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Abstract—As a primary defense technique, intrusion detection
becomes more and more significant since the security of the
networks is one of the most critical issues in the world. We
present an adaptive collaboration intrusion detection method to
improve the safety of a network. A self-adaptive and collaborative
intrusion detection model is built by applying the Environments-
classes, agents, roles, groups, and objects (E-CARGO) model. The
objects, roles, agents, and groups are designed by using decision
trees (DTs) and support vector machines (SVMs), and adaptive
scheduling mechanisms are set up. The KDD CUP 1999 data set
is used to verify the effectiveness of the method. The experimental
results demonstrate the feasibility and efficiency of the proposed
collaborative and adaptive intrusion detection method. Also, the
proposed method is shown to be more predominant than the
methods that use a set of single type support vector machine
(SVM) in terms of detection precision rate and recall rate.

Index Terms—Adaptive and collaborative, intrusion detection,
decision tree (DT), support vector machines (SVM).

I. INTRODUCTION

INTRUSION detection is an important means to guarantee
the safety of a network to avoid illegal operations that

are launched by intruders (such as attackers and hackers) via
authentication identification [1]. An intrusion detection system
(IDS) is the most significant tool to ensure the security of a
network by analyzing the audit data and current state. There
are many measures to protect a network system, however,
most of the conventional methods are inefficient. Since some
attacks are composed of a series of users’ operations, the users’
behavior should be analyzed to detect an intrusion. To do so,
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users’ actions are divided into normal and abnormal ones to
separate the data. Then, classification is used to justify the
detection result.

With the explosive growth of transmission data and the
wide application of high speed network, traditional intrusion
detection methods are out of date and cannot meet the cur-
rent requirements. Furthermore, an intrusion detection system
should not affect the normal operation of a network system
when it works, especially in the Big Data and high-speed
network environment.

Support vector machines (SVMs) [2] are a powerful tool
for machine learning which is widely utilized in many appli-
cations such as classification, intrusion detection, and pattern
recognition. Since the current network is very complicated, an
intrusion detection system needs to not only be an effective
detection tool but also possess an adaptive mechanism. This
work proposes an adaptive collaboration intrusion detection
method and develops a corresponding intrusion detection
model. The algorithms of SVMs and decision trees (DTs) are
used in the model.

To build an effective and adaptive intrusion detection model,
we introduce the environments-classes, agents, roles, groups,
and objects (E-CARGO) model as a tool which helps us to
design the detection system. Also, SVM classifiers and the
DT algorithm are applied. Group role assignment is studied.
Experiments on data set KDD CUP 1999 are done to illustrate
the effectiveness and performance of the proposed method.
The experimental results show that the proposed method can
not only improve the accuracy of classification, but also save
time and storage space.

The remainder of this paper is arranged as follows. Section II
briefly reviews the related work. Section III introduces the E-
CARGO model and intrusion detection. The major work is de-
veloped in Section IV, including the adaptive and collaborative
intrusion detection method, its architecture and components.
Section V exhibits the suspicious behavior detector based on
SVMs and DTs. We build the whole model containing sus-
picious behavior detection roles and intrusion agents. Section
VI shows the self-adaptive mechanism of cooperative intrusion
detectors. We illustrate our work with experiments in Section
VII. Section VIII summarizes the main contribution of this
work.

II. RELATED WORK

An SVM is a binary classifier and is applied to intrusion
detection by many researchers [3]−[16].
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Teng et al. [3] introduce a fuzzy SVM into intrusion detec-
tion and propose a collaborative network intrusion detection
model. It is a multi-agent model including three kinds of
agents which are used to detect transmission control protocol
(TCP) attacks, user datagram protocol (UDP) attacks, and
internet control message protocol (ICMP) attacks, respectively.
Each agent plays a role that is realized by a fuzzy SVM.

Kuang et al. [4] propose an SVM model for intrusion detec-
tion. This model is formed by a multi-layer SVM classifier by
combining kernel principal component analysis (KPCA) with
genetic algorithm (GA). By this method, KPCA is used as a
preprocessor with a GA algorithm being embedded. With the
KPCA, the dimension of feature vectors can be reduced and
the training time can be shortened, while the GA algorithm is
employed to optimize the kernel parameter σ, the punishment
factor C, and the tube size ε of the SVM.

Li et al. [5] present a classifier for intrusion detection, which
combines clustering, ant colony algorithm, and an SVM. This
classifier can identify whether a network visit is normal or
not. Bamakan et al. [6] use time-varying chaos particle swarm
optimization and propose an intrusion detection framework
based on multiple criteria linear programming (MCLP) and
SVM. A weighted objective function is designed and imple-
mented, and a particle swarm optimization (PSO) algorithm is
introduced for searching the optimum. Aburomman and Reaz
[7] use a PSO algorithm to calculate the weights of classifiers
and generate an ensemble model for detecting intrusions. They
use the local unimodal sampling approach as a meta-optimizer
to obtain better parameters for PSO.

Lin et al. [8] propose an intelligent anomaly intrusion detec-
tion algorithm with feature selection and decision rules. The
algorithm is formed by integrating SVM, DT, and simulated
annealing (SA). By this algorithm, the DT and SA are used
to produce decision rules for new attacks and improve the
accuracy of classification, while the SVM and SA are used to
find the best candidate features for detecting anomaly attacks.
The best parameter settings for the DT and SVM are adjusted
by SA.

Feng et al. [9] introduce SVMs and clustering into intru-
sion detection based on self-organized ant colony network
(CSOACN). Classifiers are generated by combining two ex-
isting machine learning methods: SVMs and CSOACN. They
illustrate the detection effectiveness by experiments.

Kim et al. [10] propose a hybrid intrusion detection model
by hierarchically integrating a misuse detector and an anomaly
detector in a decomposition structure. The C4.5 DT is used
to build the misuse detector that divides the normal data into
smaller subsets. Then, SVMs are used to create an anomaly
detector in each decomposed region. With this integration,
the anomaly detector can indirectly use the known attack
information to enhance its detection ability when profiles of
normal behaviors are built. Horng et al. [11], Ravale et al.
[12] combine a hierarchical clustering algorithm and the SVM
technique, and build an SVM-based intrusion detection model.
This hierarchical cluster provides the SVM with a smaller,
abstracted, and higher-qualified data set that is derived from
the original data set. This method not only greatly shortens
the modeling time, but also improves the performance of the

resultant SVM.
Lin et al. [13] develop intrusion detection techniques by

extracting a feature representation approach to the malicious
network traffic data. They present a method for how to
extract more representative features for normal connections
and effective detection of attacks. In their paper, two distances
are measured. One is the distance between each sample and
its cluster center, and the other is that between the data and
its nearest neighbor in the same cluster.

Mitrokotsa et al. [14], [15] study the intrusion detection
problem in mobile ad-hoc networks (MANET) by evaluating
the performance of classification methods. They select varied
traffic conditions and mobility patterns, then examine the
classifier’s performances on a database. Catania et al. [16]
focus on how to deal with imbalanced data and present an
approach for autonomously labeling the routine traffic based
on an SVM. These labeling processes are described in SNORT
[1].

There are some limitations of SVMs, such as high depen-
dency on parameters, huge number of support vectors in the
calculating process, and a long training time. In many cases,
an SVM model does not behave flexibly as we need. Hence,
we cannot directly apply this method in different network
scales. Especially, traditional intrusion detection methods and
technologies are difficult to utilize in the current high-speed
network environment with tremendous amounts of data. For
intrusion classification in complicated network environments,
we put forward an adaptive cooperation method based on the
E-CARGO model and test it with the KDD CUP 1999 data
set.

Teng et al. [17] and Zhang et al. [18] introduce col-
laborative computing and granular computing into intrusion
detection, and present a cooperative multi-agent intrusion
detection model, where every agent plays a detector role and
these agents form a distributed intrusion detection model.
This model improves the performance of detecting intrusions.
However, designing and implementing an agent are very com-
plicated, and a distributed model needs to hold and manage
a lot of agents, agents’ actions, and their communications
[17]−[19]. Note that the problem for building an intrusion
detection model falls in the software engineering field. An E-
CARGO model is a tool in software engineering and includes
a set of software components. They are groups, roles, agents,
environments, objects, and classes [20]−[22]. Therefore, an
E-CARGO model is applied in the proposed method and its
components are used to describe the architecture, the modules,
and their relationship.

Role-based collaboration [20]−[22] uses roles as underlying
mechanisms to realize abstraction, collaboration, allocation
and assignment, and interaction. A role (r) in an E-CARGO
model can be defined as a requirement and assigned to some
intrusion detection agents. A current agent (a) is currently
playing a detection role and the potential ones possess the
detecting ability, but they are not currently playing that role.
A group (g) which often contains many agents performs a
function of an intrusion detection component. An environment
(e) can include many roles and it confines a number range [l,
u] for each role. The role with range [l, u] means that at least
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l detection agents are required to play it and can be played by
at most u detection agents. A group g is workable when each
role in g has enough (l) agents to play it currently.

III. INTRUSION DETECTION AND E-CARGO
A common intrusion detection framework (CIDF) was

proposed by the defense advanced research projects agency
(DARPA) [1], [2], [23]. The CIDF divides an intrusion detec-
tion system into four components: event generator, detector,
response unit, and database. These four components are used
in our model.

In this paper, components and their collaboration are spec-
ified by environments, classes, agents, roles, groups, and
objects in the E-CARGO model [17], [20]−[22]. In the E-
CARGO, requirements are regarded as roles. All the intrusion
detection components are taken as requirements such that
they are defined as roles. A role r realizes a function about
intrusion detection and is assigned to some agents that play
role r. Agents that play the same role form a group g. g then
composes detection results of the agents in the same group.

The three fundamental components in the E-CARGO are
agent, role, and group [17], [20]−[22]. These components are
defined as follows.

Definition 1 [20]−[22]: class: c:: = 〈n,D, F, X〉, where
1) n is the ID of c;
2) D is a data structure which describes the state of an

object;
3) F is a set of mapping functions or methods;
4) X is a unified interface of all the objects in the class,

which is a set of message patterns that tells how to send a
message to invoke a function.

Note that c represents a class. It can be an event generator
class, an event detector class, or a response unit class. C is
the set of all classes.

Definition 2 [20]−[22]: role: r:: = 〈n, I,Na, No〉, where
1) n is the ID of r;
2) I ::= 〈Min,Mout〉 denotes a set of messages with Min

being the input messages and Mout the output messages;
3) Na is an ID set of agents that are playing r;
4) No is an ID set of objects including classes, environ-

ments, roles, and groups which can be accessed by agents
playing r.

Symbol r refers to a role and R represents the set of all
the roles. There are three kinds of roles and they are event
generator role EvGenRole, event detector role EvDetRole,
and response unit role ResUnitRole. EvGenRole generates
suspicious events that come from users’ behaviors, EvDetRole
detects attacks, and ResUnitRole makes a response according
to the detected attacks.

An event generator role EvGenRole is defined as follows.
Definition 2’ [1]: RoleEvGenRole: r:: = 〈n, I,Na, No〉,

where
1) n is the ID of r;
2) I :: = 〈Min,Mout〉 denotes a set of messages with

Min being the collected network messages and Mout output
messages to role EvDetRole;

3) Na is an ID set of agents that are playing EvGenRole r
for generating suspicious events;

(4) No is an ID set of objects, including detecting envi-
ronment, detecting roles, and detecting groups which can be
accessed by agents playing EvGenRole r.

Others roles can be similarly defined as follows.
Definition 3 [20]−[22]: group: g::= 〈n, e, J〉, where
1) n is the ID of g;
2) e is an intrusion detection environment, all agents in g

work under the same e;
3) J is a set of tuples for identifying an agent and role, i.e.,

J ={〈na, nr, no〉|∃q, no(no ∈ No) ∧ (〈nr, q, No〉 ∈ e.B)}.

In this paper, G denotes the set of all groups, and g is a
specific group. There are two kinds of groups: big and small
ones. A big group is denoted by BigGroup, while a small
one is denoted by SmallGroup. There are three BigGroups
and they are EvGenGroup, EvDetGroup, and ResUnitGroup.
EvGenGroup is used to produce suspicious intrusion events,
EvDetGroup detects these suspicious events, and ResUnit-
Group responds to detection results.

A BigGroup contains some SmallGroups. In this pa-
per, EvGenGroup contains four SmallGroups and they are
sensor SmallGroup EvGenGroupsen, decoding SmallGroup
EvGenGroupdecod, filtering SmallGroup EvGenGroupfilt,
and generating suspicious intrusion event SmallGroup
EvGenGroupgen. EvDetGroup has four SmallGroups and
they are SmallGroup EvDetGrouptcp for detecting TCP at-
tacks, SmallGroup EvDetGroupudp for detecting UDP attacks,
SmallGroup EvDetGroupicmp for detecting ICMP attacks, and
SmallGroup EvDetGroupcont for detecting contents. ResUnit-
Group can have one or more groups according to network
traffic.

Definition 4 [20]−[22]: agent: a ::= 〈n, ca, s, Nr, Nbg,
Nsg〉, where

1) n is the ID of agent a;
2) ca is a class describing the properties of agent a;
3) s is a data structure that includes attributes or states;
4) Nr denotes a set of roles that the agent is playing;
5) Nbg denotes a set of IDs of BigGroups;
6) Nsg denotes a set of IDs of SmallGroups.
It should be noticed that the potential abilities of an agent in

a BigGroup are stronger than that of an agent in a SmallGroup.
There are two classes of agents. One belongs to a BigGroup

and the other belongs to a SmallGroup. The former can play
different roles in the same BigGroup and the latter can enact
only the role in the same SmallGroup.

Definition 5 [20]−[22]: environment: e ::= 〈n,B〉, where
(1) n is the ID of e;
(2) B is a set of tuples, i.e., B = {〈nr, q, No〉}, where nr

is the ID of a role, q is described by (l, u) and tells that how
many agents can play this role in e and how many agents
may play the same role r in g. Set No consists of the objects
accessed by the agents that play r. |No| denotes the number
of resources visited by agents.

Here, e denotes an intrusion detection environment. The
symbol q is a range, such as (3, 8), (10, 20), (7, 7), or (2,
60).
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IV. INTRUSION DETECTION COMPONENTS

According to the CIDF, an intrusion detection system (IDS)
is composed of an event generator, an event detector, a re-
sponse unit, and an event database. Except the event database,
the others are defined as three kinds of roles: EvGenRole,
EvDetRole, and ResUnitRole. Role EvGenRole corresponds
to the event generator, role EvDetRole corresponds to the
suspicious event detector, and role ResUnitRole states the
response unit.

A. Event Generator and Event Generation Role

The function of an event generator in CIDF is mainly com-
posed of a sensor, a decoder, a filter, and an event generator.
Because event generation role EvGenRole expresses functions
of the event generator, it includes sensing, decoding, filtering,
and generating suspicious events. Then, role EvGenRole is
divided into role EvGenRolesen, role EvGenRoledecod, role
EvGenRolefilt, and role EvGenRolegen. They are in charge
of gathering network packages, decoding, filtering, and gen-
erating suspicious events, respectively. Their construction is
shown in Fig. 1.

Fig. 1. Role, group about event generator.

In Fig. 1, every role is played by some agents. All of the
agents that play the same role form a group. EvGenGroup con-
tains four small groups: EvGenGroupsen, EvGenGroupdecod,
EvGenGroupfilt, and EvGenGroupgen. Because agent a in
EvGenGroupsen collects data from the Internet, its data
structure includes all fields of the network packet. In this
paper, a small group includes a role and its agents, e.g.,
EvGenGroupsen has many sensors.

B. Event Detector and Event Detection Role

The event detector in CIDF is designed to detect suspicious
events generated by event generators. The function of the
event detector is defined as role EvDetRole such that Role
EvDetRole is responsible for detecting suspicious events.

Three kinds of suspicious event detector roles are generated
according to the network protocols TCP, UDP, and ICMP.
These three roles are role EvDetRoletcp, role EvDetRoleudp,
and role EvDetRoleicmp. They are responsible for detect-
ing TCP suspicious events, UDP suspicious attacks, and
ICMP suspicious attacks, respectively. In addition, role
EvDetRolecont detects the content of the network packet
extracted. The content feature denotes data content in a net-
work packet, including a user’s messages, the protocol of the

application layer, the root user or administrator information,
and the important data. The structure of event detectors is
shown in Fig. 2.

In Fig. 2, EvDetGroup includes four SmallGroups:
EvDetGrouptcp, EvDetGroupudp, EvDetGroupicmp, and
EvDetGroupcont. The detection role is played by some
detection agents and a SmallGroup is composed of agents
that play the same detector role. For example, EvDetGrouptcp

has many agents that detect TCP attacks.
The creation of event detectors is presented in Section V.

Fig. 2. Role, group about event detector.

C. Response Unit and Its Role

The response unit is a component in the CIDF and makes
corresponding responses according to the detection results.
Role ResUnitRole is defined as the requirement of the response
unit. Many agents are assigned to play the role ResUnitRole.

D. Role and Group

The roles defined in this paper are listed in Fig. 3 and groups
are given in Fig. 4.

E. The Collaboration Detection Architecture

A new collaboration intrusion detection framework is pro-
posed in this section and a multi-agent cooperative detection
model is designed and implemented. This model includes
four components: event generators, event detectors, a response
unit, and a database. An event generator contains a sensor, a
decoder, a filter, and a generator. An event detector includes a
TCP detector, a UDP detector, an ICMP detector, and a content
detector. The adaptive collaboration detection model is shown
in Fig. 5. It is abbreviated as CAIDM.

According to the E-CARGO model, these components are
all taken as requirements and are defined as roles. There are
three kinds of roles: event generator role EvGenRole, event
detector role EvDetRole, and response unit role ResUnit-
Role. In Fig. 5, there are five kinds of detector roles: role
EvDetRoletcp, role EvDetRoleudp, role EvDetRoleicmp, role
EvDetRolecont, and role EvDetRolefc. These roles are used to
detect TCP attacks, UDP attacks, ICMP attacks, the content
of network packages, and fusion detection, respectively. The
resultant detection messages are sent to the response unit and
the database.
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Each role r is played by some agents and the agents that
perform the same task (a role) form a small group. In order to
cope with different network traffics and environments, three
kinds of detecting scales are introduced in the system, i.e.,
small, middle, and large modes. These modes are used for
diverse detection instances for various network traffics and an
adaptive detection mechanism is required and implemented.

F. Role and Agent

There are three kinds of roles and they are EvGenRole,
EvDetRole, and ResUnitRole.

Role EvGenRole is divided into role EvGenRolesen, role
EvGenRoledecod, role EvGenRolefilt, and EvGenRolegen;
Role EvDetRole falls into role EvDetRoletcp, role
EvDetRoleudp, role EvDetRoleicmp, role EvDetRolecont,
and role EvDetRolefc.

Fig. 3. Roles and their relations.

Fig. 4. Groups and their relations.

Fig. 5. The collaborative and adaptive intrusion detection model (CAIDM).

A role r can be assigned to some agents. Agents that
play the same role r form a small group. For example,
an EvGenRolesenrsen is defined as for collecting data from
network packet and all agents that play EvGenRolesen rsen

must extract data from network packet. These agents form
SmallGroup EvGenGroupsen gsen.

In the next section, the procedure of creating TCP detector
is discussed.

V. BUILDING INTRUSION DETECTOR

Because TCP attacks are more frequent than others, building
TCP detector is discussed in this paper.

There are five classes of suspicious event detector roles
which are used to detect TCP attacks, UDP attacks, ICMP
attacks, and contents of packages, and synthesize detections in
the fusion center, respectively. These suspicious event detector
roles are described below. Agents are created with each of
them being composed of SVMs and DT.

A. SVM and Multi-Class SVMs

There are two major categories [2] of SVMs for solving
multi-class problems: 1) establishing a group of 2-class clas-
sifiers and 2) establishing a multi-class classifier. The former
has many types, including 1-v-r (one-versus-rest), 1-v-1 (one-
versus-one), directed acyclic graph (DAG) SVM (large interval



TENG et al.: SVM-DT-BASED ADAPTIVE AND COLLABORATIVE INTRUSION DETECTION 113

Fig. 6. The collaborative intrusion detector based on SVMs and DT for TCP.

multi-class SVM classifier based on directed acyclic graph),
the binary SVM, etc.

In this paper, a multi-class classifier of the 1-v-r type is
used to perform the intrusion detection as a detector. It needs
to establish many 2-class classifiers. After network packets are
decomposed into four parts corresponding to the TCP, UDP,
ICMP protocols, and content, a group of 2-class classifiers
based on SVMs and DTs are built to detect intrusions. Four
2-class classifiers are created to implement such a detector for
TCP protocol.

B. Data and Suspicious Event Detector

A network data stream can be decomposed into three sets:
the TCP data, the UDP data, and the ICMP data. Four kinds
of detector roles are designed and implemented, and they are
used to detect TCP, UDP, ICMP, and content-based attacks,
respectively. According to the DT method, building these
intrusion detectors includes two steps: modeling and testing.
The preprocessed historical data (network data or experimental
data) is decomposed into training data and testing data. The
former (training data) is applied to produce the detection
agents based on SVMs and DTs, and the latter (testing data)
is used to assess these detection agents.

KDD CUP 1999 [3], [17], [18] decomposes attacks into
four types, including probing, denial of service (DoS), remote-
to-local (R2L), and the user-to-root (U2R). A probing attack
acquires objective services provided by the object, including
possible bugs, related system information, and so on [17], [18].
DoS attacks damage the target system and stop normal services
by interrupting normal service delivery, causing a system
collapse or shutdown [17], [18]. R2L and U2R are attacks
that illegally promote users’ privileges [17], [18]. The former
obtains the permission to enter the target system by stealing
user information. The latter upgrades one’s permission by
changing common users’ privileges in the system or changing
root authority. Thus, tasks for ensuring the security of a system
are very complicated, especially when attacks are combined to
form collaborative attacks. Each record in KDD CUP 1999 has
41 attributes, of which 34 attributes are continuous and seven
are discrete. Before the experiments, the discrete attributes are

converted into numerical ones by counting the frequency of
their values. All data is turned into the standard and available
format.

To build TCP detectors, a collaborative and adaptive intru-
sion detection model is designed based on SVMs and DTs and
implemented in this text. A TCP detector has three layers and
the detector at each layer can be defined as a role. Every role
asks agents to perform it. Then, many 2-class SVM explorers
are set up, and each 2-class SVM is a 1-to-rest classifier. The
number of classifiers is related to the network traffics and
the detection task load. Agents that detect TCP attacks are
adaptive and are activated by the agent playing the manager
role.

In order to make detection faster and more efficient, normal
data is first separated from suspicious data. By doing so, one
can reduce the amount of data to be further dealt with. In
addition, we try to decrease the output of a 2-class SVM
detector. Then, an optimized, cooperative, and adaptive intru-
sion detection model based on SVMs and DT is designed and
implemented for a TCP detector as shown in Fig. 6. At each
layer, a detecting role is required and we build a 2-class SVM
or more to play the role. When the network traffic is heavy,
many agents are required to perform the same event detector
role at the same layer. These agents form a small group. In
Fig. 6, SVM1 decomposes the whole data set into normal and
suspicious attack data, and performs the role at layer 1. At
layer 2, SVM2 separates the suspicious intrusion data into two
parts. One of them includes DoS, DDoS, and probing attacks,
and the other contains R2L and U2R attacks. Here, SVM2

plays the role at layer 2. There are SVM3 and SVM4 at layer
3. SVM3 is assigned to detect probing and DoS/DDoS attacks,
while SVM4 is used to detect U2R and R2L attacks. Similarly,
SVM3 and SVM4 play two roles at layer 3, respectively. An
optimized DT-based detector is shown in Fig. 6.

C. Building SVM and DT-Based Detection Agent

Building a detection agent based on SVM needs to train and
test it iteratively. After preprocessing, data is decomposed into
four data sets corresponding to the network protocols TCP,
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UDP, ICMP, and content. Each data set is also divided into
training and testing data.

Building a TCP detector is as follows. A group of SVM
detectors is set up by using the training samples with the
class label, i.e., four 2-class classifiers which are used to detect
the normal data, the DoS/DDoS attacks, the probing attacks,
and R2L or U2R attacks. In this paper, these detectors are all
defined as roles in the E-CARGO model, and these roles re-
quire agents to play. When SVMs are used to implement these
agents, some support vectors and the homologous parameters
in the model should be brought out and be produced.

When testing, the testing data is delivered to four 2-class
SVM classifiers according to TCP, UDP, ICMP protocols, and
content, respectively. By comparing the classification results
with testing data with the known class label, we can evaluate
the detection accuracy of these SVM detectors. The SVM
that meets the detection accuracy requirements is the expected
detection agent. Hence, we build four 2-class SVMs: SVM1,
SVM2, SVM3, and SVM4 as shown in Fig. 6.

VI. ADAPTIVE MECHANISMS

Due to different network environments, huge varieties of
intrusions, high-speed traffics, and the big data generated
from the network and so on, to be effective, an intrusion
detection system should be flexible. The intrusion detection
system needs to gather data from different networks and hosts.
Moreover, it is required that the system should detect attacks
on time and respond in a very short time. Because a single
intrusion detector is difficult to provide enough security pro-
tection for a complicated network, a multi-agent collaborative
and adaptive intrusion detection method is used to overcome
the disadvantage of a single detector system.

In addition, to make such a system efficient within an ac-
ceptable cost, intrusion detection needs to be adaptive accord-
ing to different network conditions. An adaptive mechanism
of a collaborative intrusion detection model is proposed in this
paper. All the components of CAIDM are defined as roles of
the E-CARGO model and each role is assigned to some agents.
The agents playing the same role form a group.

A. Local and Global Agent
Definition 6: Local agent: suppose p is an agent and belongs

to a small group, then p is a local one and can play the role
corresponding to this small group only.

Definition 7: Global agent: suppose p is an agent and
belongs to a big group, then p is a global one and can play
any role corresponding to the big group.

Here, two theorems are given below.
Theorem 1: Let p be an agent, SG is a small group and BG

is a big group. Then, we have
1) ∀p ∈ EvGenGroup ⇒ p ∈ EvGenGroupsen ∧

p ∈ EvGenGroupdecod ∧ p ∈ EvGenGroupfilt ∧ p ∈
EvGenGroupgen.

That is:
p can play any role in EvGenRole.
2) ∀p ∈ EvDetGroup ⇒ p ∈ EvDetGrouptcp ∧

p ∈ EvDetGroupudp ∧ p ∈ EvDetGroupicmp ∧ p ∈
EvDetGroupcont.

That is:
p can perform any role in EvDetRole.
Theorem 2: Let q be an agent and suppose BG be a big

group, SG1 and SG2 be two small groups. Then, if SG1 6=
SG2, we have

∀q ∈ SG1 ⇒ q /∈ SG2.

For example, ∀a2 ∈ EvGenGroupsen, we have a2 /∈
EvGenGroupdecod ∧ a2 /∈ EvGenGroupfilt ∧ a2 /∈
EvGenGroupgen. The others are similar.

B. Network Traffic and Levels
For convenience, we set three different levels to detect

attacks under the current network condition in this paper.
In fact, because E-CARGO model is referred to our model,
any scheduling can be applied by agent evaluation and role
assignment.

There are three levels and they are called idle, normal, and
busy level.

If the network condition is normal, we use a group of agents
to detect attacks. If the network condition is busy, more agents
than that in normal condition are generated to detect attacks.
While the network condition is idle, fewer agents are required.

Tl and Th are set as thresholds to define the levels. We have
the definition below.

Definition 8: Network traffic: suppose Tl, Th and X be real
numbers, X denotes the network traffic, and 0≤ Tl <Th, then,

1) Normal: The network traffic is normal, if Tl ≤ X <Th;
2) Idle: If X <Tl, then the network traffic is idle;
3) Busy: If X ≥ Th, then the network traffic is busy.
There are three scheduling cases in this paper and they are

described by the following theorem.
Theorem 3. Suppose Tl, Th and X be real number, X

denotes the network traffic, and 0≤ Tl <Th. We have
Case 1: When X is less than Tl, a few of roles are required,

and a small scale scheduling is executed.
Case 2: When X is between Tl and Th, a medium number of

roles is required, and a middle scale scheduling is performed.
Case 3: When X is greater than Th, plenty of roles are

required, and a big scale scheduling is activated and carried
out.

Therefore, network conditions and suspicious behaviors
determine the number of agents being active at a layer, which
makes it possible for the E-CARGO model to activate or shut
down an agent independently, leading to a self-adaptive agent
action.

C. Scheduling Policy
Because there are big and small groups, some agents belong

to big groups, while some others belong to small ones. An
adaptive scheduling plan is proposed as follows.

Let SG1 denote a small group, BGl a big group, SGl-idle a
set of agents that are idle, SRl a role in SGl, and al an agent.
Then, we have the scheduling policies as follows.

Policy 1: If SG1 is busy, then
if ∃al ∈SGl-idle and al can play SRl, then a1 is assigned

to SRl and al ∈ SGl;
else if SGl-idle=φ, and ∃ al ∈BGl and al can play SRl, then

al is assigned to SRl and al ∈ SGl;
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else no assignment happens.
Policy 2: If SG1 is not busy, then
if ∃al ∈SGl|BGl, al is idle, then al is recovered, and al ∈

SGl-idle or al ∈BGl.
Policy 3: If q denotes aggregation requirements, Tl and Th

are two thresholds such that 0≤Tl <Th. We have:
1) if q <Tl, then the small scale scheduling is performed;
2) if Tl ≤ q <Th, then the middle scale scheduling is

executed; and
3) if q ≥Th, then the big scale scheduling is carried out.

D. EvGenRole and EvGenGroup

EvGenRole acts as an event generator role that requires
agents to perform. EvGenRole contains a sensor role, a decod-
ing role, a filtering role, and a generating event role. EvGen-
Group denotes an active generator group and is a big group. It
includes four members: EvGenGroupsen, EvGenGroupdecod,
EvGenGroupfilt, and EvGenGroupgen. EvGenGroupsen re-
quires agents playing the sensor role, EvGenGroupdecod

the decoding role, EvGenGroupfilt the filtering role, and
EvGenGroupgen the generating event role.

Some agents are global and belong to a big group EvGen-
Group, while the others are local and belong to a small group.
One agent in a small group must be in one of the four small
groups: EvGenGroupsen, EvGenGroupdecod, EvGenGroupfilt,
and EvGenGroupgen.

E. EvDetRole and EvDetGroup

EvDetRole is a suspicious event detector role, and
EvDetRole includes four kinds of roles. Agents playing
EvDetRole form a big group EvDetGroup. There are five
detector small groups in big group EvDetGroup. These groups
are EvDetGrouptcp, EvDetGroupudp, EvDetGroupicmp,
EvDetGroupcont, and EvDetGroupfc. EvDetGrouptcp holds
agents that are in charge of detecting TCP attacks,
EvDetGroupudp owns agents that detect UDP attacks,
EvDetGroupicmp accommodates agents that find out ICMP
attacks, EvDetGroupcont contains agents that detect content
attacks, and EvDetGroupfc includes fusion agents that fuse
the result of detectors.

F. Agent and Group

Agents for the same role form a small group. The suspicious
behavior detector role is assigned to agents. Especially, Fig. 6
indicates that the data processed by group SVM1 is far more
than that by group SVM2, the data processed by group SVM2

is more than that by group SVM3 or group SVM4, and the
data processed by group SVM4 is the least. Therefore, we
decompose the layers into three levels as listed in Fig. 6. From
the top to bottom, each layer represents the data dealt with by
groups SVM1, SVM2, SVM3, and SVM4, respectively. At the
top, group SVM1 possesses the most number of agents for
the largest gathered data. The next layer is group SVM2, then
group SVM3 and group SVM4 is at the bottom.

The actions of agents are all adaptive. The group evaluation
and role assignment are carried out by the scheduling process.

The scheduling process executes the scheduling plan made in
advance according to Definition 8 and the three policies.

Moreover, some agents are created to perform the response
unit role. These agents implement the functions of the response
unit role and fulfill the response tasks.

G. Role, Group, and Communication

Communications among components in CIDF are imple-
mented based on groups. Communications are divided into
three types that happen between two SGs, between an SG
and a BG, and between two BGs. Communication between
two SGs is from one small group to another small group,
such as from SG EvGenGroupsen to SG EvGenGroupdecod,
from SG EvGenGroupdecod to SG EvGenGroupfilt, and from
SG EvGenGroupfilt to SG EvGenGroupgen. The second type
is from a small group to a big group or from a big group
to a small group, such as from SG EvGenGroupgen to BG
EvDetGroup, or from BG EvDetGroup to SG EvDetGrouptcp.
The last one is from a big group to another big group, such
as from EvDetGroup to ResUnitGroup.

The data format of communication is user datagram in
TCP/IP. The specification, rule, and mode of the commu-
nication are defined in the specification of roles, and the
input and output specification of roles express the requirement
of the communication. The input specification describes the
criterion that a receiver receives and the output depicts the
specification that a sender sends. All of the communications
happen between two groups.

This kind of communication efficiently decreases transfer-
ring data among components. Hence, the traffic in IDS is
reduced.

VII. EXPERIMENT AND RESULT ANALYSIS

The operating system of the experimental computer is
Windows 7 with 64 bytes. The CPU is Intel(R) Core(TM)
i3-2130 CPU @ 3.40 GHz, and its RAM is 4.00 GB. The
experiment software is MATLAB 2012a.

A. Data Source and Feature Extraction

The experimental data is extracted from KDD CUP 1999
[3], [17], [18]. There are over 212960 records for testing,
while there are over 467420 records for training. There are
24 types of attacks in the training set and 14 new attacks
are added into the testing set to reinforce the effort. These
total 38 attacks are divided into four categories according
to their attack type: Probing, DoS, R2L, and U2R. A whole
TCP session is regarded as a connection record. Each record
contains four types of attribution collections: basic features,
host-based traffic features, time-based traffic features, and
content features.

In the training stage, the training data in the KDD CUP 1999
is divided into 46742 groups, each group possesses 10 records.
A record is extracted from a group and is used as a training
sample. The testing data is similar and 21296 groups are
generated. 21296 records are extracted from the testing data.
Especially, a multi-feature classification method is adopted to
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build TCP, UDP, ICMP, and content-based detection agents in
this paper, since a single attribute is difficult to discriminate
complicated attacks. We have the following:

1) 32 selected attributes are used to generate a TCP attack
detection agent;

2) 21 extracted attributes are used to produce a UDP attack
detection agent;

3) 18 chosen attributes are used to detect ICMP attacks.

B. The Results and Analysis

The candidates of the training and testing data are exhibited
in Table I. Experimental results list in Table II.

TABLE I
DISTRIBUTION OF THE RECORDS

Protocol TCP protocol UDP protocol ICMP protocol

Data set Test Train Test Train Test Train

Total 4700 14 313 11 295 9047 5012 23 382

Normal 2561 5110 10 987 8182 84 50

DoS 1995 8939 255 723 4833 23 300

R2L 1 100 0 0 0 0

U2R 16 5 0 0 0 0

Probing 127 159 53 142 95 32

TABLE II
EXPERIMENTAL RESULTS

Protocol TCP protocol UDP protocol ICMP protocol

Training time 5.641s 0.771s 1.1130s

Result
Correct

records

Accuracy

(%)

Correct

records

Accuracy

(%)

Correct

records

Accuracy

(%)

normal 2544 99.30 8809 80.18 83 98.81

DoS 1994 99.95 196 76.86 4823 99.79

R2L 1 100.00 0 0 0 0

U2R 12 75.00 0 0 0 0

Probing 120 94.49 35 66.04 84 88.42

From Tables I and II, we have the following conclusions:
1) The training time of UDP detector is the shortest, that

of ICMP goes after, and that of TCP is the longest.
2) The number of detecting UDP attacks is the lowest, that

of TCP goes after, and that of ICMP is the highest.
3) The detecting accuracy is directly related to the number

of attack samples in the training data set.
4) 23 382 ICMP training samples contain 23 332 attack

samples. The proportion of ICMP attack samples is 99.7862 %.
5) 14 313 TCP training samples contain 9203 attack sam-

ples. The proportion of TCP attack samples is 64.2982 %.
6) 9047 UDP training samples only have 865 attack sam-

ples. The proportion of UDP attack samples is 9.5612 %.
7) The detecting accuracy of new, unknown, and abnormal

attacks is low. When the attack samples of the testing data set
are greater than that of the training data set, the detecting rate
is lower.

Here, we compare the detection accuracy of the collabo-
rative and adaptive intrusion detection model (CAIDM) with
that of a set of a single SVM detector (they are composed

of a set of SVM detectors, every SVM detector solely detects
suspicious data in different levels.) Their detection results are
listed in Table III.

TABLE III
COMPARISON BETWEEN CAIDM AND SINGLE SVM DETECTOR

Algorithm Count Average-accuracy (%) Error (%) Training (s)

SingleType-SVM 17 166 81.716 19.39 29.730

CAIDM 18 701 89.02 12.19 7.247

The total records correctly detected by CAIDM are:
2544+1994+1+12+120+8809+196+35+83+4823+84=18 701.

The total test records are: 4700+11 295+5012 = 21 007 and
the total detection accuracy is: 18 701/21 007=89.02 %.

The total records correctly detected by a set of a single
SVM detector are 17 166; and the detection accuracy rate is:
17 166/21 007=81.716 %.

In addition, the training time of a set of a single SVM
detector is about 29.730 s, while the training time of the
CAIDM only requires 7.247 s. The above results reveal that
the CAIDM based on 2-class SVMs and DTs is better than
a set of a single SVM detector in terms of both the training
time and the detection accuracy.

C. Live Detection

In a real network environment, detection data comes from
current network packets. TCP/IP network packets can be
decomposed into four parts: TCP, UDP, ICMP and application
layer protocol. TCP means connection-oriented services, UDP
means connectionless datagram services, and ICMP is the
internet control message protocol. Three intrusion detectors
are built according to TCP, UDP, and ICMP protocols. Fur-
thermore, the content-based detector is built to cope with ap-
plication layer protocols. A group of agents that play detector
roles are created, and these data are detected by three intrusion
detectors.

VIII. CONCLUSION

In this paper, a collaborative and adaptive intrusion detection
method based on 2-class SVMs and DTs is proposed. A
detection model called CAIDM is created and implemented.
The E-CARGO model is used as a tool for describing the
intrusion detection and modeling. In this paper, roles, groups,
and agents are all studied and applied, for instance, the
response unit role, the suspicious event detection role, the
generating suspicious event role, etc. A role is assigned to
some agents. A group (SmallGroup) contains many agents that
perform the same role. TCP/IP protocols can be decomposed
into four categories: TCP, UDP, ICMP, and application layer
protocols. These protocols include different attributes. A vari-
ety of intrusion detectors are designed and implemented. There
are four types of SVM identification functions designed and
implemented, and related agents are created. These agents built
by using different properties are applied to find out attacks for
TCP, UDP, ICMP, and application layer protocols, respectively.
The TCP detection agent is used as one example to explain
the agent creation process. At last, the proposed method’s
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effectiveness is confirmed by experiments with the KDD CUP
1999 data set. Experimental results reveal that the optimized
collaborative and adaptive intrusion detection model (CAIDM)
based on 2-class SVMs and DTs is more accurate and efficient
than the detector system with a set of single type SVMs.
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