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An Adaptive Strategy via Reinforcement Learning
for the Prisoner’s Dilemma Game
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Abstract—The iterated prisoner’s dilemma (IPD) is an ideal
model for analyzing interactions between agents in complex
networks. It has attracted wide interest in the development
of novel strategies since the success of tit-for-tat in Axelrod’s
tournament. This paper studies a new adaptive strategy of IPD
in different complex networks, where agents can learn and
adapt their strategies through reinforcement learning method. A
temporal difference learning method is applied for designing the
adaptive strategy to optimize the decision making process of the
agents. Previous studies indicated that mutual cooperation is hard
to emerge in the IPD. Therefore, three examples which based on
square lattice network and scale-free network are provided to
show two features of the adaptive strategy. First, the mutual
cooperation can be achieved by the group with adaptive agents
under scale-free network, and once evolution has converged
mutual cooperation, it is unlikely to shift. Secondly, the adaptive
strategy can earn a better payoff compared with other strategies
in the square network. The analytical properties are discussed
for verifying evolutionary stability of the adaptive strategy.

Index Terms—Complex network, prisoner’s dilemma, rein-
forcement learning, temporal differences learning.

I. INTRODUCTION

GAME theory has become the natural mathematical
method to discuss strategic and social interactions, par-

ticularly in a competitive environment [1]. The prisoner’s
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dilemma, which exists in many areas, serves as a useful tool
for studying human behavior in various social settings and
has contributed insights to engineering science, economics,
game theory, the analysis of social network structures, and
psychology [2]. The iterated prisoner’s dilemma (IPD) is a
widely used model for analyzing the individual behavior of an
agent within a given system. In the IPD, mutual cooperation
could provide the highest total income, although selfish indi-
vidual reasoning often leads to other choices. There are many
examples of the Prisoner’s dilemma in real life, when people
have to choose between being selfish or altruistic. Therefore,
the famous computer tournaments for IPD were held by Robert
Axelrod [3]. He invited game theorists to submit strategies for
playing IPD. The highest payoff was earned by the strategy
named “tit-for-tat”, it is a strategy which cooperates in the
first round and repeats what the opponent has done in the
previous move. Some impressive results were collected in [3],
the relevant message for people facing a prisoner’s dilemma
can be summarized as follows:

1) don’t be envious;
2) don’t be the first to defect;
3) reciprocate both cooperation and defection;
4) don’t be too clever.
For one-shot prisoner’s dilemma, there is no doubt that

betrayal will earn the best payoff for the agent. However, it is
seldom that people just face between being selfish or altruistic
only once. Thereafter, scholars turned their attention to seek
the mutual cooperation during IPD. The spatial evolutionary
game demonstrated that local interactions within a spatial
structure can maintain cooperative behavior [4]. Reference
[4] dealt with the relative merits of various strategies when
players who recognized each other meet repeatedly. This spa-
tial version of the prisoner’s dilemma can generate chaotically
changing spatial patterns. Reference [5] introduced a measure
for the cluster shape and demonstrated that the macroscopic
patterns can be used to determine the characteristics of the
underlying microscopic interactions. Reference [6] studied
the competition and strategy selections between a class of
generalized strategies.

With the development of evolutionary computation, many
scholars have made significant contributions to the research
of IPD [7]. Different agents within IPD games may uti-
lize different strategies. Scholars have introduced numerous
technologies which can be used to identify or modify IPD
strategies. Some strategies are fixed and can be implemented
using the finite state machine or Markov decision process [8].
Other strategies are adaptive based on different representation
schemes [9], [10]. In order to determine which kind of
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strategy has a better performance under specific conditions,
some studies have investigated using fingerprint and agent-
case embedding to analyze them [11]−[13]. The existing
research results also indicated that evolutionary strategies can
compete well against some of the fixed strategies [14], [15].
Inspired by these outstanding results, we propose an adaptive
strategy based on temporal difference learning method which
can consider both the achievement of mutual cooperation and
better performance.

The reinforcement learning paradigm can be applied
to solve many practical problems [16], [17]. References
[18]−[20] applied reinforcement learning method to solve
nonlinear system problems. Moreover, learning to predict
involves using past experience with an incompletely known
system to predict its future behavior, and this type of learning
is significant for the IPD. Reinforcement learning is an ef-
fective way to teach the agent how to make a decision based
on the previous experiences. Reference [20] brought together
cooperative control, reinforcement learning, and game theory
to present a multi-agent formulation for the online solution
of the team games. In [21], the scholars explored interactions
in a coevolving population of model-based adaptive agents
and fixed non-adaptive agents, and identified that the rein-
forcement learning method can serve as a useful tool for
developing an adaptive strategy. Hingston and Kendall also
incorporated reputation as the mechanism for evolving into
the existing co-evolutionary learning model for IPD games,
where the mechanism for evolving cooperative behaviors is
reputation [22]. Reference [23] designed a team of agents
which can accomplish consensus over a common value ac-
cording to cooperative game theory approach. Reference [24],
[25] investigated the evolution of cooperation in the prisoner’s
dilemma when individuals change their strategies subject to
performance evaluation of their neighbors over variable time
horizons. The main contribution of this paper is shown as
follows:

1) A temporal difference (TD) learning method is applied
to design an adaptive strategy. The feature of adaptive strategy
is that it can balance the short-term rational decision for self-
interest against the long-term decision for overall interest. The
evolutionary stability of the adaptive strategy is studied.

2) Three kinds of tournaments based on different complex
networks are provided. During the tournaments in square
lattice network which contains different strategies, the adaptive
strategy earns a better payoff. As to the scale-free network
constituted by adaptive agent, all the agents will cooperate
with each other for long-term reward.

Therefore, the simulation results verify that the adaptive
strategy is willing to choose cooperation without losing com-
petitiveness.

This paper is organized as follows. In Section II, IPD
is introduced. In Section III, TD(λ) method for prisoner’s
dilemma is presented. In Section IV, three tournaments are
given to verify the feasibility of adaptive strategy. Section V
states the conclusions of our study.

II. ITERATED PRISONER’S DILEMMA

Life is filled with paradoxes and dilemmas. A very lifelike
paradox is called “prisoner’s dilemma”, discovered by Melvin
Dresher and Merrill Flood [12]. The prisoner’s dilemma is
a canonical example of two non-zero-sum game. Each agent
has two options in each round. One is to cooperate (C), and
the other is to defect (D). Based on its choice, the agent
will receive a payoff governed by a payoff matrix, as shown
in Table I. where R is the payoff when both agents choose
cooperation. When only one of the agents defects, it will
receive a payoff T , and the opponent will receive a payoff S. If
both of the agents decide to defect, each will receive a payoff
P . The basic rule of the payoff matrix is T > R > P > S
and 2R > T + S.

The standard IPD is played repeatedly between two players,
each with its own strategy. They may have different strategies
which can be represented by lookup tables, finite-state ma-
chines, and neural networks. The IPD based on the strategies
which are represented by finite state machines can be analyzed
as a Markov process. This allows an average score to be
determined for any pair of strategies using standard techniques
in stochastic processes [12]. Some typical types of the fixed
strategies are described in Table II [26].

TABLE I
IPD PAYOFF MATRIX

Agent 1\ Agent 2 Cooperate Defect
Cooperate R \R S \ T

Defect T \ S P \ P

TABLE II
SOME FIXED IPD STRATEGIES

Name Behavior
Always defect Always plays D.

Always cooperate Always plays C.

Tit-for-tat Plays C initially and then
repeats the other player’s last action.

GRIM Always defects
if the opponent ever defects.

Pavlov

Plays C initially and
then cooperates thereafter if its action

and its opponent’s action matched
during the previous round.

Tit-for-2tit
Chooses D

only if its opponent has chosen D
for its last two moves.

Ripoff

Alternates between
C and D until its opponent chooses D
for the first time. On the round after

this defection, it cooperates and
then plays tit-for-tat thereafter.

Psycho
Chooses D initially

and then plays the opposite of its
opponent’s last action.

Random
Simply flips a fair coin

to decide how to play. It cannot be
represented by the finite state machine.
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Definition 1: Denoted by a as an n-tuple of mixed ac-
tions and if a = (a1, a2, . . . , an), then the payoff of a
can be written as U = (U1, U2, . . . , Un). For convenience
we introduce the substitution notation a = (a−i; ai), where
a−i = (a1, a2, . . . ,ai−1, ai+1, . . . , an).

Definition 2 (Nash Equilibrium) [3]: A joint action set
(a−i; ai) is a pure Nash Equilibrium point if, for the ith player

Ui(a-i; ai) = max
ai∈a

Ui(a-i; a∗i ). (1)

During the IPD, a Nash equilibrium (NE) can be achieved
by maximizing the payoffs of agents. If the agents are selfish
and want to maximize their own payoffs without considering
the interests of the others, the mutual defection can be obtained
as a NE. Therefore, one of the two following situations will
occur:

1) If the opponent chooses C, the agent may have payoff R
or T , T > R, then the agent will choose D.

2) If the opponent chooses D, the agent may have payoff S
or P , P > S, then the agent will choose D.

Therefore, mutual defection leads to the unique NE, which
represents a better short-term payoff. However, Axelrod
showed that although mutual defection yields a better short-
term reward [3], mutual cooperation is a better solution in the
long run. Furthermore, when the IPD presents more than two
choices, the evolution of defection may be a result of strategies
effectively having more opportunities to exploit others when
more choices exist [11]. Based on the fixed strategies shown
in Table II, each of them has their own personality and can
make decisions based on the opponent’s move. However, the
fixed strategies are of passive type which means they choose
the actions based on history without considering the actions of
next step. The main contribution of this paper is designing a
competitive adaptive strategy which can predict the actions and
achieve mutual cooperation without losing competitiveness.
In the next section, the reinforcement learning method is
introduced to design the adaptive strategy.

III. TD(λ) METHOD FOR PRISONER’S DILEMMA

During the IPD, the known information includes the deci-
sions and payoffs of the previous steps. Therefore, the goal of
our study is solving a multi-step prediction problem regarding
how to teach the agent predict its own future scores based
on the available options. Learning to predict involves using
past experience of the unknown system to predict its future
behavior. One advantage of prediction learning is that the
training examples can be taken directly from the temporal
sequence of ordinary sensory input; no special supervisor or
teacher is required. TD learning is a prediction method which
combines Monte Carlo and dynamic programming ideas. It
learns by sampling the environment according to some policy
and then approximates its current estimate based on previously
learned estimates.

A. Adaptive Design Strategy by TD(λ) Method

In this paper, the adaptive agent should have some features
as follows. An adaptive agent should consider the long-term
reward based on the situation. In other words, an adaptive

agent should learn cooperative coevolution. For instance, if
the agent identifies that the opponent will choose “cooperate”,
the adaptive agent should choose cooperate. If the opponent
choose “defect”, for protecting its payoff, the adaptive agent
should choose “defect”. Learn to cooperate with others is
a significance character of human beings. Therefore, for an
adaptive agent, learning to cooperate is vital.

As a prediction method, when observation is possible, TD
learning can be adjusted to better match the observation. TD
methods also are more incremental, easier to compute, and
tend to make more efficient use of their experience.

Based on the model mentioned in [1], the TD(λ) learner
can be expressed as Fig. 1.

Fig. 1. The decision making process for the adaptive agent.

Epochs t = 1, 2, . . . , T . The scores of the adaptive agents
and their opponents are Sadp(t) and Sopp(t), while the fore-
casting cooperative and defective earnings of the adaptive
agent at time t are Scp(t) and Sdp(t), respectively. The
equation for calculating the forecasting earnings of adaptive
agent is shown as follows:

Tcp(t + 1) =
t∑

i=1

P t−i
C (Sadp(i)− Sopp(i)) (2)

Tdp(t + 1) =
t∑

i=1

P t−i
D (Sadp(i)− Sopp(i)) (3)

Scp(t + 1) = Tcp(t + 1) + 2PC(t)R (4)
Sdp(t + 1) = Tdp(t + 1) + 2PD(t)P (5)

where PC ∈ (0, 1) and PD ∈ (0, 1) represent the possibility of
cooperation and defection, respectively, for the adaptive agent.
R, T, S and P are the payoffs of the IPD, as shown in Table
I.

Therefore, the TD(λ) learner can be described as follows:
1) Initialization: The state set and action set of the ith agent

are Z = {C,D}, where C is cooperate, and D is defect. The
payoff matrix of the agents is shown as Table I.

2) Calculating Scp(t + 1) and Sdp(t + 1) by (2)−(5).
3) The agent makes decision based on the decision making

process (DMP).
4) Back to 2) until the iteration stops.
The DMP is shown as follows:
1) If Scp(t + 1) > Sdp(t + 1), the adaptive agent will

cooperate with the opponent. The possibility of cooperating
will increase to PC(t + 1) = PC(t) + F (PC(t + 1)); the
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possibility of defecting will decrease to PD(t+1) = PD(t)−
F (PD(t + 1)).

2) If Scp(t+1) < Sdp(t+1), the adaptive agent will defect
with the opponent. The possibility of defecting will increase
to PD(t + 1) = PD(t) + F (PD(t + 1)); the possibility of
cooperating will decrease to PC(t+1)=PC(t)−F (PC(t+1)).

3) If Scp(t + 1) = Sdp(t + 1), the adaptive agent will
cooperate with the opponent. However, the possibility of
defecting cannot be reduced. The possibility of cooperating
will increase to PC(t+1) = PC(t)+F (PC(t+1)). Therefore,
the adaptive agent can be encouraged to choose cooperation
for the long-term team reward. The function F (ε) is modified
Fermi function shown as follows:

F (ε(t + 1)) =
1

1 + e[ε(t)−ε(t−1)]/k
. (6)

The DMP of adaptive agent clearly indicates that the
decisions rely not only on the previous steps, but also on
the learning method of the adaptive agent. PD and PC

decide the tendency of the adaptive agent. Moreover, due to
PC , PD ∈ [0, 1], P t−i

D and P t−i
C will decrease. In other words,

the effect of the last step is greater than that of the other
steps, and effect of the first decision within the IPD becomes
increasingly weaker as the number of iterations increases. For
investigating the convergence in the mentioned manner, the
analytical properties are discussed in following subsection.

B. The Analytical Properties of Adaptive Strategy

Different IPD strategies use different history lengths of
memory to determine their choices. In a finite length IPD
which has L rounds, the largest history length which a strategy
can access is L. As to the strategy mentioned in this section,
the memory size is as long as the length of finite IPD game.
A nontrivial question is whether the adaptive strategy can be
the counter strategy (CS) against other strategy? It has been
proven that every finite history length is possible to occur in
an infinite length IPD which can be expressed as following
theorem.

Definition 3 (Counter Strategy) [26]: A strategy S is a
counter strategy (CS) against another strategy S1, if for any
strategy S′

U(S, S1) ≥ U(S′, S1). (7)

Lemma 1 [26]: For any strategy that uses a limited history
length, there always exist some strategies with longer memory
against which the strategy cannot be a counter strategy.

Theorem 1: The adaptive strategy mentioned in Section II
has a higher probability of being a CS against fixed strategy
in an infinite length IPD.

Definition 4 [26]: Any strategy that uses a limited history
cannot be an evolutionarily stable strategy (ESS) in an infinite
length or indefinite length IPD. ESS is a strategy such that,
if all the members of a population adopt it, then no mutant
strategy can invade the population under the influence of
natural selection.

Therefore, the condition for a strategy S to be ESS is that
for any S′

U(S, S) ≥ U(S′, S).

There is a relationship between CS and ESS. A strategy is
ESS if it is the only CS against all IPD strategies [26]. As to
the adaptive strategy, the evolutionary stability is discussed as
follows.

Theorem 2: As to IPD consisted of fixed strategies and
adaptive strategy, the adaptive strategy mentioned in Section II
is ESS.

The adaptive strategy designed in this paper is a kind of
strategy with the memory size as the length of the IPD game.
During the IPD game, the adaptive strategy has the longest
memory compared with other strategies. As to the designed
game, the adaptive strategy has a higher possibility to be CS of
the other fixed strategies. Therefore, the adaptive strategy will
earn a better payoff when played against other fixed strategies.
During next section, some simulations are given to illustrate
the effectiveness of the mentioned manner.

IV. SIMULATIONS

In order to measure the effectiveness of agents using the
adaptive strategy, three IPD tournaments are simulated in
different complex networks. The square lattice network and
scale-free network are introduced to be the environments of
the simulations. Each of the game theoretical tournaments can
be represented as tuple G(N, A, F ), where N is the number
of the agents, A = {C,D} is the action set of the agents,
C and D represents the cooperate and defect, and F is the
payoff function for each action. The practical payoff matrix
of the Prisoner’s dilemma is shown in Table III.

TABLE III
IPD PAYOFF MATRIX

Agent 1\ Agent 2 Cooperate Defect
Cooperate 3 \ 3 0 \ 4

Defect 4 \ 0 1 \ 1

The simulations based on square lattice network and scale-
free networks are given in the following sections.

A. The Simulations Based on the Square Lattice Network
Based on the characteristic of the 100× 100 square lattice

network, there are N = 1, 2, . . . , i, . . . , 10 000 agents on the
network. In this section, two tournaments are provided to
illustrate the effectiveness of the adaptive strategy. During first
tournament, the designed adaptive strategy will play against
the fixed strategies mentioned in Table II. During the second
tournament, two kinds of strategies based on Q-learning [27]
and self-adaptive method [28] are given to play against the
designed strategy. The structure of the partial square lattice
network is described as Fig. 2. As to each agent, it has eight
neighbors. The coordinates of agents represent the relative
position between them.

During each iteration, the ith agent plays against its neigh-
bors according to the rules of IPD. Based on the feature of
the lattice network, the adaptive agents can play against agents
with all kinds of strategies. The cooperative rate p and average
fitness value are introduced to illustrate the effectiveness of
mentioned manner.

pt =
Nc

N
(8)
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where pt represents cooperative rate of the tth iteration; Nc

represents the number of cooperating agent; N is the number
of all the agents.

fave(Stra) =

T∑
t=1

St

T
(9)

where fave(Stra) means the average fitness value of strategy
Stra; St is the payoff of tth round-robin game; T is the
number of total iterations.

Fig. 2. The structure of the square lattice network.

1) The Tournaments Between Designed Strategy and Fixed
Strategies: In this section, the tournament between designed
strategy based on the TD learning method and fixed strategies
is provided to verify whether the designed strategy can earn a
better payoff than the other fixed strategies. The steps of the
tournament are represented as follows:

Step 1: Initializing the number of iteration as 100. Ran-
domly generating the positions of the agents with different
strategies. The numbers of agents with different strategies are
equal. The initial states of the agents are cooperation and
defection. The total initial cooperative rate is p1 = 0.3. The
cooperators will be marked as red squares. The defectors will
be marked as blue squares.

Step 2: During each round of the round-robin games,
ith agent will play against its neighbors by the prescribed
sequence which is shown as Fig. 3, and update its states
according to the characteristics.

Fig. 3. The order of each round-robin game.

Step 3: Calculating the cooperative rates and average fitness
values for verifying effectiveness of the mentioned manners.

During the first example, the average fitness values of the
different strategies in IPD tournament are given in the Table
IV. The statistical results illustrate that adaptive strategy earns
a better payoff compared with other strategies. In the tourna-
ment, defective actions became extinct after 9 generations, and
cooperative actions occupy the majority of the population.

TABLE IV
RESULTS OF FIRST ROUND-ROBIN IPD

Strategy Score
Always defect 2.367

Ripoff 2.347
Always cooperate 2.289

Psycho 2.462
Tit-for-tat 2.774

Adaptive strategy 3.135
GRIM 2.763
Pavlov 2.334

Tit-for-2tit 2.597

The simulation results of the first tournament are shown in
Fig. 4. Therefore, a conclusion can be obtained that mutual
cooperation becomes popular among the agents and spreads
fast. However, another problem is that how does the initial
cooperative rate p1 influence the result. Therefore, the simula-
tion results based on the different initial conditions are shown
as Fig. 5. Fig. 5 mentions that the three different initial values
which are p1 = 0.3, p1 = 0.5 and p1 = 0.8 lead to different
balance points. However, the equilibrium points are all above
75 percent which is significantly larger than the percentage of
agent with always cooperate. Therefore, mutual cooperation
can be achieved between majority of the agents.

2) The Tournaments Between Designed Strategy and Other
Evolutionary Learning Methods: In this section, two evolu-
tionary learning methods are introduced into the tournaments.
One is a Q-learning strategy [27], and the other one is a
self-adaptive win-stay-shift reference selection strategy [28].
The environment of this tournament is also the square lattice
network. The steps of the tournament are represented as
follows:

Step 1: Initializing the number of iteration as 100. Ran-
domly generating the positions for the agents with different
strategies on the square lattice network. Three kinds of evolu-
tionary strategies are evenly distributed on the network. The
initial states of the agents are cooperate and defect. The initial
cooperative rate is p1 = 0.3. The cooperators will be marked
as green squares. The defectors will be marked as blue squares.

Step 2: During each round of the round-robin, ith agent will
play against its neighbors by the prescribed sequence which is
shown as Fig. 3, and update its states according to their own
features.

Step 3: Calculating the cooperative rates and average fitness
values of the three different evolutionary strategies.

The simulation results of the second tournament are shown
in Fig. 6. The simulation results illustrate that the cooperation
spreads fast among the agents. The network becomes stable
within 5 iterations, and the cooperative rate of 100th iteration
is 0.904. The results verify that the mutual cooperation can be
achieved between the agents with evolutionary strategies.
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Fig. 4. The simulation results of round-robin game. (a) The distributions of the 1st round-robin game. (b) The distributions of the 10th round-robin game.
(c) The distributions of the 50th round-robin game. (b) The distributions of the 100th round-robin game.

Fig. 5. The cooperative rates based on different initial values.

The average fitness values of the different strategies are
shown in Table V. The results show that although the TD
Learning Strategy earns a better score, the differences between
the scores are minor. The reason of this phenomenon is that
the cooperation spreads fast and maintained within 5 rounds.

To sum up, the simulations based on the square lattice
network show that the payoff of adaptive strategy is higher
than other strategies during the tournament. Most of the agents

choose cooperation with others. However, not all the agents
choose cooperating with the others. We give another example
to verify whether the mutual cooperation can be achieved
among the agents with the designed adaptive strategy.

TABLE V
RESULTS OF SECOND ROUND-ROBIN IPD

Strategy Score

Q-learning strategy 2.83
Self-adaptive strategy 3.15
TD learning strategy 3.26

B. The Simulations Based on the Scale-free Networks
For the scale-free networks, the relationships between the

agents are not homogenous. The agents prefer to make con-
nections with the agents with advantage of fitness which are
named hubs. Therefore, they may have different degrees. This
kind of network is widely used in the real world, such as
Internet, social networks, and so on. References [29], [30]
studied the game behaviors between the two agents on the
scale-free network. These studies drew a conclusion that the
scale-free network can promote the mutual cooperation by



XUE et al.: AN ADAPTIVE STRATEGY VIA REINFORCEMENT LEARNING FOR THE PRISONER’S DILEMMA GAME 307

Fig. 6. The simulation results of round-robin game. (a) The distributions of the 1 st round-robin game. (b) The distributions of the 5 th round-robin game.
(c) The distributions of the 10 th round-robin game. (d) The distributions of the 100 th round-robin game.

the most successive agents. Reference [29] found that the
scale-free networks were extremely vulnerable to attacks, i.e.,
to the selection and removal of a few nodes that play the
most important role in assuring the network’s connectivity.
The conditions of the hubs are significant for the scale-free
network.

The purpose of this experiment is to figure out whether
the adaptive agents can achieve mutual cooperation by their
own strategies to increase the fault tolerance of the scale-free
network. The typical graph of scale-free network is shown as
Fig. 7 [7].

Fig. 7. The typical structure of scale-free network.

All the agents in this tournament are adaptive agents. During
this tournament, the IPD runs for 100 rounds per trial with

different initial values of the cooperative rate. The initial values
of cooperative rate are 0.1, 0.5 and 0.8, respectively. Based
on this situation, the initial states of some hub agents may
be defection. Therefore, it is very difficult for the agents
to achieve mutual cooperation by the characteristic of the
scale-free network. The main propose of this tournament
is inspecting whether the mentioned manner can optimize
decision making process for helping the agents to obtain
mutual cooperation. The steps of the tournament are shown
as follows.

Step 1: Initializing the number of iterations as 100. Initial-
izing the states of the agents in the scale-free network. The
initial values of the cooperative rates are 0.1, 0.5 and 0.8,
respectively.

Step 2: During each round of the tournament, ith agent will
play against its neighbors, and update its states according to
the characteristics. Since all the agents are adaptive agents,
the agents will try to achieve mutual cooperation according to
optimizing the decision making process.

Step 3: Calculating the cooperative rates for verifying
effectiveness of the mentioned manners.

As Fig. 8 shows, the cooperative rates will convergence
to 1. Therefore, the simulation results of this tournament
show that no matter what the initial value is, all the agents
will choose cooperation. The experimental results indicate
that although the scale-free network encourages the agent to
copy the strategies of the hubs which may lead the agents to
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defect with each other, the adaptive agents can obtain mutual
cooperation. They can make their own decisions based on
their strategies to increase the fault tolerance of the scale-free
network. The experimental results indicate the effectiveness of
the adaptive strategies.

Fig. 8. The cooperative rates based on different initial values.

V. CONCLUSION

A reinforcement learning method was introduced to design
an adaptive strategy for the IPD. The agent with adaptive
strategy can make decisions under a consideration of the long-
term reward. In order to verify the effectiveness of this method,
three kinds of tournaments under two different environments
were discussed in Section IV. The simulation results illustrated
that the adaptive agents were able to cooperate with their
opponents without losing competitiveness. They could achieve
mutual cooperation, which is not only meaningful for the
long-term reward of the team, but also the fault tolerance
of the scale-free network. In our future research, we will
investigate the essential relationship between the IPD and
multi-agent systems in different complex networks, as well
as the application of game theory for analyzing dynamics of
multi-agent system.

APPENDIX A
PROOF OF THEOREM 1

As for the infinite length IPD, suppose SL is a fixed
strategy with memory-L. The CS against SL must play
a periodic sequence with period less than L. Let qi(i =
1, . . . , L),

∑L
i=1 qi = 1 denotes the probability that CS plays

a sequence whose period is equivalent to i.
Suppose QL(A|SL) is the probability of adaptive strategy

being a CS against a fixed strategy SL with memory-L. As to
the strategy with zero memory S0, there is QL(A|S0) = q/2.
If S0 plays a periodic sequence whose period is equivalent to
two, the QL(A|S0) = q/4. Furthermore, S0 plays a periodic
sequence whose period is equivalent to L, QL(A|S0) =
qL/2L.

Thus, the highest value of QL(A|S0) is represented as

QL(A|S0) = max
(

1
2
q1,

1
4
q2, . . . ,

1
2L

qL

)
.

The strategy with memory-1 can shift its play sequence
between a determined sequence and a period-two sequence.
Thereforethe maximums of QL(A|S1) is

QL(A|S1) = max
(

1
2
q1 +

1
4
q2,

1
4
q2 +

1
4
q2, . . . ,

1
2L

qL +
1
4
q2

)
.

There are QL(A|SL) = q1/2 + q2/4 + · · ·+ qL/2L

For the adaptive strategies, the memory length is as long
as the IPD. Therefore, during the infinite length IPD, the
adaptive strategy has the length K which is larger than the
L. Therefore, the highest value of QL(A|SL) is QL(A|SL) =
q1/2 + q2/4 + · · ·+ qL/2L

Thus,{
QL(A|SL) > QL(A|SL−1) > · · · > QL(A|S1) > QL(A|S0)

QL(A|SK) = QL(A|SL), K > L.

Due to

Q(SL) =
∞∑
0

qiQi(A|SL)

Q(SK) =
∞∑
0

qiQi(A|SK)

based on the former information
{

Qi(A|SL) < Qi(A|SL+1), i > L
Qi(A|SL) = Qi(A|SL+1), i ≤ L.

There must be Q(A) = Q(SK) > Q(SL) for any limited
number L in an infinite length IPD. Therefore, the adaptive
strategies have a higher probability of being a CS against fixed
strategy in certain conditions. The concepts of CS can be used
to verify the evolutionary stability of the adaptive strategy.

APPENDIX B
PROOF OF THEOREM 2

Based on the Theorem 1, for any fixed strategy S′,

U(S, S) ≥ U(S′, S)

and

U(S, S′) ≥ U(S′, S′).

According to [26], the condition for a strategy S to be ESS
is that for any S′

U(S, S) ≥ U(S′, S) (10)
U(S, S′) > U(S′, S′). (11)

Comparing with the inequalities with (10) and (11), the
adaptive strategy is ESS, when played against other fixed
strategy. Therefore, the adaptive strategy is ESS under certain
condition.
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