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Suboptimal Robust Stabilization of Discrete-time
Mismatched Nonlinear System
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Abstract—This paper proposes a discrete-time robust control
technique for an uncertain nonlinear system. The uncertainty
mainly affects the system dynamics due to mismatched parameter
variation which is bounded by a predefined known function. In
order to compensate the effect of uncertainty, a robust control
input is derived by formulating an equivalent optimal control
problem for a virtual nominal system with a modified cost-
functional. To derive the stabilizing control law for a mismatched
system, this paper introduces another control input named as
virtual input. This virtual input is not applied directly to stabilize
the uncertain system, rather it is used to define a sufficient condi-
tion. To solve the nonlinear optimal control problem, a discrete-
time general Hamilton-Jacobi-Bellman (DT-GHJB) equation is
considered and it is approximated numerically through a neural
network (NN) implementation. The approximated solution of DT-
GHJB is used to compute the suboptimal control input for the
virtual system. The suboptimal inputs for the virtual system
ensure the asymptotic stability of the closed-loop uncertain
system. A numerical example is illustrated with simulation results
to prove the efficacy of the proposed control algorithm.

Index Terms—Discrete-time general Hamilton-Jacobi-Bellman
(DT-HJB) equation, discrete-time optimal control, discrete-time
robust control, mismatched uncertainty, nonlinear optimal con-
trol.

I. INTRODUCTION

REQUIREMENT of exact system model to design a
feedback control law is the primary shortcoming of the

classical feedback control technique. An uncertain system
model is a more realistic representation and has far greater
significance over the exact system model. However, there are
open problems of designing a control law to deal with system
uncertainties. To deal with parametric uncertainty, F. Lin and
D. Wang et al. have proposed a continuous-time robust control
technique for both linear and nonlinear system [1]−[5]. In
both the cases, they have formulated an equivalent optimal
control problem to derive the proposed robust control input.
The optimal control problem is solved based on the nominal
dynamics by minimizing a quadratic cost-functional with the
knowledge of uncertainty bound. Similar concepts are used for
nonlinear continuous system in [6], [7], where a non-quadratic
cost-functional is considered. The discrete-time version of
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the proposed robust-optimal control approach is still an open
problem. Recently, Wang et al. [8] have extended the Lin’s
approach [1]−[3] for a discrete-time nonlinear system. To
realize the robust control law, the assumption in their work
is that the physical system is affected by matched uncer-
tainty (i.e., uncertainty is in the range space of input matrix
[9]−[11]). But there are several physical systems like maglev
suspension system [12], [13], aircraft engine system [14],
the movement control of truck-trailer problem [15], where
the so-called matching condition does not hold. Therefore
considering mismatched uncertainty in both state and input
functions is a more realistic control problem. In general, it
is known that the existence of stabilizing control law can be
guaranteed for matched uncertainty but not so for mismatched
system.

In this paper, a discrete-time robust control technique for un-
certain nonlinear system is proposed. The system is primarily
affected by mismatched uncertainty due to bounded parametric
variation. To stabilize such systems, a robust control law is
derived by solving a nonlinear optimal control problem for
nominal virtual system with a cost-functional. To solve the
nonlinear optimal control problem, the solution of a discrete-
time general Hamilton-Jacobi-Bellman (DT-GHJB) equation is
approximated using a neural network implementation. Based
on the approximated solution of DT-GHJB, the cost-functional
and control inputs are estimated. The block diagram represen-
tation of proposed control approach is shown in Fig. 1.

Fig. 1. The block diagram of proposed discrete-time robust control technique
is shown in this figure. Here notations xk , ûk and v̂k represent the system’s
state and two estimated control inputs, respectively. Using NN based approx-
imation technique, the estimated cost-functional V̂ converges to its optimal
cost V̂ ∗. Using V̂ ∗, the optimal inputs û∗ and v̂∗ are computed. Input û∗, is
applied to the nonlinear uncertain system to solve the robust control problem.

Mathematical analysis is done to prove the stability of the
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uncertain system by applying the approximated suboptimal
control inputs. Finally, numerical results are reported to prove
the efficacy of the proposed control algorithm. The key con-
tributions of this work are:

1) A robust control algorithm is proposed for a discrete
time nonlinear system with mismatched uncertainty. A robust
control law is derived by formulating an equivalent optimal
control problem for a nominal virtual system with a quadratic
cost-functional. The virtual dynamics have two control inputs
u and v. The concept of virtual input v is used to derive the
existence of stabilizing control input u. The virtual input v
helps to tackle the mismatched uncertainty. The proposed ro-
bust control law ensures asymptotic convergence of uncertain
closed-loop system.

2) An optimal solution of a DT-GHJB equation is approx-
imated through a NN implementation, to solve the nonlinear
optimal control problem. The approximated inputs ensure the
asymptotic convergence of uncertain states both analytically
and numerically. The convergence of both the NN weight and
cost-functional are also shown through the simulation results.

3) This paper also shows that some of the existing results [8]
of matched system are special cases of the proposed results.

Notation & Definitions: The symbol ‖x‖ denotes the Eu-
clidean norm of a vector x ∈ Rn. The Rn represents the
n dimensional Euclidean real space and Rn×m is a set of
all (n × m) real matrices. The notations X ≤ 0, X−1 and
XT denote the negative definiteness, inverse and transpose
of matrix X , respectively. The I is used to represent an
identity matrix. The minimum and maximum eigenvalue of
symmetric matrix P ∈ Rn×n are represented by the notations
λmax(P ) and λmin(P ), respectively. The number of iteration
for discrete-time system is represented by k. The kth instant
state and control input for a discrete-time system are denoted
by xk and uk. A set Ω is used to denote a continuous Lipschitz
compact set where state xk (including the initial points) satisfy
the condition xk ∈ Ω [16]. To prove the theoretical results,
following definition is used in this paper.

Definition 1 [17], [18]: Consider a nonlinear discrete-time
system as

xk+1 = f(xk) + g(xk)uk(xk) (1)

where xk ∈ Rn and uk ∈ Rm are system state and input vector
respectively. The functions f(xk) and g(xk) are continuous
nonlinear functions and f(xk) + g(xk)uk(xk) is Lipschitz
continuous on a set Ω including the origin. The control input
uk(xk) ensures the asymptotic convergence of closed loop
system (1), ∀xk ∈ Ω. Let Ωu is a set of admissible control
inputs and input uk minimizes the cost-functional

Jk =
1
2

∞∑

k=0

{
xT

k Qxk + uT
k Ruk

}
. (2)

Then, the control input uk is considered as an admissible (
i.e., uk ∈ Ωu) with-respect to its state penalty function xT

k Qxk

and control energy penalty function uT
k Ruk, ∀xk ∈ Ω, if the

following conditions hold:
1) ∀xk ∈ Ω, input uk(xk) is continuous;
2) uk(0) = 0;

3) uk must stabilizes (1) for ∀xk ∈ Ω;
4)

∑∞
k=0(x

T
k Qxk + uT

k Ruk) ≤ ∞, ∀x0 ∈ Ω.

II. ROBUST CONTROL DESIGN

System Description: A discrete-time uncertain nonlinear
system is described by the state equation in the form

xk+1 = f(xk) + g(xk)uk + d(xk) (3)

where xk ∈ Rn is the state and uk ∈ Rm is the periodic
control input and f ∈ Rn, g ∈ Rn×m are the nonlinear
functions. It is assumed that (3) is Lipschitz continuous on a
compact set Ω ∈ Rn and origin is the equilibrium point, i.e.,
f(0) = 0 and g(0) = 0. The unknown function d(xk) ∈ Rn

is used to represent the system uncertainty and it is always
upper bounded by a known function dmax(xk), that is

‖ d(xk) ‖≤ dmax(xk) ∀k. (4)

Generally system uncertainties are classified as matched and
mismatched uncertainty and they are defined as follows [3],
[8]−[10].

Definition 2: System (3) suffers through the matched uncer-
tainty if the uncertainty d(xk) satisfy the following

d(xk) = g(xk)φ(xk) (5)
‖φ(xk) ≤ Umatched ∀k (6)

where φ(xk) is the unknown function and Umatched is the
upper bound of ‖φ(xk)‖. In other words, d(xk) is in the range
space of g(xk).

Definition 3: System (3) has mismatched uncertainty if the
uncertain component d(xk) is not in the range space of input
matrix g(xk).

For the simplification, uncertainty can be decomposed in
matched and mismatched component as follows

d(xk) = g(xk)g(xk)+Sφ(xk)
+(I − g(xk)g(xk)+)Sφ(xk) ∀k (7)

where g(xk)g(xk)+Sφ(xk) and (I−g(xk)g(xk)+)Sφ(xk) are
the matched and mismatched components respectively. The
matrix g(xk)+ = (gT (xk)g(xk))−1g(xk)T denotes the left
pseudo inverse of matrix g(xk) [19] and S is a scaling matrix
where S 6= g(xk). For a matrix S = g(xk), the uncertainty (7)
reduces to a matched one as defined in (5). The decomposition
of uncertainty into a matched and mismatched components
will be used to define a nominal virtual system for (3) which
is discussed in the subsequent subsection.

Problem Statement: Design a state feedback control law
uk = K(xk), to stabilize the discrete-time uncertain nonlinear
system (3), such that the closed-loop system is asymptotically
stable in the presence of uncertainty (7).

Proposed Solution: This problem is solved in two steps.
First, the controller is designed by adopting nonlinear optimal
control theory and then an algorithm is used to approximate
the solution of DT-GHJB equation. The approximate solution
of DT-GHJB equation is used to compute the stabilizing and
virtual control inputs uk and vk, respectively.
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Robust Control Problem: Design a state feedback control
law uk = K(xk) such that the uncertain closed-loop system
(3) is asymptotically stable ∀ ‖ d(xk) ‖≤ dmax(xk). In order
to stabilize (3), the robust control law uk is designed using an
optimal control approach.

Optimal Control Approach: The key idea is to design a
discrete-time nonlinear optimal control law for virtual nominal
system by minimizing a cost-functional J , which depends
on the upper-bound of system uncertainty. An extra term
(I−g(xk)g(xk)+)Sv(k) is added with the nominal dynamics
of (3) to define a virtual system (8). The derived optimal
input for virtual system is shown to be a robust input for
original uncertain system. The virtual nominal dynamics and
cost-functional for solving robust control problem are given
below:

xk+1 = f(xk) + g(xk)uk + M(xk)vk (8)

Jk =
1
2

∞∑

k=0

{
d2
max(xk) + v2

max(xk) + xT
k Qxk

+
[
uT

k vT
k

] [
R1 0
0 R2

] [
uk

vk

]}
(9)

where matrices M = (I − g(xk)g(xk)+)S, Q ≥ 0, R1 > 0
and R2 > 0. Here vmax is a scalar.

Inspired by the results reported in [20] and [21], the
discrete-time HJB (DT-HJB) equation for (8) with the optimal
cost-functional J∗k of (9) is

J∗k = min
u(xk),v(xk)

1
2

{
d2

max(xk) + v2
max(xk) + xT

k Qxk

+
[
uT

k vT
k

] [
R1 0
0 R2

] [
uk

vk

]}
+ J∗k+1. (10)

Using (10), the optimal control input for (8) is

[
u∗k
v∗k

]
=


 R−1

1 g(xk)T ∂J∗k+1
∂xk

R−1
2 M(xk)T ∂J∗k+1

∂xk


 . (11)

Let V (xk) be a positive definite continuously differentiable
function, which satisfies V (x0) = J(x0, u). Applying Taylor
series expansion of the cost-functional, the DT-HJB (10)
reduces to discrete-time general HJB as in [21]

d2
max(xk) + v2

max(xk) + xT
k Qxk + uT

k R1uk + vT
k R2vk

+∇V T [xk+1 − xk] +
1
2
[xk+1 − xk]T∇2V [xk+1 − xk] = 0

(12)

where ∇2V =




∂2V (xk)
∂x2

1

∂2V (xk)
∂x1∂x2

. . . ∂2V (xk)
∂x1∂xn

∂2V (xk)
∂x2∂x1

∂2V (xk)
∂x2

2
. . . ∂2V (xk)

∂x2∂xn

...
...

. . .
...

∂2V (xk)
∂xn∂x1

∂2V (xk)
∂xn∂x2

. . . ∂2V (xk)
∂x2

n




and ∇V = ∂V (xk)
∂xk

. The notation xii∈1...n
represents the ith

element of state vector xk. The hermitian matrix ∇2V is
positive-definite ∀ xk ∈ Ω. In the Taylor series expansion,
the third and higher order terms are dropped to make it
computationally feasible. This is made possible by adopting
the small gain perturbation assumption around the equilibrium

point. Using equations (9) and (12), it can be proved very
easily that V (xk) = J(xk, u) [17]. Now according to optimal
control theory [22], the optimal inputs u∗k and v∗k satisfy the
DT-GHJB and also minimize the following Hamiltonian:

H(xk, uk, vk,∇V ) = d2
max(xk) + v2

max(xk) + xT
k Qxk

+ uT
k R1uk + vT

k R2vk +∇V T
k (xk+1 − xk)

+
1
2
(xk+1 − xk)T∇2Vk(xk+1 − xk). (13)

That means ∂H
∂u∗ = 0 and ∂H

∂v∗ = 0 which correspond to

gT∇2V ∗(f + gu∗ + Mv∗ − x) + (2R1u
∗ + gT∇V ∗) = 0

(14)

MT∇2V ∗(f + gu∗ + Mv∗ − x) + (2R2v
∗ + MT∇V ∗) = 0.

(15)

The scalar V ∗(xk) is the optimal value of V (xk) and it
satisfies equation (12). After further simplification, from (14)
and (15), the optimal inputs are
[
u∗k
v∗k

]
=−

[
(2R1 + gT∇2V ∗g) gT∇2V ∗M

MT∇2V ∗g (2R2 + MT∇2V ∗M)

]−1

×
[

gT (∇V ∗ +∇2V ∗(f − x))
MT (∇V ∗ +∇2V ∗(f − x))

]
. (16)

To address the stability issue of virtual nominal system (8)
by applying the optimal inputs (16), following Lemma is used.

Lemma 1: Suppose there exists a Lyapunov function V (xk)
for (8) and DT-GHJB (12) is satisfied. Then the optimal inputs
u∗k and v∗k defined in (16) ensure the asymptotic convergence
of virtual nominal system (8).

Proof: Consider V (xk) is a Lyapunov function for (8).
Using (12), the ∆V (xk) = Vk+1 − Vk reduces to

∆V =− (d2
max(xk) + v2

max(xk) + u∗Tk R1u
∗
k

+ v∗Tk R2v
∗
k) + xT

k Qxk. (17)

The negative-definiteness of ∆V along the solution of
(8) proves the asymptotic stability of (8) through the inputs
(16). ¥

Remark 1: In DT-GHJB, the derivative of cost-functional is
linearly related but it is nonlinear for DT-HJB. As a result,
solving DT-GHJB corresponds to solving a linear partial dif-
ference equation. This makes the DT-GHJB computationally
easier to solve than the DT-HJB. However it is still difficult
to achieve a closed form solution as it is a partial difference
equation.

Remark 2: A block matrix
[

A B
BT C

]
is invertible if the

following conditions are satisfied [23]:
1) det(A) 6= 0;
2) det(C −BA−1BT ) 6= 0.
Now, the control inputs (16) can be computed if the matrix[
A B

BT C

]
=

[
2R1 + gT∇2V ∗g gT∇2V ∗M

MT∇2V ∗g 2R2 + MT∇2V ∗M

]

is invertible. Here R1, R2 and ∇∗2V are the positive definite
matrices. So the sub-matrix A(= 2R1+gT∇2V ∗g) is positive
definite as (2R1 + gT∇2V ∗g) > 0 and hence det(A) 6= 0.
Now a suitable selection of design matrices R1 and R2 helps
to satisfy condition 2).



TRIPATHY et al.: SUBOPTIMAL ROBUST STABILIZATION OF DISCRETE-TIME MISMATCHED NONLINEAR SYSTEM 355

The realization of optimal control inputs (16) depend on
the solution of DT-GHJB (12). In the next section, a brief
description of NN based approximation technique is discussed
to achieve the estimated solution of (12) which helps to design
the optimal inputs (16).

A. NN Based Approximation Using Least Squares Approach

Neural network (NN) has universal function approxima-
tion property. Using this approximation property, several re-
searchers have used NN to approximate the solution of HJB
or GHJB as reported in [6], [20] and [21]. The key aim of this
section is to approximate the optimal cost functional V ∗(xk),
using a NN based algorithm. Applying NN based algorithm,
the cost-functional V (xk) is approximated as V̂ (xk). The
estimated cost functional V̂ (xk) is used to compute the
approximate control inputs ûk and v̂k. To estimate V̂ (x) using
NN, the basis function σ(xk) = [σ1(xk) σ2(xk) · · ·σl(xk)]T

and weight vector ŵ = [ŵ1, ŵ2, ŵ3, . . . , ŵl]T are selected.
The scalar l denotes the number of hidden layers in the NN.
The selection of activation function depends on the following
polynomial [17], [18]

L
2∑

j=1

( n∑

k=1

xk

)2j

(18)

where L and n represent the order of approximation and
the dimension of the system respectively. The equation (19)
corresponds to the activation function for a 2-dimensional
system as

σ(xk) = {x2
1, x1x2, x

2
2, x

4
1, . . ., x

L
2 }. (19)

The selected basis function σ(xk) is smooth and continuous
moreover it also holds the property σ(0) = 0,∀xk = 0.
Applying the basis function σ(xk) and NN weight ŵ, the
estimated cost functional reduces to

V̂ (xk) =
l∑

j=1

ŵT
j σl(xk) (20)

with a residual error (er)

DT-GHJB
(

V̂ =
l∑

j=1

ŵT
j σl(xk), ûk, v̂k

)
, er.

Applying the least square method [24], the unknown weight
vector of NN is updated such that it minimizes the residual

error er. The minimization of residual error er is done by

projecting er on
der

dw
, i.e., 〈der

dw
, e〉 = 0 where 〈a, b〉 =∫

Ω
abdx is the Lebesgue integral. Due to the difficulty in this

integration process, ŵ is approximated using a mesh having
ρ points on Ω from Riemann integration theory. The mesh
point ρ is selected as ρ ≤ l with a mesh size ∆x. Adopting

Riemann approximation of integration, the 〈der

dw
, e〉 = 0 can

be expressed as

Xŵ + Y. (21)

This helps to derive the weight update law with least square
error minimizing rule as

ŵ = −(XT X)−1(XY ) (22)

where X and Y are defined as (23) and (24), shown at the
bottom of this page.

Using estimated weight (22), the cost-functional is also
estimated by applying (20). The estimated cost-functional (20)
is applied to derive the approximated control inputs ûk and v̂k.
An algorithmic representation of numerical steps to achieve the
suboptimal inputs û∗k and v̂∗k is given next.

Remark 3: Given admissible control inputs u0 ∈ Ωu

and v0 ∈ Ωv , the solution V̂i of DT-GHJB (12) iteratively
converges to its optimal solution V ∗ by updating the control
inputs using (25). This claim can be proved analytically using
the results reported in [17], [21].

B. Stability of Uncertain Systems Using Approximate Inputs

The derived approximated optimal inputs (26) for (8) ensure
the asymptotic stability of uncertain system (3). This informa-
tion is stated as a theorem in Algorithm 1.

Theorem 1: Suppose there exists a continuously differen-
tiable positive function V̂ ∗(xk) which satisfies (12) with the
inequality

d2
max ≥ φT {R2 + (g+S)T (R1 + gT∇2V̂ ∗g)(g+S)

+ MT∇2V̂ ∗M}φ. (23)

The approximated optimal control input û∗k defined in (26)
for (8) will be the robust solution of unmatched system (3) if
the following condition holds

vmax ≥ v̂∗Tk (2R2 + MT∇2V̂ ∗M)v̂∗k. (24)

———————————————————————————————————————————————————–

X =




{∇V̂ T (f + gû + Mv̂ − x) +
1
2
(f + gû + · · ·+ Mv̂ − x)T∇2V̂ (f + gû + Mv̂ − x)

} |x=x1

...
{∇V̂ T (f + gû + Mv̂ − x) +

1
2
(f + gû + · · ·+ Mv̂ − x)T∇2V̂ (f + gû + Mv̂ − x)

} |x=xρ


 (25)

Y =




d2
max(xk) + v2

max(xk) + x(k)T Qx(k) + · · ·+ û(k)T R1û(k) + v̂(k)T R2v̂(k) |x=x1

...
d2
max(xk) + v2

max(xk) + x(k)T Qx(k) · · ·+ û(k)T R1û(k) + v̂(k)T R2v̂(k) |x=xρ


 (26)
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—————————————————————————
Algorithm 1 Optimal inputs using NN based approximation
—————————————————————————

1: Initialization: k ⇐ 0, i ⇐ 0, x ⇐ x0, u ⇐ u0, v ⇐ v0.

2: Select any value of a scalar ε > 0 and number of mesh points ρ.

3: Initial inputs u0 and v0 are admissible control inputs.

4: Create an NN as V̂ (x) using (20).

5: Compute V̂i using (20), (22)−(24). Here i = 0, 1, 2, . . .,

denotes the number of iteration.

6: Compute the approximate control inputs using following

equation

[
ûi+1

v̂i+1

]
= −

[
(2R1 + gT∇2V̂ig) gT∇2V̂iM

MT∇2V̂ig (2R2 + MT∇2V̂iM)

]−1

×
[

gT (∇V̂i +∇2V̂i(f − x))

MT (∇V̂i +∇2V̂i(f − x))

]
. (27)

7: Update the control inputs (25).

8: if V̂i − V̂i+1 ≥ ε

9: Go to line 5

10: else

11: Optimal cost-function V̂ ∗ = V̂i

12: Using V̂ ∗, the approximate optimal inputs û∗k and v̂∗k
are computed as

[
û∗k
v̂∗k

]
=−

[
(2R1 + gT∇2V̂ ∗g) gT∇2V̂ ∗M

MT∇2V̂ ∗g (2R2 + MT∇2V̂ ∗M)

]−1

×
[

gT (∇V̂ ∗ +∇2V̂ ∗(f − x))

MT (∇V̂ ∗ +∇2V̂ ∗(f − x))

]
. (28)

13: end if
—————————————————————————

Proof of Theorem 1: Let V (xk) is the solution of (12) and
it is approximated as V̂ ∗(xk) using the estimated inputs (26).
The approximated solution V̂ ∗(xk) and inputs (26) also satisfy
the following equation

d2
max(xk) + v2

max(xk) + xT
k Qxk + û∗Tk R1û

∗
k + v̂∗Tk R2v̂

∗
k

+∇V̂ ∗T
k (xk+1−xk)+

1
2
(xk+1−xk)T∇2V̂ ∗

k (xk+1−xk) = 0.

(29)

Now, with the control inputs (26), the difference of V̂ ∗(xk)[
∆V̂ ∗ = V̂ ∗(xk+1))− V̂ ∗(xk)

]
along the solution of (3) is

∆V̂ ∗ =∇V̂ ∗T (f + gû∗k + Mv̂∗k − x)

+
1
2
(f+gû∗k+Mv̂∗k−x)T∇2V̂ ∗(f+gû∗k+Mv̂∗k−x)

+∇V̂ ∗T (d−Mv̂∗k)

+ (f + gû∗k + Mv̂∗k − x)T∇2V̂ ∗(d−Mv̂∗k)

+
1
2
(d−Mv̂∗k)T∇2V̂ ∗(d−Mv̂∗k). (30)

Using (7) in (30), the following is obtained

∆V̂ ∗ =∇V̂ ∗T (f + gû∗k + Mv̂∗k − x)

+
1
2
(f+gû∗k+Mv̂∗k−x)T∇2V̂ ∗(f+gû∗k+Mv̂∗k−x)

+∇V̂ ∗T (gNφ + Mφ−Mv∗k)

+ (f + gû∗k + Mv̂∗k − x)∇2V̂ ∗(gNφ + Mφ−Mv̂∗k)

+
1
2
(gNφ+Mφ−Mv̂∗k)T∇2V̂ ∗(gNφ+Mφ−Mv̂∗k)

(31)

where matrix N = g+S. After further simplification, equation
(26) can be rewritten as

gT∇2V̂ ∗(f + gû∗k + Mv̂∗k − x) = −(2R1û
∗
k + gT∇V̂ ∗)

(32)

MT∇2V̂ ∗(f + gû∗k + Mv̂∗k − x) = −(2R2v̂
∗
k + MT∇V̂ ∗).

(33)

Applying (29), (32) and (33) in (31), ∆V̂ ∗ is simplified as

∆V̂ ∗ =− d2
max − v2

max − xT
k Qxk − û∗Tk R1û

∗
k − v̂∗Tk R2v̂

∗
k

+∇V̂ ∗T (gNφ + Mφ−Mv̂∗)

− (2R1û
∗ + gT∇V̂ ∗)T g+Sφ

− (2v̂∗T R2 +∇T V̂ ∗M)(φ− v̂∗)

+
1
2
(gNφ+Mφ−Mv̂∗)T∇2V̂ ∗(gNφ+Mφ−Mv̂∗).

After further simplification ∆V̂ ∗ reduces to

∆V̂ ∗ ≤− xT
k Qxk −

{
v2
max − v̂∗Tk (2R2 + MT∇2V̂ ∗M)v̂∗k

}

− {
d2
max − φT (R2 + NT (R1 + gT∇2V̂ ∗g)N

+ MT∇2V̂ ∗M)φ
}
. (34)

From the above inequality, ∆V̂ ∗ is negative definite if the
conditions (27) and (28) hold. This proves the asymptotic
convergence of (3) under periodic feedback of control input
uk, ∀k. ¥

The proposed robust control framework considers the gen-
eral system uncertainty, which includes both matched and
mismatched component. Without mismatched part, system (3)
reduces to matched system (defined in (5)), i.e.

xk+1 = f(xk) + g(xk)(uk + d(xk)). (35)

Moreover, due to the absence of mismatched part, the virtual
control input vk is not necessary in (8) and (9). Therefore the
nominal system and cost-functional for (35) reduce to

xk+1 = f(xk) + g(xk)uk(xk) (36)

Jk =
1
2

∞∑

k=0

{
d2
max(xk) + xT

k Qxk + uT
k R1uk

}
(37)

where ‖ d(xk) ‖≤ dm(xk), ∀k.
As a special case of Theorem 1, Corollary 1 is introduced

for matched system.
Corollary 1: Suppose there exists a continuously differen-

tiable positive function V̂ ∗(xk) which satisfies

d2
max(xk)+xT

k Qxk + û∗Tk R1û
∗
k +∇V̂ ∗T (xk+1 − xk)

+
1
2
(xk+1 − xk)T∇2V̂ ∗(xk+1 − xk) = 0. (38)
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Then the designed optimal control input

û∗k =−{g(xk)T∇2V̂ ∗g(xk) + 2R1}−1g(xk)T

×{∇V̂ ∗ +∇2V̂ ∗(f − xk)} (39)

for (36) which minimizes (37) is also a robust solution of (35)
if the uncertainty d(xk) satisfies the following bound

d2
max(xk) ≥ φT (NT (R1 + gT∇2V̂ ∗g)N)φ. (40)

Proof: Due to space limitation, the proof of this corollary
is omitted. ¥

C. Robustness With Input Uncertainty

The proposed framework can be extended in the presence of
input uncertainty. A system with mismatched input uncertainty
is described as

xk+1 = f(xk) + {g(xk) + d(xk)}uk(xk) (41)

where function d(xk) is the bounded uncertainty affecting
the input function g(xk). To design the robust control input
the virtual nominal system (8) and cost-functional (9) are
considered. To tackle the mismatched uncertainty in input
function, the optimal control problem is solved for (8) and
(9) with the control inputs (26). The following theorem states
the robust problem under presence of input uncertainty.

Theorem 2: Suppose there exists a continuously differen-
tiable positive function V̂ ∗(xk) which satisfies (29) with the
inequality

d2
max ≥ (φu∗k)T {R2 + (g+S)T R1(g+S) + MT∇2V̂ ∗M

+(gg+S + M)T∇2V̂ ∗(gg+S + M)}(φu∗k). (42)

The approximate optimal control input û∗k defined in (26)
for (8) which minimizes (9) will be the robust solution of (41)
if the following condition holds

vmax ≥ v̂∗Tk (2R2 + MT∇2V̂ ∗M)v̂∗k. (43)

Proof: The proof of this theorem is similar to the proof of
Theorem 1. ¥

Remark 4: It is observed that the DT-HJB (10) is approx-
imated using Taylor series expansion and it reduces to DT-
GHJB (12). Due to this approximation, the optimal input (11)
is converted to near optimal input (16). The approximated
virtual input v̂∗k is not used to stabilize system (3) but it is
used to design the û∗k. The input v̂∗k is used to verify the
condition (28).

D. Comparison With Existing Results

This subsection compares the main results of this paper
with the existing work reported in [8]. In 2016, D. Wang
et al. have proposed an approximate optimal control based
robust control technique for discrete-time nonlinear system. To
realize the robust control law, they have considered that the
system is affected by matched uncertainty. For the purpose of
comparison with the results described in [8], the mismatched
component of the uncertainty is neglected. It is observed that
without mismatched component, the virtual input vk is not
necessary. Therefore without virtual input vk, the nominal

dynamics and cost-functional defined in this paper are in a
form similar to that as mentioned in [8].

So the results reported in [8] can be recovered as a special
case of the proposed work. To solve the nonlinear optimal
control problem, a NN based approximation technique is
adopted from [8], [21]. But, the presence of control input vk

in nominal system (8) modifies the DT-HJB equation reported
in [8], [21]. To tackle the mismatched uncertainty, the cost-
functional (9) consists of two extra terms as v2

max(xk) and
vT

k R2vk. These two extra terms directly affect the compu-
tation of matrices X and Y as mentioned in (23) and (24)
respectively. Moreover, the computation of approximated cost-
functional V̂ ∗ also depends on both the control inputs û∗k and
v̂∗k. The absence of virtual input vk in [8], [21], makes it easy
to compute V̂ ∗.

III. ADDITIONAL RESULTS

A discrete-time linear system with state uncertainty is
described as

xk+1 = (A + ∆(p))xk + Buk (44)

where A and B are state and input matrices. The uncertain
matrix ∆(p) = BB+Sφ(p) + (I − BB+)Sφ(p) affects the
system due to bounded variation of the uncertain parameter
p. The uncertainty is bounded by a known matrix F and it is
defined as

φT
A(p)ST PSφA(p) ≤ F (45)

where matrix P is a positive-definite matrix. To solve the
robust control problem, the virtual nominal system and cost-
functional are selected as

xk+1 = Axk + Buk + Mvk (46)

Jk =
1
2

∞∑

k=0

{
xT

k (Q + F )xk +
[
uT

k vT
k

] [
R1 0
0 R2

] [
uk

vk

]}

(47)

where matrix M = (I −BB+)S. With a quadratic Lyapunov
function V ∗(x) = xT

k Pxk, the gradient vector and Hessian
matrix can be expressed as ∇V = 2Pxk and ∇2V = 2P . For
the system (46), with a cost-functional (47), the DT-GHJB is

xT
k (Q + F )xk +

[
u∗k v∗k

] [
R1 0
0 R2

] [
u∗k
v∗k

]

+(Axk+Bu∗k+Mv∗k−xk)T P (Axk+Bu∗k+Mv∗k−xk)
+2xT

k P (Axk + Bu∗k + Mv∗k − xk). (48)

After further simplification, equation (48) reduces to

AT

{
P−1 +

[
B (I −BB+)S

] [
R−1

1 0
0 R−1

2

]

×
[

BT

ST (I −BB+)T

]}−1

A− P + Q + F = 0. (49)

The optimal control inputs u∗k = Kxk and v∗k = Lxk are

u∗k =− (R−1
1 BT

{
P−1 +

[
B (I −BB+)S

]

×
[
R−1

1 0
0 R−1

2

] [
BT

ST (I −BB+)T

]}−1

A)xk (50)
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v∗k =− (R−1
2 ST (I −BB+)T

{
P−1 +

[
B (I −BB+)S

]

×
[
R−1

1 0
0 R−1

2

] [
BT

ST (I −BB+)T

]}−1

A)xk (51)

where matrices K and L are the controller gains. It is observed
that the equation (49) is a discrete-time Algebraic Riccati
equation (DT-ARE). Therefore the DT-ARE related with the
optimal control problem for a linear system can be recovered
from the proposed DT-GHJB (12). To address the robust
control problem for the linear system (44), following lemma
is included.

Lemma 2: Suppose their exists a positive definite solution
P of Riccati equation (49). The optimal input (50) ensures the
asymptotic convergence of uncertain closed-loop system (44)
for all bounded variation of uncertain parameter p, if it satisfies
the inequalities (45) and AT

c PAc −KT R1K − LT R2L ≥ 0
where Ac = A + BK.

Proof: Proof of this Lemma is omitted. ¥

IV. RESULTS

The section uses a numerical example to validate the
proposed control algorithm. Consider a state space form of
uncertain discrete-time nonlinear system as (3) where func-
tions f(xk), g(xk) and φ(xk) are defined as

f(xk) =
[ −0.8x2k

sin(0.8x1k)− x2k + 1.8x2k

]

g(xk) =
[

0
−x2k

]

φ(xk) = p sin(0.8k)x1k

where p is the uncertain parameter. This system has mis-
matched uncertainty and hence the results of [8] are not
applicable. To solve the optimal control problem for virtual
nominal system, the design parameters Q = I, R1 = 0.5I
and R2 = 0.5I are selected. The scaling matrix S is selected
as S =

[
0.1 0.2

]T
. The upper bound of uncertainty d(xk),

defined in (4) is considered as dmax = ‖xk‖2. The parameter
p can vary within −0.5 to 0.5. To estimate the optimal cost
function through the NN realization, the NN is constructed as

V̂ (x) = ŵ1x
2
1 + ŵ2x

2
2 + ŵ3x1x2. (52)

The mesh point ρ = 6 and mesh size ∆x = 0.01 are
selected. For simulation, the initial admissible control inputs
u0 = x1+1.5x2 and v0 = 0.049x1 are used. The simulation is
carried out in MATLAB simulation platform for 10 iterations
with the initial states [0.5,−0.5]T . After 5 iterations, the NN
weight w converges to w =

[
6.97 8.35 6.72

]T
.

Analysis of Simulation Results: Fig. 2(a) shows that the
system has converged to its equilibrium point through the
admissible control inputs u0. Figs. 3(a) and 3(b) show the
convergence of NN weight and approximated value function.
In Fig. 2(b), the systems state trajectories reach their equi-
librium point in-spite-of uncertainty. The simulation results
show that the proposed robust suboptimal control technique
guarantees the closed-loop stability in presence of mismatched

uncertainty. The variation of stabilizing input û∗k and virtual
input v̂∗k is shown in Figs. 4(a) and 4(b).

Now, for a selection of the scaling matrix S = g(xk), the
same example is solved numerically. This selection converts
the mismatched system (3) to a matched system as defined in
(35). The closed loop behavior of (35), is shown in Fig. 5a and
5b which replicates the results of matched system as stated in
[8].

Fig. 2. Results of proposed robust control technique. (a) Convergence of state
trajectory (x1, x2) with the initial admissible control inputs u0 and v0 for
p = 0. (b) Convergence of state trajectory (x1, x2) with the designed robust
control input û∗k for p = 0.5.

Fig. 3. Results of NN based approximation. (a) Convergence of norm of
weight vector (‖ŵ‖). (b) Convergence of approximated cost-functional.

Fig. 4. Convergences of control inputs. (a) Convergence of approximated
control input û∗k . (b) Convergence of approximated virtual input v̂∗k .

Fig. 5. Results for matched uncertain system. (a) Convergence of system
states with matched uncertainty for p = 0.5. (b) Convergence of approximated
control input û∗k for matched system.
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V. CONCLUSION

A discrete-time robust control technique for an uncertain
nonlinear system is proposed in this paper. It is considered that
the system is primarily affected by mismatched uncertainty.
The control law is designed by formulating an optimal control
problem for a virtual nominal system with a modified cost-
functional. The virtual input is defined to design the stabilizing
controller gain along with the stability condition. An analytical
proof for ensuring asymptotic convergence of closed-loop
uncertain system is also given. A comparative study between
existing and proposed results is also reported. This paper has
several promising future research directions. Few of them are
discussed below.

The proposed control algorithm can be applied in several
application and can also be extended to networked control
system where subsystems are interconnected by a digital net-
work [25]. To address this problem, coupled DT-HJB equation
can be formulated [26]. The proposed control framework can
also be treated as a differential game problem by considering
control inputs uk and vk as maximizing and minimizing inputs
[27].
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