data-update. Data-generation means that a variable is initial-
ized via a write operation, i.e., this variable has no value before
this write operation is executed. Data-update means that the
original value of a variable is replaced by a new value.

1) If Fig. 2 (a) is used to model a data-generation (i.e., there
is no token in v1), then a token is produced into v1 after t is
fired. However, if there is a token in v1, v1 has two tokens
after t is fired. Therefore, it cannot represent a data-update.

Fig. 2: (a) Data-generation. (b) Data-update. (c)−(d) A write
arc and its equivalent part.

2) If Fig. 2 (b) is used to model a data-update (i.e., there is
a token in v1), then there is still a token in v1 after t is fired.
However, if there is no token in v1, then t1 cannot be fired.
This means that Fig. 2 (b) cannot represent a data-generation.

In summary, it is not easy to use a traditional Petri net to
model both data-generation and data-update.

Fortunately, Petri nets with inhibitor arcs [33] can do this
as shown in Fig. 2 (d). However, this model is too complex. In
this paper we present a write arc as shown in Fig. 2 (c) that is
simple obviously. Especially, for concurrent write operations,
the reachability graph of our model is much simpler than that
of Petri net with inhibitor arcs (e.g., Fig. 3 shows this).

Fig. 3: Concurrent write operations. (a)−(b) A net with 3
write arcs, and its extended reachability graph. (c)−(d) The
equivalent model with inhibitor arcs, and its reachability graph.

Some related models about writing data are existing. Varea
et al. [14] consider data-generation. Data-update is considered
in [34] and [35]. Although data-generation and data-update
are both considered in [36] and [37] using a kind of write
arc, they are about high-level Petri nets in which variables
and their values are required by their write arcs. In this paper
we focus on data-flows rather than the concrete variables and
values, but we refer to the main ideas of [36] and [37].

C. PN-DO

N = {0, 1, 2, . . .} is the set of non-negative integers.
Definition 1 (N-DO):

XIANG et al.: DETECTING DATA-FLOW ERRORS BASED ON PETRI NETS WITH DATA OPERATIONS 253

A net with data operations (N-DO) is a 3-tuple N = (C ∪
V, T, Fc ∪ Fr ∪ Fw ∪ Fd), where

1) C is the set of control places, V is the set of data places,
and C ∩ V = ∅;

2) T is the set of transitions;
3) Fc ⊆ C × T ∪ T × C is the set of control arcs;
4) Fr ⊆ V × T is the set of read arcs;
5) Fw ⊆ T × V is the set of write arcs; and
6) Fd ⊆ V ×T is the set of delete arcs such that Fr∩Fd = ∅.
A marking of an N-DO is a mapping M : V ∪ C → N. A

Petri net with data operations (PN-DO) is an N-DO N with
an initial marking M0 and denoted as Σ = (N,M0).

In a PN-DO diagram, a control arc is a line with an arrow,
a read arc is drawn as a dashed line without arrows, and a
write/delete arc is a dashed line with an arrow. For instance,
Fig. 4 shows a PN-DO, where C = {p1 · · · p6}, V = {v1, v2},
the arc from p1 to t1 is a control arc, the dashed line from v2
to t4 is a read arc, the dashed arc from t1 to v1 is a write arc,
the dashed arc from v1 to t3 is a delete arc, and [p1;] is its
initial marking.

Fig. 4: PN-DO.

The following notations are used in this paper:
1) ct = {p|p ∈ C ∧ (p, t) ∈ Fc} is a control pre-set of t;
2) tc = {p|p ∈ C ∧ (t, p) ∈ Fc} is a control post-set of t;
3) rt = {v|v ∈ V ∧ (v, t) ∈ Fr} is a read-set of t;
4) tw = {v|v ∈ V ∧ (t, v) ∈ Fw} is a write-set of t;
5) dt = {v|v ∈ V ∧ (v, t) ∈ Fd} is a delete-set of t;
6) PreD(t) = dt ∪ rt;
7) PostD(t) = tw.
Definition 2 (Control-enabledness and Data-enabledness):

Given a PN-DO Σ = (C ∪ V, T, Fc ∪ Fr ∪ Fw ∪ Fd,M0):
1) t ∈ T is control-enabled at a marking M , which is

denoted by M [ct⟩, if ∀p ∈ ct: M(p) > 0. Otherwise, it is
not control-enabled and denoted by ¬M [ct⟩;

2) t ∈ T is data-enabled at a marking M , which is denoted
by M [vt⟩, if ∀v ∈ PreD(t): M(v) > 0. Otherwise, it is not
data-enabled and denoted by ¬M [vt⟩.

If t is control-enabled and data-enabled at M , then it is
enabled at M and denoted as M [t⟩. Otherwise, it is disabled
and denoted by ¬M [t⟩. Firing an enabled transition t at M
yields a marking M ′, and it is denoted by M [t⟩M ′ such that
∀s ∈ C ∪ V :

M ′(s) =

M(s)− 1, if s ∈ dt ∨ s ∈ ct \ tc

M(s) + 1, if (s ∈ tw ∧M(s) = 0) ∨ s ∈ tc \c t
M(s), otherwise.

(1)

For example, at the initial marking [p1;] of the PN-DO in
Fig. 4, t1 is enabled and after firing it, we get the marking
[p2 + p3; v1]. At this marking, t4 is control-enabled but not
data-enabled since v2 has no token.

A marking M ′ is reachable from another marking M ,
if there exists a firing sequence σ = t1t2· · · tn such that
M [t1⟩M1[t2⟩M2· · ·Mn−1[tn⟩M ′, i.e., M [σ⟩M ′. The set of
markings reachable from M is denoted by R(M). Notice that
t ∈ σ means that t occurs in σ.

Definition 3 (Safeness): A PN-DO is safe if ∀M ∈ R(M0),
∀s ∈ C ∪ V : M(s) ≤ 1.

This paper only considers the safe PN-DOs. There are two
reasons why we only focus on the safe PN-DOs. First, it is not
easy for us to define concurrency and conflict in a non-safe
PN-DO. For example, if two transitions have the same input
place (i.e., conflict) and the place has multiple tokens (i.e., they
can concurrently occur), then their concurrency and conflict
are not easily distinguished and thus our reduction technique
cannot be used. Notice that the definitions of concurrency and
conflict are given in the next subsection, and the reduction
technique is given in Section V. The second reason is that
many applications (like the example in Section VI) can be
modeled by the safe PN-DOs.

D. Conflict Relation and Concurrency Relation
In a PN-DO, if two transitions are both enabled at a

marking, then their relation is either conflict or concurrency.
The two relations are determined by their control pre-set and
marking distributions.

Definition 4 (Conflict and Concurrency): Given a marking
M of a safe PN-DO, two different transitions t1 and t2 are in

1) a conflict relation at M , which is denoted by t1 +M t2,
if M [ct1⟩ ∧M [ct2⟩ ∧ (ct1 ∩ ct2 ̸= ∅); or

2) a concurrency relation at M , which is denoted by t1∥M t2,
if M [ct1⟩ ∧M [ct2⟩ ∧ (ct1 ∩ ct2 = ∅).

For example, t1 and t2 in Fig. 5 (a) are in a conflict relation
at the initial marking M0 = [p1 + p2 + p5;] since they satisfy
M0[ct1⟩, M0[ct2⟩ and ct1∩ ct2 ̸= ∅. By contrast, t′1 and t′2 in
Fig. 5 (b) are in a concurrency relation at the initial marking
M ′

0 = [p′1 + p′2 + p′5 + p′6;] because they satisfy M ′
0[ct

′
1⟩,

M ′
0[ct

′
2⟩ and ct′1 ∩ ct′2 = ∅.

Fig. 5: (a) Conflict relation. (b) Concurrency relation.

Obviously, the two relations satisfy symmetry but not tran-
sitivity.

III. DATA-FLOW ERRORS

Data-flow errors are caused by improper data operations,
which mainly include missing data, redundant data, lost data,

254 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 1, JANUARY 2018

Fig. 6: For the PN-DO Σ in Fig. 4, its reachability graph, extended reachability graph, reduced ERG and prefixes are
respectively: (a) RG(Σ); (b) ERG(Σ); (c) the reduced ERG; (d)−(g) the prefixes of ERG(Σ).

and inconsistent data. In the following definitions, Σ = (C ∪
V, T, Fc ∪ Fr ∪ Fw ∪ Fd,M0) is a safe PN-DO.

Definition 5 (Missing Data): Σ has an error of missing data
if ∃t ∈ T , ∃M ∈ R(M0): M [ct⟩ ∧ ¬M [vt⟩.

Missing data occurs when a process is reading or deleting
some data, but this data is not existing at this time. In Fig. 4,
t4 is control-enabled but not data-enabled at the reachable
marking [p2 + p3; v1]. It cannot read the data from v2 since
there is no token in v2. At this time, missing data occurs.

Definition 6 (Inconsistent Data): Σ has an error of incon-
sistent data if ∃M ∈ R(M0), ∃t1, t2 ∈ T : (t1∥M t2) ∧ (rt1 ∪
dt1 ∪ tw1) ∩ (dt2 ∪ tw2) ̸= ∅.

Inconsistent data occurs when one process is reading or
writing or deleting some data, but another process is concur-
rently writing or deleting this data. In Fig. 4, at the reachable
marking [p2 + p3; v1], t2 is writing a data into v2, but t4 is
reading v2 concurrently. At this time, inconsistent data occurs.

Definition 7 (Redundant Data): Σ has an error of redundant
data if one of the following two conditions holds:

1) ∃M1,M2 ∈ R(M0), ∃t1 ∈ T , ∃v ∈ V : M1[t1⟩M2 ∧ v ∈
tw1 ∧ (∀M3 ∈ R(M2), ∀t2 ∈ T : M3[t2⟩ → v /∈r

t2);

2) ∃M1,M2 ∈ R(M0), ∃t1, t2 ∈ T , ∃σ ∈ T ∗, ∃v ∈ V :
M1[t1σ⟩M2[t2⟩ ∧ v ∈ tw1 ∧ v ∈ dt2 ∧ (∀t3 ∈ σ : v /∈ rt3).

Redundant data occurs if a data is never read before it is
deleted or the business process terminates. In Fig. 4, at the
reachable marking [p2 + p3; v1], t2 is to overwrite the data of
v1. But the data has never been read before it is deleted by
t3. Therefore, there is an error of redundant data.

Definition 8 (Lost Data): Σ has an error of lost data if ∃M1,
M2 ∈ R(M0), ∃t1, t2 ∈ T , ∃σ ∈ T ∗, ∃v ∈ V : M1[t1σ⟩M2[t2⟩
∧ v ∈ tw1 ∩ tw2 ∧ (∀t3 ∈ σ : v /∈ rt3).

Lost data means that a data has never been read before it is
overwritten. In Fig. 4, t1 writes a data into v1. But this data
has never been read before it is overwritten by t2. Therefore,
this is an error of lost data.

IV. DATA-FLOW ERRORS DETECTION BASED ON PN-DO
This section first constructs the reachability graph of a PN-

DO based on its firing rules, then we extend the reachability
graph via considering those transitions that are control-enabled
but not data-enabled at some reachable markings. Finally, a
detection algorithm for data-flow errors is proposed based on
the extended reachability graph.

A. Reachability Graph
Definition 9 (Reachability Graph, RG): Let Σ = (C ∪V, T,

Fc ∪Fr ∪Fw ∪Fd,M0) be a PN-DO. RG(Σ) = (R(M0), E,
ℓ) is the reachability graph of Σ, where

1) E = {(Mi,Mj)|Mi,Mj ∈ R(M0)∧∃t ∈ T : Mi[t⟩Mj};
2) ℓ: E → T×2V ×2V ×2V such that ℓ(Mi,Mj) = ⟨t, rt,

tw, dt⟩ if (Mi,Mj) ∈ E and Mi[t⟩Mj .
For example, Fig. 6 (a) is the reachability graph of the PN-

DO in Fig. 4. We know that the errors of missing data and
inconsistent data occur at the reachable marking M1 = [p2
+ p3; v1], but this reachability graph cannot directly indicate
these errors. Therefore, in order to easily detect these errors,
we extend the reachability graph, i.e., a control-enabled but
not data-enabled transition is added into the reachability graph.
The related edges are drawn as lines with empty arrows.

Definition 10 (Pseudo Reachable Marking): Let Σ = (C ∪
V, T, Fc ∪Fr ∪Fw ∪Fd,M0) be a PN-DO, M ∈ R(M0), and
t ∈ T . If t is control-enabled but not data-enabled, then M ′

is called a pseudo reachable marking from M via t, where

M ′(s) =

M(s)− 1, if s ∈ ct \ tc

M(s) + 1, if s ∈ tc \ ct

M(s), otherwise.

(2)

A pseudo reachable marking is yielded by operating control
places only. We denote M [ct⟩M ′ if M ′ is a pseudo reachable
marking from M via t. We add all pseudo reachable markings
into the reachability graph and then get the extended reach-
ability graph (ERG). The following definition is its formal
representation.

XIANG et al.: DETECTING DATA-FLOW ERRORS BASED ON PETRI NETS WITH DATA OPERATIONS 255

Definition 11 (Extended Reachability Graph, ERG): Let Σ
= (C∪V, T, Fc∪Fr∪Fw∪Fd,M0) be a PN-DO, ERG(Σ) =
(R(M0)∪R′(M0), E ∪E′, ℓ∪ ℓ′) is the extended reachability
graph of Σ, where

1) (R(M0), E, ℓ) is the reachability graph of Σ;
2) R′(M0) is the set of all pseudo reachable markings;
3) E′ = {(Mi,Mj)|Mi ∈ R(M0) ∧Mj ∈ R′(M0) ∧ ∃t ∈

T : Mi[ct⟩Mj}; and
4) ℓ′ : E′ → T × 2V × 2V × 2V such that ℓ′(Mi,Mj) = ⟨t,

rt, tw, dt⟩ if (Mi,Mj) ∈ E′ and Mi[ct⟩Mj .
For example, Fig. 6 (b) is the ERG of the PN-DO in

Fig. 4, where M3 is a pseudo reachable marking such that
M1[ct4⟩M3, (M1,M3) ∈ E′ and ℓ(M1,M3) = ⟨t4, {v2}, ∅,
∅⟩.

B. Data-flow Error Detection Based on ERG

A detection method for data-flow errors is proposed based
on ERG, as shown in Algorithm 1.

Algorithm 1. Data-flow error detection algorithm

Input: A PN-DO Σ = (C ∪ V, T, Fc ∪ Fr ∪ Fw ∪ Fd,M0).

Output: All data-flow errors.

1) Initialize
1: Marking set MD = ∅; /∗ The detected markings. ∗/
2: Construct ERG(Σ) = (R(M0) ∪R′(M0), E ∪ E′, ℓ ∪ ℓ′), and

generate its concurrency hash-table ConHash;

2) Detect data-flow errors
3: for each M ∈ R(M0) such that M /∈ MD do
4: MD.add(M);

5: Detect IS Data(M , ConHash, ERG(Σ));

/∗ Detect inconsistent data, shown in Procedure 1. ∗/
6: E1 = {(M,M ′)|(M,M ′) ∈ E ∪ E′};

7: for each (M,M ′) ∈ E1

8: if (M,M ′) ∈ E′ and M [ct⟩M ′

9: print Missing Data;

10: else
11: if M [t⟩M ′ and tw ̸= ∅
12: for each v ∈ tw

13: MT = ∅; /∗ The traversed markings ∗/
14: Set Mr = Mw = Md = ∅;

15: FindRWD(v,M ′, ERG(Σ),MT);

/∗ As shown in Procedure 2, it is used to compute

Mr , Mw and Md ∗/
16: if Mw ̸= ∅
17: print Lost Data;

18: end if
19: if Md ̸= ∅
20: print Redundant Data;

21: end if
22: if Mr = Mw = Md = ∅
23: print Redundant Data;

24: end if
25: end for
26: end if
27: end if
28: end for
29: end for

Procedure 1 DetectISData (M , ConHash, ERG(Σ))

/* Detect inconsistent data */

1: T co = ConHash.get(M);

/∗ Get all pairs of concurrent transitions at M ; ∗/
2: if T co ̸= ∅
3: for each (t1, t2) ∈ Tc

4: if (rt1 ∪ tw1 ∪ dt1) ∩ (tw2 ∪ dt2) ̸= ∅ ∨ (rt2 ∪ tw2 ∪ dt2) ∩
(tw1 ∪ dt1) ̸= ∅

5: print Inconsistent Data between t1 and t2;

6: end if
7: end for
8: end if

Procedure 2 FindRWD(v, M ′, ERG(Σ), MT)

/∗ Traverse all markings reachable from M ′, and obtain three reach-

able marking sets Mr , Mw and Md. Mr (resp. Mw , Md) is the

set of reachable markings at which there is a read (resp. write,

delete) operation. ∗/
1: if M ′ /∈ MT then
2: MT.add(M ′);

3: E2 = {(M ′,M ′′)|(M ′,M ′′) ∈ E ∪ E′};

4: if E2 ̸= ∅ then
5: for each (M ′,M ′′) ∈ E2 do
6: if M ′[t′⟩M ′′ or M ′[ct′⟩M ′′ then
7: if v ∈ rt′ then
8: Mr.add(M ′);

9: end if
10: if v ∈ t′w then
11: Mw.add(M ′);

12: end if
13: if v ∈ dt′ then
14: Md.add(M

′);

15: end if
16: if v /∈r t′ ∪ t′w ∪d t′ then
17: FindRWD(v, M ′′, ERG(Σ), MT);

18: end if
19: end if
20: end for
21: end if
22: end if

1) In Algorithm 1, we first construct the ERG of a PN-DO
and a hash-table ConHash. For each node M in the ERG,
this hash-table stores all pairs of transitions that are in the
concurrency relation at M , i.e.,

ConHash.get(M) = {(ti, tj)|ti∥M tj}.

2) An edge in E′ indicates an error of missing data. Based
on this hash-table, we detect inconsistent data for concurrent
transitions through the following function

DetectISData(M,ConHash,ERG(Σ)).

3) If a transition enabled at a marking is to write a data,
we traverse all successors of this marking. Then, the markings
related to operations on this data are obtained by the function

FindRWD(v,M ′, ERG(Σ),MT).

256 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 1, JANUARY 2018

Finally, according to these markings, we determine whether
there is an error of redundant data or lost data.

The time complexity of Algorithm 1 is O(W ×K2), where
K represents the number of markings, and W denotes the
number of write arcs. Obviously, the detection complexity
depends on the number of markings. However, the number of
markings grows exponentially with the size of a net. Therefore,
we propose a method to reduce an ERG.

V. A REDUCED ERG
Our reduction method depends on the following two facts.
1) When two concurrent transitions conduct operations on

the different data, no data-flow error occurs. Therefore, for the
multiple paths yielded by these concurrent transitions, only one
can be kept in the reduced ERG.

2) When two concurrent transitions conduct the same opera-
tions on the same data (i.e., concurrently write, or concurrently
delete), an error occurs. At this time, each path in the ERG
yielded by the two transitions can reflect this error. Therefore,
we only need to keep one path in the reduced ERG for this
case.

Notice that when two concurrent transitions conduct the
different operations on the same data (e.g., one is write, and
another one is read), an error occurs too. However, the multiple
paths yielded by the two transitions are all kept in the reduced
ERG. If one path is deleted, this error possibly cannot be
represented in the reduced ERG.

Our method is not to cut these paths after the ERG is
produced. In fact, they are not yielded in the process of con-
structing the reduced ERG. In order to describe our algorithm,
we need to introduce the following concepts.

Definition 12 (Prefix): Let ERG(Σ) = (R(M0) ∪R′(M0),
E∪E′, ℓ∪ℓ′) be the ERG of a PN-DO Σ. A prefix of ERG(Σ)
is a subgraph of the ERG such that M0 is in the prefix, and
for each node M of this subgraph, there is a directed path
from M0 to M in the subgraph.

For example, Figs. 6 (d), (e) and (f) are three prefixes of
ERG in Fig. 6 (b), where the prefix in Fig. 6 (d) has only the
initial marking and is called the basic prefix. For convenience,
a prefix of the ERG is denoted by G1 = (R1, E1, ℓ1).

Definition 13 (Possible Extension): Let ERG(Σ) =
(R(M0)∪R′(M0), E∪E′, ℓ∪ℓ′) be the ERG of a PN-DO Σ,
G1 = (R1, E1, ℓ1) be a prefix of ERG(Σ), and M ∈ R1 be a
node of the prefix. (e,M ′) is a possible extension of the prefix
at M if e = (M,M ′) ∧ e /∈ E1 ∧ e ∈ E ∪ E′. A new prefix
G2 = (R2, E2, ℓ2) of ERG(Σ) is generated after (e,M ′) is
added into G1, where

1) R2 = R1 ∪ {M ′};
2) E2 = E1 ∪ {e};
3) ∀e′ ∈ E1 : ℓ2(e

′) = ℓ1(e
′), and ℓ2(e) = (ℓ ∪ ℓ′)(e).

For example, at M1 of the prefix in Fig. 6 (e), there are t-
wo possible extensions ((M1,M2),M2) and ((M1,M3),M3).
Adding the two possible extensions into this prefix, a new
prefix is generated as shown in Fig. 6 (f). The notions of prefix
and possible extensions refer to the work of unfolding of Petri
nets [38], [39].

The idea of generating a reduced ERG is that starting from
the basic prefix, we repeatedly add some possible extensions

into it until no possible extensions can be added. Obviously,
the key is that which possible extensions of a given prefix can
be added and which ones cannot.

Given two possible extensions at a marking of a prefix, if
the corresponding transitions are in the concurrency relation,
then we should consider whether one of them is not added. If
no inconsistent data exists in them, or there is an inconsistent
data but they conduct the same operation on the same data,
then we select one from the two possible extensions to add it
into the prefix, while the other one is not added. Their formal
descriptions are in selection criterion. Except for the above
case, other possible extensions are added.

Selection Criterion: Let ERG(Σ) = (R(M0) ∪ R′(M0),
E∪E′, ℓ∪ℓ′) be the ERG of a PN-DO, and G1 = (R1, E1, ℓ1)
be a prefix of ERG(Σ), M ∈ R1, and (e1,M1) and (e2,M2)
be two possible extensions of the prefix at M such that ℓ1(e1)
= ⟨t1, rt1, t

w
1 ,

dt1⟩ ∧ ℓ1(e2) = ⟨t2, rt2, t
w
2 ,

dt2⟩ ∧ t1∥M t2. If
one of the two following conditions holds, one of the two
possible extensions is added into the prefix and the other one
is not.

1) There is no inconsistent data between t1 and t2;

2) there is an inconsistent data between them but they satisfy
tw1 ∩ yw ̸= ∅ or dx ∩ dy ̸= ∅.

For example, ((M2,M4),M4) and ((M2,M5),M5) are two
possible extensions of the prefix in Fig. 6 (f) at M2. Because
there is no inconsistent data between t3 and t4 at M2, they
satisfy selection criterion. Hence, ((M2,M4),M4) is added
into this prefix but ((M2,M5),M5) is not, as shown in
Fig. 6 (g). Certainly, we can also select the latter but not the
former. By this method we can get a reduced ERG of the
PN-DO in Fig. 4, as shown in Fig. 6 (c).

Algorithm 2 illustrates the computation process of possible
extensions, and its time complexity is O(Z2), where Z rep-
resents the number of enabled transitions at the marking M .
Based on the reduced ERG, we can detect data-flow errors.
The related algorithm is similar to Algorithm 1 and omitted
here.

Algorithm 2. The possible extensions algorithm

Input: A PN-DO Σ = (C ∪ V, T, Fc ∪ Fr ∪ Fw ∪ Fd,M0) and a

marking M .

Output: An extension set S.

1: Initialize: A transition pairs P = ∅, and a transition set TS = ∅.

2: T ′ = {t|M [ct⟩, t ∈ T}.

3: Get concurrent transition pair T co and conflict transition pair T#,

where

T co = {(t1, t2)|t1∥M t2, t1, t2 ∈ T ′}
T# = {(t1, t2)|t1 +M t2, t1, t2 ∈ T ′}.

4: for all (t1, t2) ∈ T co and t1, t2 /∈ S do
5: According to T#, get two transition sets S1 and S2, which are

respectively in conflict with t1 and t2, i.e.,

S1 = {t|t+M t1, (t, t1) ∈ T+, t ∈ T ′}
S2 = {t|t+M t2, (t, t2) ∈ T+, t ∈ T ′}.

6: Boolean se = TRUE; /∗ Selective selection. ∗/
7: for each x ∈ S1 ∪ {t1}, y ∈ S2 ∪ {t2} such that (x, y) /∈ P do

XIANG et al.: DETECTING DATA-FLOW ERRORS BASED ON PETRI NETS WITH DATA OPERATIONS 257

8: P .add(x, y);

9: if there exists (x, y) that does not satisfy selection criterion then
10: se = FALSE; break;

11: end if
12: end for
13: if se == FALSE then
14: TS .add(S1 ∪ {t1} ∪ S2 ∪ {t1});

15: else
16: if |S1| ≤ |S2| then
17: TS .add(S1 ∪ {t1});

18: else
19: TS .add(S2 ∪ {t2});

20: end if
21: end if
22: end for
23: if |T ′| = 1 or T co = ∅ then
24: TS .add(T ′);

25: end if
26: for each t ∈ TS do
27: if M [t⟩M1 then
28: S.add ((M,M1),M1));

29: end if
30: if ¬M [vt⟩ and M [ct⟩M2 then
31: S.add ((M,M2),M2));

32: end if
33: end for
34: return S

Our reduction method is suitable for these PN-DOs that have
many concurrent transitions and satisfy the selection criterion.
For example, Fig. 7 shows the best reduction case. There are
9 pairs of concurrent transitions in Fig. 7 (a), and Fig. 7 (b)
shows its ERG. Because all concurrent transitions satisfy the
selection criterion, we can reduce most of markings and arcs,
and then obtain reduced ERGs as shown in Figs. 7 (c) and (d).
Obviously, due to different selections of possible extensions,
the reduced ERGs are possibly not unique.

It is possible that some errors of inconsistent data cannot
be reflected in a reduced ERG. For example, the error of
inconsistent data caused by the concurrent transitions t3 and t4
is not be detected based on the reduced ERG in Fig. 7 (d), but it
can be detected in view of the reduced ERG in Fig. 7 (c). This
is because the concurrency structure of t3 and t4 is deleted
in Fig. 7 (d) after ((M2,M4),M4) is selected and added into
a prefix at the marking M2. Hence, we cannot decide their
concurrency relation and thus the error of inconsistent data
cannot be checked. Therefore, the selection policy of possible
extension is important, and we will improve it in the future
work.

VI. CASE STUDY

We give a case study by referring to the business process
in [6]. This example is described as follows.

A company seeks and publishes its write-ups every month.
Hence, some selected employees are assigned to collect and
write these reports. After write-ups are submitted to the group
manager (GM), the GM decides whether these reports are

Fig. 7: Different reduced ERGs.

accepted or sent back for revision. Once they are accepted,
they can undergo the second review from the department head
(DH); otherwise, these write-ups will be asked for revision and

258 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 1, JANUARY 2018

re-submitting. If these accepted reports fail to pass through the
review from the DH, they will be asked to revise and resubmit
to the DH. Otherwise, these write-ups are archived in the
company’s software repository and go through editorial review.
For the reports which have passed through all reviews, where
to publish them (on the Web sites or in the newsletter) will be
decided by the editorial review. Then, the write-ups selected
for the newsletter will be catalogued to print publication.

In order to describe the business process of write-up publi-
cation, it is modeled by a PN-DO, and then its data-flow errors
are respectively detected based on ERG and the reduced ERG.
Now, the concrete procedures are listed as follows.

1) This business process is modeled by the PN-DO in Fig. 8.
The related data items and business activities are respectively
shown in Tables I and II.

2) Fig. 9 is its ERG and Fig. 10 is its reduced ERG.
3) According to Algorithm 1, its data-flow errors are de-

tected and listed in Table III.

Fig. 8: Write-ups publication process (PN-DO Σ).

VII. CONCLUSION

Successful business process management depends on effec-
tive modeling and analysis. The model should consider both
control- and data-flows, and the model checking technique
should be effective. This paper proposes such a model and a
technique. PN-DOs are defined to model both concurrent read
and coverable write. A method of reducing their reachability
graphs is proposed. Based on them, data-flow errors are
detected rapidly.

TABLE I
DATA INFORMATION

Data item Name

v0 Email ID

v1 Email message

v2 Report

v3 Employee ID

v4 Topic/Subject name

v5 GM feedback

v6 Contact number

v7 Publish in website/newsletter

v8 DH guideline/feedback

v9 Article No.

v10 Editorial review

TABLE II
BUSINESS ACTIVITIES AND DATA OPERATIONS

Transition ID Business activities
Input data Output data

(Read) (Write)

t1 Send email v0 v1

t2 Submit report v1 v2, v3, v4, v6

t3 Review by GM v2, v3 v5, v7

t4 Review by DH v2, v3, v5, v7 v7

t5 Re-submit report v2, v5 v2

t6 Revise report v2, v8 v2

t7 - - -

t8 Editorial review v2, v3, v7 v10

t9 Archive v2, v3, v4 v9

t10 Catalogue v2 v9

t11, t12 - - -

In future work, we plan to improve the selection criterion
that guarantees the reduced reachability graph can reflect all
errors. Another work is to develop a software tool that uses
the proposed algorithms to check the data-flow errors. We also
plan to study the unfolding technique of PN-DOs to avoid state
space explosion more effectively.

REFERENCES

[1] C. C. Dolean and R. Petrusel, “Data-flow modeling: a survey of issues
and approaches,” Inf. Econ., vol. 16, no. 4, pp. 117−130, Oct. 2012.

[2] W. M. Van Der Aalst, “Workflow verification: finding control-flow errors
using petri-net-based techniques,” in Business Process Management:
Models, Techniques, and Empirical Studies, W. van der Aalst, J. Desel,
and A. Oberweis, Eds. Berlin Heidelberg, Germany: Springer, vol. 1806,
pp. 161−183, 2000.

[3] N. Trčka, W. M. P. Van der Aalst, and N. Sidorova, “Data-flow anti-
patterns: Discovering data-flow errors in workflows,” in Proc. 21st Int.
Conf. Advanced Information Systems Engineering, Heidelberg, Germany,
2009, pp. 425−439.

[4] W. M. P. Aalst, K. M. Hee, A. H. M. Hofstede, N. Sidorova, H. M.
W. Verbeek, M. Voorhoeve, and M. T. Wynn, “Soundness of workflow
nets: classification, decidability, and analysis,” Formal Aspec. Comput.,
vol. 23, no. 3, pp. 333−363, 2011.

[5] G. J. Liu and C. J. Jiang, “Net-structure-based conditions to decide
compatibility and weak compatibility for a class of inter-organizational
workflow nets,” Sci. China Inf. Sci., vol. 58, no. 7, pp. 1−16, Jul. 2015.

[6] H. S. Meda, A. K. Sen, and A. Bagchi, “On detecting data flow errors
in workflows,” J. Data Inf. Qual., vol. 2, no. 1, Article No. 4, Jul. 2010.

XIANG et al.: DETECTING DATA-FLOW ERRORS BASED ON PETRI NETS WITH DATA OPERATIONS 259

TABLE III
DATA-FLOW ERRORS LIST

Data-flow errors Marking Illustration
Missing data M6 v8 is missing for t6

Redundant data
M1 v6 is written by t2 but never read again

M7, M9 v10 is written by t8 but never read again

Lost data M10, M11, M12 t9 and t10 overwrite some data into v9

Inconsistent data M8 t9 and t10 overwrite some data into v9 concurrently

Fig. 9: The ERG of Σ.

[7] S. Roy, A. S. M. Sajeev, S. Bihary, and A. Ranjan, “An empirical study
of error patterns in industrial business process models,” IEEE Trans.
Serv. Comput., vol. 7, no. 2, pp. 140−153, Apr.−Jun. 2014.

[8] S. G. Wang, M. D. Gan, and M. C. Zhou, “Macro liveness graph and
liveness of omega-independent unbounded nets,” Sci. China Inf. Sci.,
vol. 58, no. 3, pp. 1−10, Mar. 2015.

[9] S. Sadiq, M. Orlowska, and W. Sadiq, “Data flow and validation
in workflow modelling,” in Proc. 15th Australasian Database Conf.,
Dunedin, New Zealand, 2004, pp. 207−214.

[10] D. Sharma, S. Pinjala, and A. K. Sen, “Correction of data-flow errors
in workflows,” in Proc. 25th Australasian Conf. Information Systems,
Auckland, New Zealand, 2014.

[11] X. T. Guo, S. X. Sun, and D. Vogel, “A dataflow perspective for business
process integration,” ACM Trans Manage Inf. Syst., vol. 5, no. 4, Article
No. 22, Mar. 2015.

[12] S. X. Sun, J. L. Zhao, J. F. Nunamaker, and O. R. L. Sheng, “Formulating
the data-flow perspective for business process management,” Inf. Syst.
Res., vol. 17, no. 4, pp. 374−391, Dec. 2006.

[13] H. S. Meda, A. K. Sen, and A. Bagchi, “Detecting data flow errors in
workflows: A systematic graph traversal approach,” in Proc. 17th Annual
Workshop on Information Technologies and Systems, Montreal, Canada,
2007.

Fig. 10: The reduced ERG of Σ.

[14] M. Varea, B. M. Al-Hashimi, L. A. Cortës, P. Eles, and Z. B. Peng,
“Dual flow nets: modeling the control/data-flow relation in embedded
systems,” ACM Trans. Embed. Comput. Syst., vol. 5, no. 1, pp. 54−81,
Feb. 2006.

[15] S. K. Fan, W. C. Dou, and J. J. Chen, “Dual workflow nets: mixed
control/data-flow representation for workflow modeling and verifica-
tion,” in Advances in Web and Network Technologies, and Information
Management, K. C. C. Chang, W. Wang, L. Chen, C. A. Ellis, C. H.
Hsu, A. C. Tsoi, and H. X. Wang, Eds. Heidelberg, Germany: Springer,
vol. 4537, pp. 433−444, 2007.

[16] A. Awad, G. Decker, and N. Lohmann, “Diagnosing and repairing
data anomalies in process models,” in Business Process Management
Workshops, S. Rinderle-Ma, S. Sadiq, and F. Leymann, Eds. Berlin,
Heidelberg, Germany: Springer, vol. 43, pp. 5−16, 2009.

[17] P. Baldan, A. Bruni, A. Corradini, B. König, C. Rodrı̈guez, and S.
Schwoon, “Efficient unfolding of contextual Petri nets,” Theor. Comput.
Sci. vol. 449, pp. 2−22, Aug. 2012.

[18] U. Montanari and F. Rossi, “Contextual nets,” Acta Inf., vol. 32, no. 6,
pp. 545−596, Jun. 1995.

[19] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani,

260 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 1, JANUARY 2018

“Partial-order reduction in symbolic state-space exploration,” in Proc.
9th Int. Conf. Computer Aided Verification, Berlin, Heidelberg, Germany,
1997, pp. 340−351.

[20] A. Lluch-Lafuente, S. Edelkamp, and S. Leue, “Partial order reduction
in directed model checking,” in Proc. 9th Int. SPIN Workshop on Model
Checking of Software, Grenoble, France, 2002, pp. 112−127.

[21] A. Valmari and H. Hansen, “Can stubborn sets be optimal?,” in Proc.
31st Int. Conf. Applications and Theory of Petri Nets, Berlin, Heidelberg,
Germany, 2010, pp. 43−62.

[22] S. G. Wang, M. C. Zhou, Z. W. Li, and C. Y. Wang, “A new modified
reachability tree approach and its applications to unbounded Petri nets”.
IEEE Trans. Syst. Man Cybern. Syst., vol. 43, no. 4, pp. 932−940, Jul.
2013.

[23] S. G. Wang, M. D. Gan, M. C. Zhou, and D. You, “A reduced
reachability tree for a class of unbounded Petri nets,” IEEE/CAA J.
Autom. Sin., vol. 2, no. 4, pp. 345−352, Oct. 2015.

[24] P. A. Bourdil, B. Berthomieu, S. D. Zilio, and F. Vernadat, “Symmetry
reduced state classes for time Petri nets,” in Proc. 30th Annu. ACM
Symp. Applied Computing, Salamanca, Spain, 2015, pp. 1751−1758.

[25] M. Westergaard, L. M. Kristensen, G. S. Brodal, and L. Arge, “The
ComBack method: extending hash compaction with backtracking,” in
Proc. 28th Int. Conf. Application and Theory of Petri Nets, Berlin,
Heidelberg, Germany, 2007, pp. 445−464.

[26] G. J. Holzmann, “An analysis of bitstate hashing,” Formal Methods Syst.
Des., vol. 13, no. 3, pp. 289−307, Nov. 1998.

[27] S. Christensen, L. M. Kristensen, and T. Mailund, “A sweep-line method
for state space exploration,” in Proc. 7th Int. Conf. Tools and Algorithms
for the Construction and Analysis of Systems, Berlin, Heidelberg,
Germany, 2001, pp. 450−464.

[28] D. M. Xiang, G. J. Liu, C. G. Yan, and C. J. Jiang, “Checking
the inconsistent data in concurrent systems by petri nets with data
operations,” in Proc. IEEE 22nd Int. Conf. Parallel and Distributed
Systems (ICPADS), Wuhan, China, 2016, pp. 501−508.

[29] W. Vogler, “Partial order semantics and read arcs,” in Proc. 22nd
Int. Symp. Mathematical Foundations of Computer Science, Berlin,
Heidelberg, Germany, 1997, pp. 508−517.

[30] W. Vogler, “Efficiency of asynchronous systems and read arcs in Petri
nets,” in Proc. 24th Int. Colloquium on Automata, Languages, and
Programming, London, UK, 1998, pp. 538−548.

[31] G. J. Liu, W. Reisig, C. J. Jiang, and M. C. Zhou, “A branching-process-
based method to check soundness of workflow systems,” IEEE Access,
vol. 4, pp. 4104−4118, Jan. 2016.

[32] W. Vogler, A. L. Semenov, and A. Yakovlev, “Unfolding and finite prefix
for nets with read arcs,” in Proc. 9th Int. Conf. Concurrency Theory,
London, UK, 1998, pp. 501−516.

[33] S. Christensen and N. D. Hansen, “Coloured Petri nets extended with
place capacities, test arcs and inhibitor arcs,” in Proc. 14th Int. Conf. Ap-
plication and Theory of Petri Nets, London, UK, vol. 691, pp. 186−205,
1993.

[34] S. Bandinelli and A. Fuggetta, “Computational reflection in software
process modeling: the SLANG approach,” in Proc. 15th Int. Conf.
Software Engineering, Los Alamitos, CA, USA, 1993, pp. 144−154.

[35] L. Ma and J. P. Tsai, “Formal modeling and analysis of a secure mobile-
agent system,” IEEE Trans. Syst. Man Cybern. A Syst. Hum., vol. 38,
no. 1, pp. 180−196, Jan. 2008.

[36] J. Desel, V. Milijic, and C. Neumair, “Model validation in controller
design,” in Lectures on Concurrency and Petri Nets, J. Desel, W. Reisig,
and G. Rozenberg, Eds. Berlin Heidelberg, Germany: Springer, 2004,
pp. 467−495.

[37] C. X. Xu, W. L. Qu, H. P. Wang, Z. Z. Wang, and X. J. Ban, “A
petri net-based method for data validation of web services composition,”
in Proc. IEEE 34th Annu. Computer Software and Applications Conf.,
Washington, DC, USA, 2010, pp. 468−476.

[38] B. Bonet, P. Haslum, V. Khomenko, S. Thiëbaux, and W. Vogler, “Recent
advances in unfolding technique,” Theor. Comput. Sci., vol. 551, pp. 84−
101, Sep. 2014.

[39] J. Esparza, S. Römer, and W. Vogler, “An improvement of McMillanś un-
folding algorithm,” Formal Methods Syst. Des., vol. 20, no. 3, pp. 285−
310, May 2002.

Dongming Xiang graduated from University of
Jinan, China, in 2010. He received the M.S. degree
from this university in 2013. He is currently work-
ing toward the Ph.D. degree in the Department of
Computer Science and Technology, Tongji Univer-
sity. His research interests include model checking,
Petri net, business process management, and service
computing.

Guanjun Liu (M’2016) received the Ph.D. degree
in computer software and theory from Tongji Uni-
versity, Shanghai, China, in 2011. He was a Post-
doctoral Research Fellow at Singapore University
of Technology and Design, Singapore, from 2011 to
2013. He worked at Humboldt-University zu Berlin,
Germany, from 2013 to 2014 as a Postdoctoral
Research Fellow supported by the Alexander von
Humboldt Foundation. He is currently an Associate
Professor with the Department of Computer Science
and Technology, Tongji University. He has published

50+ papers. His research interests include Petri net theory, model checking,
web service, workflow, discrete event systems, and information security.

Chungang Yan received the Ph.D. degree from
Tongji University, Shanghai, China, in 2006. She
is currently a Professor with the Department of
Computer Science and Technology, Tongji Univer-
sity, Shanghai, China. Her current research interests
include concurrent model and algorithm, Petri net
theory, formal verification of software, and trusty
theory on software process. She has published more
than 30 papers in domestic and international aca-
demic journals and conference proceedings.

Changjun Jiang received the Ph.D. degree from
the Institute of Automation, Chinese Academy of
Science, Beijing, China, in 1995. He is currently
the leader of the Key Laboratory of the Ministry of
Education for Embedded System and Service Com-
puting, Tongji University, Shanghai, China. He is an
IET Fellow and an Honorary Professor with Brunel
University London. He has published more than
300 papers in journals and conference proceedings,
including Chinese Science, IEEE Transactions on
Robotics and Automation, and IEEE Transactions on

Fuzzy Systems. He has led over 30 projects supported by the National Natural
Science Foundation of China, the National High Technology Research and
Development Program of China, and the National Basic Research Developing
Program of China. His research interests include concurrency theory, Petri
nets, formal verification of software, cluster, grid technology, intelligent
transportation systems, and service-oriented computing. Prof. Jiang has been
the recipient of one international prize and seven prizes in the field of science
and technology.

