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Abstract—In this paper, we propose a new mechanism called
explicit rate notification (ERN) to be used in end-to-end commu-
nications. The ERN scheme encodes in the header of transmission
control protocol (TCP) packets information about the sending
rate and the round trip time (RTT) of the flows. This new
available information to the intermediate nodes (routers) is used
to improve fairness, increase utilization, decrease the number
of drops, and minimize queueing delays. Thus, it induces a
better management of the queue. A comparison of our scheme
with preexistent schemes, like the explicit congestion notification
scheme, shows the effectiveness of the proposed mechanism.

Index Terms—Active queue management, congestion control,
fairness, transmission control protocol (TCP).

I. INTRODUCTION

IN a network, routers transmit incoming packets over links
with finite bandwidth. Links become congested when the

amount of incoming packets exceeds the capacity of outgoing
links. Congestion results typically in longer delays for data
delivery, and in extreme cases, it can lead to a congestion
collapse, where the load exerted on the network is extremely
high and the useful throughput is low. Thus, congestion control
is essential to the functioning of the Internet. That is why it
gathered a great amount of attention in the past three decades.

Congestion control can be seen as a distributed algorithm
that shares the resources of a network among competing
users. An important aspect of this system is that the network
condition changes rapidly and unpredictably over time. For
instance, the number of users changes greatly during the day
or from one day to the next. Controlling the congestion can be
done by the end hosts and/or by the routers (links). While the
former type of control is achieved by mechanisms like trans-
mission control protocol (TCP) [1], the latter type of control
is achieved by active queue management (AQM) mechanisms.
The philosophy behind AQM is to start dropping/marking
packets at the early stages of the congestion. Doing this would
convey the congestion information to the end hosts, which in
turn adjust their congestion windows (CWNDs) according to
the congestion signal. AQM helps to achieve smaller queueing
delays, higher throughput, and avoid flow synchronization by
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purposely dropping packets before congestion becomes severe,
which differs from previous passive queueing management
mechanisms like drop-tail.

The most well-known and prominent AQM scheme is
random early detection (RED) [2]. Until recently, the internet
engineering task force (IETF) recommended in [3] the use of
RED in internet routers. However, even if the newer request
for comments (RFC) [4] still recommends the use of AQM
schemes in routers, it obsoleted the recommendation that states
that RED should be used by default in routers. The RED
scheme was developed and introduced into Internet routers
mainly to avoid the flow synchronization problem. It also
helps to distinguish between a state of congestion and the
bursty nature of the network. The RED algorithm manages
the queue by maintaining a drop probability that is calculated
according to the queue length. Nevertheless, the complexity
and the difficulty in tuning its parameters have been the
subject of several studies. To address the limitations and
improve the performance of RED, several variants of RED
have been proposed such as [5]−[10]. While RED uses the
queue length as the congestion metric, other works argued
that this information alone is not sufficient to achieve a good
management of the queue. By categorizing the mechanisms
with respect to their congestion metrics, it would result into
four main categories: 1) The mechanisms belonging to the first
category use the queue length as their main congestion metric,
whether it is the instantaneous queue length or the filtered one
as was used in RED and its variants. 2) The second category
of mechanisms uses the queue length along with its variation.
The mechanisms that used this metric are mainly the ones that
were developed using a control theoretic approach [11]−[14].
3) The third set of mechanisms uses the difference between the
aggregate of incoming rate and the aggregate of the outgoing
rate [15], [16]. 4) Finally, the mechanisms of the last category
use the sojourn time [17]. Actually, using the sojourn time
instead of the queue length would ensure a robust control even
when the link’s capacity varies.

In the internet, the number of active flows that traverse a
single router is great. It could reach thousands and even more
in core-routers. All these flows do not have any information
about the actual state of the network, and this is more true
in TCP-IP networks. Therefore, when a source wants to
send data, it cannot know which sending rate will ensure
a high utilization without overloading the network. That is
why it gradually increases its rate by increasing its congestion
window. And when it receives a congestion notification, it
reduces its congestion window, and thus its rate. According
to [18], [19] the TCP’s self-clocking mechanism generates a
traffic pattern where the packets are sent in bursts, which is
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the main cause of burstiness in the networks. Another source
of burstiness is long term TCP connections that send data in
short bursts, one example of such applications is the one that
requires user interaction. The bursty behavior of the network
is the reason why the queueing policy of the router must
allow the bursts and notify the flows only if the load persists.
Doing so, would help to achieve a high utilization by not
discarding packets unnecessarily when the excess of load is
due to bursts. It would also prevent high delay by dropping
packets before the queue overflows. And above all, the policy
should maintain a high level of fairness among flows. Ideally,
each flow, in a relatively large time scale, would use its fair
share of the bandwidth. One way to do this is by doing some
sort of fair queueing where each flow traversing the link has
its own queue, and where the access to the link is ensured by
using some sort of a scheduling algorithm, like round robin
for instance. Nevertheless, this kind of mechanisms, where
the router stores the list of all the flows traversing its link, can
hardly be used in core-routers where the traffic is huge. This
is the reason why the majority of the proposed solutions do
not maintain any per flow state.

Given the distributed nature and the size of the Internet,
the scale-up property of any proposed solution is considered
as one of the most important properties. That is why the
majority of the proposed AQM schemes rely only on stateless
information that can be gathered in the router. This means that,
unlike fair random early drop (FRED) [20], a router should not
store the list of the flows traversing its link; on the other hand,
relying only on queue length and its variation in time is not
sufficient to ensure a good control of the queue length [21],
and even less to achieve a high fairness among flows [22]. For
instance, it is well known that the network could be considered
as a delayed control system, with the round trip time (RTT)
being the delay. The network model proposed by Hollot in
[23], [24] was modeled using the RTT, the number of flows,
and the link capacity. However, as mentioned previously, the
condition of the network is not stable and it changes over time.
Thus, mechanisms that were built from these models were
tuned to operate only under a predefined range of operating
points. To the best knowledge of the authors, only a few
studies [25], [19] took RTTs of the flows into account when
implementing their AQM schemes. In [19], the authors used
a passive method to calculate the RTT, but they calculated the
RTT of a single flow only. They assumed, then, that all the
other flows have the same RTT which is rarely, if ever, the
case.

To address the lack of information in routers, numerous
works proposed to involve end-to-end congestion control
mechanisms to work along with intermediate nodes. The most
popular work is the explicit control protocol (XCP) [26].
The authors of XCP proposed a new transport protocol that
appends to each packet the rate of its flow. As these packets
travel within the network, the routers update the value of the
rate according to the level of congestion perceived by each one
of them. In [27] Xia et al. argued that XCP requires a non-
trivial and time-consuming standardization process, because
of the lack of space in the IP header. Instead, they proposed
to encode the congestion-related information in the existing

two explicit congestion notification (ECN) bits. However,
the authors admitted that while their technique approaches
the performance of XCP in terms of queue management, it
converges slowly to a fair allocation of the bandwidth among
the flows.

In this work, we propose a new method for managing the
queue during times of congestion. We aim to ensure fairness
among TCP flows without storing any kind of per flow state.
We propose to involve endpoints in the control by sending
information about the characteristics of the flows. Therefore,
the router will know the number and the rates of the flows
traversing its link. This proposition differs from other works
by two main points. Firstly, it is not a new protocol of
the transport layer, such as XCP [26] and Variable-structure
congestion control protocol (VCP) [27]. Instead, it can be
seen as a new component that sends information about the
rate of the flow. This is encouraged by the fact that this
mechanism can be used with existing and already proven
transport layer protocols. The second point where this solution
differs from the existing ones is that instead of appending
the rate information to each packet, as was done in [28], the
information is sent only once per RTT. This is encouraged
by the fact that a source needs not less than one RTT to
adjust its sending rate. Thus, the behavior of the flow is
predictable within one RTT, so there is no need to send the
flow’s characteristics with each packet.

The remainder of this paper is organized as follows. In
Section II, we discuss how the new available information to
the routers would allow a better management of the queues.
In Section III, we present the explicit rate notification (ERN)
scheme and how it enables the flow’s source to share its state
with routers, then we give the design guidelines of a new AQM
scheme that takes advantage of the information proposed by
the ERN scheme. Section IV discusses the simulation results,
and provides a comparison between the RED scheme when
enabling or disabling ECN and the proposed ERN scheme. In
Section V, we will present some deployment and implemen-
tation considerations. Finally, we draw our conclusions and
future works in Section VI.

II. THE NEED FOR MORE INFORMATION WITHIN
THE NETWORK

In this paper, we aim to improve fairness among flows by
making the endpoints actively contribute in the management of
the queue. Thus far, the endpoints were passively contributing
by responding to the congestion notifications. One way to
actively contribute is to share some information about the
flows’ states with the network (routers). Therefore, each flow
should send a packet once per RTT that contains its rate. The
rate ratei of any given flow i can easily be calculated using

ratei =
cwndi

rtti
(1)

where cwndi and rtti represent the congestion window and
the round trip time of the flow i, respectively.

Sending the rate of the flow once per RTT would have three
advantages.
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1) The first advantage is to enforce fairness by using the
RTT when choosing which flows should be notified. For
instance, if two TCP flows, with different RTTs, compete
against each other over the bandwidth, the flow with the lower
RTT would always prevent the other flow from getting its
fair share. The reader can find a detailed discussion about the
impact of the RTT in the distribution of the bandwidth in [11].
Furthermore, using the inequality

T <
1.5×

√
2
3
×MSS

RTT
√

p
(2)

that was introduced in [29], makes it possible to calculate the
fair share T that a flow should expect. A flow is characterized
by the maximum segment size MSS, the round trip time RTT
and the drop probability p. Thus, using the RTT to differentiate
between flows could lead to a better fairness among flows.

2) The second advantage is a better control of the queue
length. This is done by taking the number of the flows travers-
ing the link into account when calculating the drop probability.
As mentioned in [30], the weakness of some proposed AQM
schemes is that the number of flows passing through a router
does not affect the rate at which the congestion notifications
are sent. In [30], Feng et al. showed that in a link filled
with N connections, sending a congestion notification to one
connection would reduce the load by a factor of 1−1/(2N ).
The number of flows can be calculated by counting the number
of packets that contain the rate information.

3) The third and last advantage is to reduce the number of
unnecessarily dropped packets by the routers. Already existing
schemes maintain a drop probability that is applicable to all
packets passing through the router. In this work, the flows are
robustly notified by marking, when necessary, only the packets
carrying the RTT information.

Given the fact that not all flows are congestion control
aware, responsive flows should be distinguished from unre-
sponsive ones. While the packets of responsive flows should be
marked, the packets of unresponsive ones should be dropped.
A responsive flow is a flow that significantly reduces its rate
upon the reception of a congestion notification. For instance,
a long lived file transfer protocol connection that continuously
sends data is a good example of such type of flows. Whereas,
unresponsive flows are flows that do not implement any
congestion control algorithm in the transport layer, like User
Datagram Protocol (UDP) flows. Another type of unresponsive
flows is when there is no decrease of the load exerted on the
congested link, when the flows get notified about the inherent
congestion. Hypertext Transfer Protocol (HTTP) and Telnet
are good examples of such type of flows. The reason why these
flows should be treated as unresponsive, lies in the fact that
by the time that the congestion notification would reach the
sender, the HTTP or the Telnet sender would have already sent
all the data he had to send. One way to differentiate between
TCP responsive flows from TCP unresponsive ones is to treat
all the flows that are in the slow start phase as unresponsive.
Finally, it is clear that even under a heavily-congested network,
any flow with enough data to send would eventually end up
by reaching the congestion avoidance phase.

III. IMPLEMENTATION

In order to implement the proposed AQM scheme, there
should be some alteration in the structure of the TCP header
and even in the behavior of the TCP protocol. In what follows,
we shall present the changes made to the TCP protocol, then
the implementation of the AQM scheme.

A. Changes to the TCP

To implement the ERN scheme, two bits are added to
the TCP header (Fig. 1). The first bit is called ERN-capable
(ERC) and the second bit is called ERN-rate (ENR). With
these two bits there are four possible combinations that are
set by the sender. The first combination 10 indicates that the
packet belongs to an ERN-capable flow. The second one 11
indicates that the options field of the current packet contains
the rate information. The packet carrying the rate information
is called the ERN-packet. Finally, the last two combinations
00 and 01 are used interchangeably, and they only indicate that
the flow at which the current packet belongs to is not ERN-
capable, thus routers should manage these flows along with
the unresponsive ones. It should be noted that it is possible
for a flow to be ERN-capable in one way but not the other.

Fig. 1. TCP flags.

Each ERN-capable flow should send its rate once per RTT.
When the flow sends the ERN-packet, it should put the CWND
size and the value of the RTT in the TCP options field. In
this work, the level of granularity required for the RTT value
is in milliseconds. Therefore, since a useful RTT does not
go beyond a few seconds, using 12 bits to encode the RTT
value should be enough (from 1 ms up to 4 s). The remaining
4 bits are used to indicate if the CWND is extended or not. To
be more precise, the 4 bits specify by how much the CWND
should be shifted. Finally, the CWND size can be encoded
in 16 bits (2 octets). Thus, using 6 octets in the TCP options
field is enough to convey all the required information (Fig. 2).
The TCP options kind namespace is under the responsibility
of internet assigned numbers authority (IANA). Thus, IANA
should assign a value to the Kind field to be used for the
ERN-TCP option.

Fig. 2. TCP options.

B. The AQM Implementation

In order to evaluate the effectiveness of this proposition,
we took a well known AQM scheme, which is RED, and
modified it to take advantage of the new possibilities offered
by the proposed ERN scheme. The first step in such endeavor
was to separate flows by their RTTs. Having different drop
probabilities for flows with different RTTs would help flows
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with large RTTs to have enough time to respond to the
congestion notifications before the AQM algorithm becomes
more aggressive. Each category would have its own drop
probability that is updated once per RTT. The drop probability
is calculated, as in RED, by

pb = maxp × avg −minth

maxth −minth
(3)

where pb is the drop probability; avg is the average queue
length; minth and maxth are the minimum and the maximum
thresholds, respectively; and finally, maxp is the maximum
drop probability, it is set to 0.1 in the original RED.

The flows were divided into five different categories. The
first category contains all the flows with an RTT less than
40 ms. The maximum RTT value is, then, doubled each time
for the next three categories, which means that the categories
2, 3, and 4 contain flows with RTTs less than 80 ms, 160 ms,
and 320 ms, respectively. Finally, the last category contains all
the flows with an RTT above 320 ms. Choosing five categories
is the authors’ choice to cover all the universe of discourse of
the values of RTTs. Having more than five categories would
not result in a significant gain when controlling the queue
length, while having less would result in a poor segmentation
of the universe of discourse. It should be noted that when
doubling the RTT, the rate of the source would also double.
That is why the length of the categories is doubled between
every two adjacent categories.

There are multiple ways to calculate the fair rate. The most
direct way would be to divide the capacity of the link by
the number of flows traversing it. But given the fact that
the link’s capacity varies over time and ERN-capable flows
coexist on the same link with non-ERN flows, calculating the
fair share by dividing the capacity by the number of ERN-
capable flows would result in a discrimination toward non-
ERN flows. So, a better way to calculate the fair rate would
be done by calculating the average rate of all ERN-capable
flows traversing the link. To calculate this average, we used an
exponentially weighted moving average (EWMA) filter with
a decaying factor of 0.98. Thus, when a router receives an
ERN-packet, it increments the number of active connections
of the category at which the flow belongs to, then it updates
the fair rate using

rate = rate× 0.98 +
cwndi

rtti
× 0.02. (4)

The classic RED mechanism has a module used to space
between two consecutive drops characterized by

pa =
pb

1− count× pb
(5)

where pa is the drop probability applied to each packet and
count is the number of packets that traversed the router since
the last drop. Spacing between drops is done by increasing
the drop probability according to the number of packets that
traversed the router since the last drop. This module was
introduced to improve the fairness among flows by addressing
the problem of the bursty nature of TCP flows. In this work,

the module described in (5) was replaced by a new one
characterized by

pa = pb × ratei

rate
. (6)

This new module uses the difference between the actual rate
(ratei) of the flow i, and the fair rate (rate) of all the flows
calculated previously in (4). Equation (6) shows clearly that
the drop probability is greater for the flows with sending rates
above the fair share compared to the flows with sending rates
below the fair share.

Finally, all the flows that are not ERN-capable are notified
using the global drop probability. This global drop probability
is updated and maintained as in RED. In other words, when the
proposed mechanism deals with non-ERN flows it reverts back
to the original functioning of the RED algorithm. It should
be noted that all the flows traversing the link share the same
queue, only the drop probability that allows access to the queue
differs.

IV. EVALUATION

In this section, we demonstrate, through simulation, the
effectiveness of the proposed solution (RED-ERN). The objec-
tive in the simulation process is to evaluate the impact of using
the ERN scheme instead of the ECN or the DROP schemes.
To reach our objective, a comparison is made between RED-
ERN, RED-ECN and RED-DROP, where RED-ERN is the
proposed mechanism, RED-ECN and RED-DROP represent
the RED algorithm coupled with either the ECN or the
DROP schemes, respectively. The performance of these AQM
schemes is evaluated using the OMNeT++ simulator. In all
simulations, a simple dumbbell topology is used with a single
link as the bottleneck (Fig. 3). The number of TCP flows
varies from 50 to 800 flows. These TCP flows consist of
long lived FTP connections with an infinite amount of data
to send. The TCP flavor used is NewReno [31], and the
maximum transmission unit (MTU) is set to 576 Bytes (MSS
of 536 Bytes) The bottleneck bandwidth varies from 5 Mbps to
50 Mbps, and its delay is set to 8 ms. The delays of the other
links are set, by following a truncated normal distribution, so
the RTTs of the flows would be evenly divided between the
five categories. For instance, the delays of the links belonging
to the first category were calculated with a mean of 4 ms and
a standard deviation of 2 ms. It means that the delay of these
links vary between 2 ms and 6 ms; by adding the bottleneck
delay of 8 ms, the one way delay (propagation delay) would
range between 12 ms and 20 ms. Therefore, the RTTs of the
flows belonging to the first category would range between

Fig. 3. Simulation topology.
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Fig. 4. General results.

24 ms and 40 ms. For the four remaining categories the mean
and the standard deviation are (11 ms, 4 ms), (26 ms, 8 ms),
(56 ms, 18 ms), and (101 ms, 22 ms). The buffer size is set to
800 packets, and the queue target is set so the queueing delay
would be 14 ms. For instance, with a bottleneck of 30 Mbps,
the queue target would be 91 packets. In order to evaluate the
fairness of each scheme, the Jain’s fairness index is used. It is
calculated with respect to the throughput experienced by each
flow. This index was introduced in [32] and it is characterized
by

J =
(

n∑
i=1

xi)2

n
n∑

i=1

x2
i

(7)

where J is the fairness index that falls in the unit interval
[0,1], n is the number of flows sharing the link, and xi is the
throughput of flow i.

A. General Results
Fig. 4 shows the average and the standard deviation for

all of the fairness, the utilization, the number of drops, and
the queueing time when the bottleneck bandwidth and the
number of FTP flows vary. The average is calculated from
the results of all the simulations when varying the bottleneck
bandwidth from 5 Mbps to 50 Mbps and the number of FTP
flows from 50 to 800. As shown in Fig. 4(a), in average, the

fairness of the RED-ERN mechanism is above the two other
mechanisms. It also shows a gain of about 6 % over RED-
ECN and 10 % over RED-DROP. The utilization of all of the
three mechanisms is nearly optimal as shown in Fig. 4(b). As
Fig. 4(c) shows, the ERN mechanism reduces considerably the
number of dropped packets. It reduced that number by a factor
of 2.5 compared to RED-DROP, and by a factor of 2 compared
to RED-ECN. Concerning the queueing time, as depicted in
Fig. 4(d), there is a great gap between RED-DROP and the
two other mechanisms. This is due to the fact that in times of
congestion, the DROP scheme drops the packets while the two
other schemes can only mark them. Thus, the queue control
of the ECN and ERN schemes is greatly impacted when the
multiplexity over the link is high. Henceforth, we define the
multiplexity of a link as being the number of flows traversing
the link; a high multiplexity means that the number of flows
is great, while a low multiplexity means the opposite.

B. Varying the Number of FTP Connections

In this set of simulations, the bottleneck bandwidth is set
to 30 Mbps and the number of FTP flows varies from 50 to
800. As shown in Fig. 5(a), the fairness of the RED-ERN
mechanism is located in the vicinity of 85 %. As a matter
of fact, the gap in fairness between RED-ERN and the other
two mechanisms can reach 20 % when the multiplexity over
the link is low.
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Fig. 5. Fairness and queueing time with respect to number of FTP sessions.

But as the multiplexity increases, the gap between the schemes
decreases to become between 4 % and 8 %. This is due to
the fact that the DROP and the ECN schemes are enhancing
fairness by spacing between drops. Therefore, in a low
multiplexity environment, the probability of dropping/marking
packets belonging to the same flow is high. While for the ERN
scheme, irrespective of the number of flows sharing the link,
all the flows that are sending above the fair rate will be notified
more frequently than the flows sending below the fair rate.

Fig. 5(b) shows the subtraction of the target queueing time
14 ms from the queueing times of the three schemes. It is
clear from Fig. 5(b) that the queueing time increases with the
increase of the number of FTP sources. Only RED-DROP
is able to maintain the queueing time to the desired target
in very high multiplexed configurations, while the ECN and
ERN schemes fail to drive the queue to the desired target,
so the queue overflows. As stated previously, this is due to
the way the different schemes react to congestion; where the
DROP scheme drops packets when the congestion occurs, the
other two schemes mark them, which is not enough when the
number of FTP flows is great. But when the number of FTP
flows is high and the bottleneck bandwidth is low, the fairness
of the DROP scheme falls, and up to half of the flows are
excluded from the link. For instance, running a simulation
with 800 FTP sessions sharing a 1 Mbps link would result in
a very low fairness for the DROP scheme, which is in the
vicinity of 26 %, while the fairness of the ECN and the ERN
schemes exceeds 75 %.

In configurations where the multiplexity over the link is low
to moderate, the ERN scheme shows very promising results.
And by comparing RED-ERN with RED-ECN, it is clear that
the former is more robust, and it could control the queueing
time even when the multiplexity level is moderate; whereas the
latter lost the control of the queue even in low multiplexity
levels.

C. Varying the Bottleneck Bandwidth
In what follows, the performance of the different schemes

is studied when the bandwidth of the bottleneck varies. The

number of the flows sending data simultaneously is fixed
to 200 FTP sessions. The bottleneck bandwidth varies from
5 Mbps to 50 Mbps. In Fig. 6(a), it can be seen that in low
bandwidth configurations all of the three schemes have a high
fairness. But as the bandwidth increases, the fairness of RED-
ECN and RED-DROP drops to become in the vicinity of 60 %,
while the RED-ERN mechanism keeps the fairness above
80 %. Fig. 6(b) depicts, as previously, the queueing time of
each scheme minus the target queueing time 14 ms. It could
be easily noticed that the queuing time of the ERN and the
ECN schemes decreases with the increase of the bandwidth,
while the DROP scheme manages to control the queueing
time irrespective of the bandwidth of the bottleneck. As it
can be seen in Fig. 6(b), in high bandwidth configurations the
queueing times are small, which means that the queue length
is also small. Having an average queue length in the vicinity of
minth means that the RED algorithm is triggered repeatedly
but only for a short period of time. Therefore, whenever
the average queue length becomes below minth, the module
responsible for spacing between drops is reinitialized. Thus,
given the fact that RED-ECN and RED-DROP rely on spacing
between drops to improve the fairness, then it becomes clear
why these two mechanisms have not been able to keep a high
fairness in high bandwidth configurations. Whereas the RED-
ERN mechanism has kept the fairness above 80 % irrespective
of the bottleneck bandwidth.

D. UDP Flows

In order to investigate the behavior of the ERN scheme in
the presence of UDP flows, we ran the following simulations.
The bottleneck bandwidth is fixed to 25 Mbps. There are
two types of flows, FTP flows with an infinite amount of
data to send representing the TCP flows, and UDP flows
with a constant bit rate (CBR) application that represent the
unresponsive flows. The number of TCP flows is fixed to 50,
and the number of UDP flows varies from 200 to 800 with a
throughput of 64 Kbps per flow. Fig. 7(a) shows that the ERN
scheme manages to keep a high, fairness among FTP flows
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Fig. 6. Fairness and queueing time with respect to link bandwidth.

Fig. 7. Effect of UDP flows on fairness and queueing time.

irrespective of the number of UDP flows. On a side note, the
simulations results showed that the fairness among UDP flows
is ranging between 96 % and 99 % for all of the three schemes.
Regarding the queueing time, Fig. 7(b) shows that all of the
three mechanisms keep low queueing times, and they are
slightly impacted by the number of the UDP flows. The reason
why the queueing times of the ERN and ECN schemes are
not impacted is due to fact that these two schemes drop UDP
packets instead of marking them. Which means that regardless
of the number of UDP flows, all of the three schemes behave
in the same way when dealing with UDP flows.

E. HTTP Flows

In what follows, we study the behavior of the three mech-
anisms in the presence of HTTP flows. The bottleneck band-
width is set to 25 Mbps. There are 20 long lived TCP flows

continuously sending data. We ran this simulation four times
where the number of HTTP flows was set to 200, 400, 600,
and 800 HTTP sessions (from 10 to 40 times the number of
FTP flows). The HTTP flows have a size of approximately
30 packets per connection and an idle interval of 5 s between
two consecutive connections. The results in Fig. 8 show that
the proposed scheme ensures both high utilization and fair-
ness compared to RED-DROP and RED-ECN. The gap in
utilization reaches 13 % compared to RED-DROP and 5 %
compared to RED-ECN Fig. 8(a). While the gain in fairness
of the proposed mechanism is about 10 % over the two other
mechanisms Fig. 8(b). As depicted in Fig. 8(c), RED-DROP
and RED-ERN manage to keep low queueing delays while
the RED-ECN does not. The reason of this behavior lies in
the fact that the ERN scheme, unlike ECN, can distinguish
between long FTP flows and short HTTP flows. Thus, while
RED-ECN marks HTTP packets, RED-ERN drops them.
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Fig. 8. Simulation results when HTTP flows coexist with FTP flows.

V. DEPLOYMENT CONSIDERATIONS

Even if throughout this paper the mean to communicate with
intermediate nodes was done by altering the TCP header, it is
not an imperative. There are other ways to achieve the same
goal with less intrusive techniques than altering the structure
of the TCP header.

One way to do this requires the use of the two bits
already existing in the IP header that are used for congestion
notifications (ECT and CE). The ECN algorithm uses two code
points to indicate that a flow is ECN capable; the first code
point is 01 called ECT(1), and the second one is 10 called
ECT(0). Sources use these two ECT code points alternatively
to know if the destination node is responding to congestion
notifications or not. Our idea is to use the ECT(1) code point
to differentiate between ERN capable flows and other flows.
Therefore, the ERN mechanism should set ECT(1) on all the
packets belonging to an ERN capable flow. However, the only
way to differentiate ERN-packets (packets containing the rate)
from the other packets would be to check the options in the
packet’s header searching for the rate. It should be noted that
only an ECT(1) packet or a CE packet can become an ERN-
packet. Thus, the router should only check these packets when
searching for the rate in the packet’s header. The downside of
using ECT(1) to mark ERN flows lies in the fact that there
could be ECN capable flows that use only ECT(1). Therefore,
these flows will be mistakenly viewed as ERN capable and
their packets will not be marked nor dropped. A solution to
this problem would be the use of some monitoring mechanism
to monitor the link, but this will have a negative impact on
the scale-up property.

Another way to make available the same set of information
to the routers, and this time without altering the endpoints,
would be the use of passive estimation techniques [33], [18],
[34], [35]. But solutions like these would be in contradiction
with the stateless claim of the original ERN, and thus the
scale-up property.

VI. CONCLUSION

Active Queue Management mechanisms are important to
solve the congestion in the Internet. Existing techniques focus
only on controlling the queue length without taking into
account the flows composing the traffic. In this paper, we pro-
posed a new AQM mechanism that uses new information that
generally does not exist in routers. We enabled the endpoints to

share their flow information with routers. The endpoints send
the size of their congestion windows along with their RTTs.
These two pieces of information should help the routers to
enhance the fairness among flows. In order to demonstrate
the effectiveness of our proposition, a simulation study was
carried out. As a matter of fact, the simulation results did
show that the ERN scheme had a better fairness among flows,
a better queue management, and a better utilization of the link,
especially compared to the ECN scheme. In future works, we
aim to propose a new AQM mechanism that is purposely built
to support the use of the new information available in the
ERN scheme. As we think that the RED-ERN mechanism does
not take full advantage of the new features and possibilities
induced by the ERN scheme.
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