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Gini Coefficient-based Task Allocation for
Multi-robot Systems With Limited

Energy Resources
Danfeng Wu, Guangping Zeng, Lingguo Meng, Weijian Zhou, and Linmin Li

Abstract—Nowadays, robots generally have a variety of capa-
bilities, which often form a coalition replacing human to work
in dangerous environment, such as rescue, exploration, etc. In
these operating conditions, the energy supply of robots usually
cannot be guaranteed. If the energy resources of some robots are
consumed too fast, the number of the future tasks of the coalition
will be affected. This paper will develop a novel task allocation
method based on Gini coefficient to make full use of limited
energy resources of multi-robot system to maximize the number
of tasks. At the same time, considering resources consumption,
we incorporate the market-based allocation mechanism into our
Gini coefficient-based method and propose a hybrid method,
which can flexibly optimize the task completion number and
the resource consumption according to the application contexts.
Experiments show that the multi-robot system with limited
energy resources can accomplish more tasks by the proposed
Gini coefficient-based method, and the hybrid method can be
dynamically adaptive to changes of the work environment and
realize the dual optimization goals.

Index Terms—Energy resource constraints, Gini coefficient,
multi-robot systems, task allocation.

I. INTRODUCTION

TASK allocation has been a subject of multi-robot systems
research for many years. Multi-robot systems, character-

ized as a coalition of robots working collaboratively to achieve
system goals in an environment, have been widely employed
in a variety of applications where tasks are complex [1], [2].
Complex tasks, referred to as multirobot (MR) tasks, are those
that cannot be completed by a single robot but require multiple
robots to cooperate tightly [3], [4]. It is important to ensure
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that the collaboration is effective in order to attain the highest
level of productivity [5], [6]. So we believe that the problem of
finding suitable combination of robots in a coalition of robots
(for a collaborative task) is an important problem to study, and
the process of task allocation can be regarded as the process
of finding suitable combination in the coalition.

Much earlier work studied the multi-robot systems in ab-
stract domains, where conditions in the real world could be
eliminated or relaxed [7]. For example, in a search and rescue
mission, a set of robots are required to form different coalitions
(i.e., individual robot may not have all the capabilities for a
complex task) for the different types of tasks (i.e., a coalition
responsible for the search tasks, a coalition responsible for the
rescue tasks) to search for and rescue more victims as soon as
possible [8], [9]. In practice, the energy resources of each robot
such as fuel or electricity are limited, because the resource
supply cannot be guaranteed on these occasions, and they will
be finally depleted as the robot executes tasks in the harsh
environment. But in the majority of existing related works,
researchers seldom pay much attention to the problem of
energy resources constraints of multi-robot systems, and robots
were often assumed to possess sufficient energy resources to
accomplish the task inherently.

Therefore, we will focus on the task allocation elements
of a multi-robot framework for dealing with search and
rescue and other similarly dangerous environments. In
these application contexts, the coalition must complete as
many tasks as possible using their limited resources (in
this paper, fuel or electricity is referred to as resource).
In view of this, studying a task allocation mechanism for
maximizing the number of tasks completed, while minimizing
the resources consumption, has a realistic significance. In
this paper, the MRTA (multi-robot task allocation) problem
which we studied belongs to the ST-MR-TA (single-task
robots, multi-robot tasks, time-extended assignment) task
allocation type. ST means that each robot can execute at
most one task at a time, MR means that some tasks require
multiple robots, and TA means that more information is
available, such as the set of all tasks that will need to be
assigned [3]. From the angle of the resource consumption
per task, the distributed approaches complemented with
auction based method, which are often called market-based
approaches [10]−[17], give somewhat better solution.
Therefore, our research mainly focuses on finding a good
approach to maximize the number of completed tasks of
coalition, and makes a try to combine this approach with
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market-based approach to maximize the number of tasks each
completed while minimizing resources consumption of task
in view of the task situation. Our main contributions are
presented as follows:

1) Our key contribution is to innovatively introduce the
Gini coefficient of economics to measure the “resource dif-
ference degree” of the residual resources of robots, and pro-
pose a Gini coefficient-based task allocation method for the
task allocation problem of multi-robot systems with energy
resource constraints. Specifically, the Gini coefficient-based
method includes four steps, respectively, combinations forma-
tion, residual resources calculation, Gini coefficient calculation
and optimal combination selection. This method positions a
robot coalition appropriately in preparation for dynamic future
tasks by balancing resources distribution among robots, and
extends the combined operational lifetime of the coalition and
maximizes the number of tasks completed.

2) We propose a hybrid algorithm that combines the pro-
posed Gini coefficient-based method with market-based mech-
anism to pursue the two optimization objectives of “maximiz-
ing the number of tasks completed” and “minimizing resource
consumed”. Furthermore, we propose a selection algorithm for
selecting the optimal value of set G (i.e., Gini coefficient),
which can determine the method conversion inflection point
for our hybrid algorithm in advance, and achieve the objectives
of the system flexibly according to the application context.

3) Extensive simulations are conducted for evaluating the
effectiveness of the proposed task allocation methods. The
experimental results show that the Gini coefficient-based
method can cause the residual resources converge to each
other and make a simultaneous exhaustion of all robots, which
effectively controls the resource difference degree and keeps
the multi-robot system having a maximal synergism over time.
Under the different experimental setting, Gini coefficient-
based method can always make multi-robot system complete
more tasks than using market-based method, and the hybrid
method which combines the advantages of both methods
can make a balance between the resource consumption and
the number of tasks completed according to their relative
importance degree.

The remainder of this paper is organized as follows. Sec-
tion II summarizes and analyzes the previous woks on MRTA
problem. We define the problem of task allocation with re-
source constraints in Section III. The relationship between
Gini coefficient and resource difference, two task allocation
approaches, are presented in Section IV. In Section V, we
provide experimental results to validate our proposed methods.
Finally, we summarize our results and conclude with some
open questions in Section VI.

II. RELATED WORKS

We have mentioned in the introduction, this paper mainly
studies the task allocation of multi-robot system with resources
constraints in the search and rescue or other emergency and
dangerous environments. In these cases, the working space of
robots is relatively narrow, which limits the number of robots.
But the complex tasks, such as scene detection and wounded

rescue, often require multiple robots to cooperate. Therefore,
this article studies the situation that the multi-robot system
performs one task at a time. Less number of the robots and
the global optimal targets of task allocation make us believe
that the centralized mechanism is more appropriate. Therefore,
we will set a special management agent to take the charge of
task allocation of multi-robot system. The management agent
located at a computer node, which is responsible for receiving
the tasks (Tasks are produced by the rescuers after they analyze
the field data), is analyzing the status of energy consumption
of each robot, and making the task allocation decisions.

Section II is divided into two parts. The market-based
task allocation mechanisms are investigated in Section II-A,
and works in the field of coalition-based approach to task
allocation are briefly surveyed in Section II-B.

A. Market-based Task Allocation Mechanism

The common feature in market-based allocation mechanism
is an auction protocol to coordinate tasks between different
robots or between different components of the same robot.
When an auction is announced, robots compute bids based
on their expected profit for the tasks and the robots with
the lowest cost bid are awarded contracts [10]. Gerkey and
Matari presented a dynamic task allocation mechanism using
a publish/subscribe communication method for a heteroge-
neous robot coalition, and tasks are allocated dynamically via
a sequence of first-price single-round auctions in a greedy
fashion [11]. Dias et al. introduced the TraderBots architecture
in which robots are modeled as self-interested agents with
the goal of maximizing individual profits [12]. Choi et al.
addressed task allocation to coordinate a fleet of autonomous
vehicles by presenting two decentralized algorithms, these
algorithms utilize a market-based decision strategy as the
mechanism for decentralized task selection [13]. Viguria and
Howard used a market-based approach for addressing the ini-
tial formation problem [14]. Hu et al. distributed the subtasks
with a market-based dynamic task allocation method to cope
with unexpected changes in the environment and the limited
sensing range of the robotic fish [15]. Zlot et al. extended
market-based approaches by generalizing task descriptions into
task trees, which allow tasks to be traded in a market setting
at variable levels of abstraction [16]. Dash et al. extended
the standard Vickrey-Clarke-Groves mechanism to allow for
multi-attribute bids and introduced a novel penalty scheme
such that producers are incentivized to truthfully report their
capacities and their costs [17].

But in these works, resource constraints between robots
and tasks and how resource constraints will affect achieving
the goal of system have not been extensively considered.
When individuals pursue resources consumption minimization
under the market-based task allocation mechanism, due to the
capability heterogeneity of robots, the robots coalition may
fail in the task execution when some robots are subject to
insufficient resources.

Therefore, an efficient task allocation approach should not
only focus on finding a set of robots that have the necessary
capacities or assigning tasks to robots in a greedy way so that
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short-term goals are met. In this paper, we will study how
the different combinations affect the resource equilibrium of
the robots of multi-robot coalition before each combination
performs task, which is good for us to choose a combination
that can make the robot system meet the long-term goal
of completing tasks as much as possible under the limited
resource constraints, avoiding the fast resource consumption
of a robot.

B. Coalition-based Approach to Task Allocation

Due to the inherent difficulty and complexity of real world
tasks, cooperation amongst robots is essential for successful
task completion [18]. So, in past few years, forming coali-
tions to solve the MRTA problem has become increasingly
important worldwide [19]. With the coalition-based MRTA
architecture, a coalition of robots is divided into several sub-
coalitions and each sub-coalition is assigned to a task. These
sub-coalitions are called coalitions [20].

In recent years, the coalition-based approaches for task
allocation of multiple robots or embedded systems with re-
source constraints begin to be studied [21]−[24]. Reference
[21] analyzed the resource constraints when robots implement
tasks, and proposed leader-follower coalition algorithms to
resolve resource constrained task allocation problem. Xie
and Qin [22] proposed a novel balanced energy-aware task
allocation (BEATA) algorithm for heterogeneous networked
embedded systems. BEATA algorithm aims at making the
best trade-off between energy saving and schedule length.
However, the residual energy of embedded systems are not
taken into account for choosing processing nodes, which
ultimately results in that some nodes are chosen frequently and
hence they die early. Wang et al. [23] proposed the energy-
balanced centralized and distributed algorithms to efficiently
dispatch mobile sensors in a hybrid WSN, and they can be
applied for any number of mobile sensors and event locations.
In the centralized load balanced sensor dispatch algorithm
(CentralLBSD), when there are more mobile sensors, it trans-
lates the sensor dispatch problem into a maximum matching
problem in a weighted complete bipartite graph. In the process
of the actual matching, the central LBSD algorithm does not
consider the balance degree of surplus resources of different
mobile sensors, and it only considers to balance the energy
consumption of each node and minimize the total energy
consumption. Lukic et al. [24] described the novel centralized
and distributed algorithms for the task assignment problem
in wireless sensor and robot networks, with arbitrary number
of robots and events. They allow robots to handle multiple
events, and events to be handled by desired number of robots.
The goal is to minimize the average travel path by robots
and maximize the number of iterations for handling events.
They combine matching and sequence dispatch approaches,
but the more challenging problem of simultaneous presence
of several robots at the scene is not discussed. These show
that again, we should propose a task allocation method to
control the resources consumption process and position the
multi-robot system appropriately in preparedness for dynamic
future events.

III. NOTATIONS AND ASSUMPTIONS

The notations used in this paper and their definitions are
shown in Table I.

TABLE I
THE NOTATIONS USED IN THIS PAPER

Notation Definition
ri Robot i

R A coalition of robots, R = {r1, r2, . . . , rn}

rik
Robot i in capability k (a non-negative integer) and
it is zero if the robot does not have that capability

V r
i

A capability vector of each robot, V r
i = {ri1,

ri2, . . . , rim}, where m denotes the number of
capacities of a coalition

rei The residual resources of robot i

V re A residual resources vector of the coalition, V re =

{re1, re2, . . . , ren}

rcik

The resources consumed of robot i in capability k (a
non-negative integer) and it is zero if the robot does
not have that capability

V rc
i

A resource consumption vector of each robot, V rc
i =

{rci1, rci2, . . . , rcim}
tj Task j

T

A set of tasks, T = {t1, t2, . . .}, in this paper, we
try to select the suitable robots combination in one
coalition for the assigned task efficiently

tjk

The required number of task j in capability k (a non-
negative integer) and it is given zero if the task does
not require that capability

V j
t

A capability requirement vector of each task, V j
t =

{tj1, tj2, . . . , tjm}

V R

A capability vector of the coalition:
V R =

∑n
i=1 V r

i = (
∑n

i=1 ri1,
∑n

i=1 ri2, . . . ,∑n
i=1 rim). In this paper, we assume that the ca-

pability vector V R of the coalition is not less than
the capability requirement vector V t

j of the task, i.e.,
∃tjk ≤

∑n
i=1 rik , ∀1 ≤ k ≤ m

cjx

A robot combination x that can execute the task tj ,
the number of robots of each combination is not
more than the number of robots of the coalition

V c
j A set of combinations for each task, V c

j = {cj1,

cj2, . . .}

Then the problem is to maximize the number of tasks com-
pleted by the coalition while minimizing resources consump-
tion in view of the task situation. Following are assumptions
with which we characterize our problem:

1) There is no chance for robots to recharge their resources
until they finish a mission.

2) The robot coalition has been formed before task allo-
cation. In this paper, multi-robot coalition formation problem
will not be discussed.

3) The tasks are online assigned to the coalition one by one,
under normal circumstances, there are dependencies among
some tasks, so we assume the task tj cannot be assigned when
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tj−1 is not finished.
4) There is an agent being responsible for making a task

allocation choice among several combinations for a specific
task.

5) Capability requirement tjk can be executed by any robot
having the capability k if the resources of the robot are enough.

6) The resource consumption that a robot spends on using a
capability for a particular task can be estimated by multiplying
the weight of the task by corresponding capability element in
robot’s resource consumption vector V rc

i .

IV. GINI COEFFICIENT-BASED APPROACH AND ITS
COMBINATION WITH MARKET-BASED APPROACH

In the market-based task allocation approach, the task is
auctioned off to a robot bidding with the least cost. This
approach minimizes the resource consumption of each task,
but it may lead to rapid resource consumption of some robots.
In this case, the completion of follow-up tasks will be affected.
For example, there is a robot that has two capabilities, A and
B, the robot can perform A with relatively less resource than
other robots, and B is a unique capability that exists only on
this robot. According to the market-based approach, when the
capability requirement vectors of some tasks have A, the robot
will be excessively used, causing its resources to consume
quickly, shortly afterwards, the task could not be assigned to
the coalition when it requires B. Therefore, we should use a
method to balance the resources of robots, i.e., retain as many
robots as possible to execute more tasks. In this paper, we turn
to the Gini coefficient of economics.

A. Gini Coefficient and Resource Difference Degree

Gini coefficient was proposed by famous Italian economist
C. Gini on the basis of the Lorenz curve in 1912, now it
has been an important international analysis indicator used
to make a comprehensive investigation on residents internal
income distribution difference. The most prominent feature of
the Gini coefficient is integrity, which can clearly show the
income inequality of the residents of a region as a whole. Also
because of its integrity, when a region has a less number of the
individual residents, the effectiveness of the Gini coefficient is
higher. That is, even the Gini coefficient of a region with large
individual number is small, the income inequality difference
among some individuals may be quite large, which makes Gini
coefficient invalid in a certain sense.

We define a new metric “resource difference degree” to
indicate how unevenly resources are distributed among the
robots of a coalition, and introduce the Gini coefficient as
the measurement index for resource difference degree.

Gini coefficient refers to the proportion of the area A
divided by A + B, as shown in Fig. 1. When the Gini
coefficient is applied to measure the resource difference degree
of the robots, A is the area surrounded by actual Lorenz curve
and resource absolute no difference curve, and A + B is the
surrounded area by absolute no difference curve and absolute
difference curve. Here, the Lorenz curve qualitatively reflects
the resource difference degree roughly.

Gini coefficient is expressed as

G =
A

A + B
. (1)

We can see by (1), the value of Gini coefficient is between
0 and 1, very close to 0 indicates the resources of robots
more equal, very close to 1 indicates the resources of robots
more unevenly distributed. When Gini coefficient takes the
minimum value 0, it means all the robots of this coalition
have the same resources, resource difference degree is 0.

In the schematic diagram of Gini coefficient (Fig. 1), ab-
scissa axis denotes the percentage of robot number accumula-
tion to per coalition, ordinate axis denotes the percentage of
resources accumulation to per coalition, the total area is 1, and
the sum of A and B is 0.5, so,

G =
0.5−B

0.5−B + B
= 1− 2B. (2)

Fig. 1. The schematic diagram of Gini coefficient.

If the Lorenz curve equation is r = L(x), the integral
expression of Gini coefficient is

G = 1− 2
∫ 1

0

L(x)dx. (3)

Because the Lorenz curve is an irregular curve, the area B
cannot be calculated directly, many scholars made explorations
on the concrete calculation method of Gini coefficient, and
proposed several different calculation formulas. Zhang put for-
ward a simple and easy formula using approximate trapezoidal
area instead of area B, as shown in (4). Detailed derivation
process can be seen in [25].

G = 1− 1
n

(
2

n−1∑

i=1

Wi + 1

)
(4)

According to the calculation of (4), n robots are permutated
from small to large according to the quantity of resource, and
Wi denotes the percentage of accumulated resources from the
first robot to the robot i of all the total resources of the robots.
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B. Gini Coefficient-based Task Allocation Approach

As mentioned above, in rescue, robots need to use their
limited resources to quickly execute as many tasks as possible.
In this paper, we will utilize Gini coefficient which has been
used to measure the resource difference degree as the decision
basis of task allocation, and strive to keep the residual resource
difference of robots minimum after each task completed. This
can improve the reserve capability of the coalition for the
subsequent tasks, and make coalition complete more tasks. We
call this task allocation method as the Gini coefficient-based
method, and the method expressed in pseudo code is shown
as Algorithm 1.

Algorithm 1 is described concretely as follows:

Algorithm 1. Gini coefficient-based task allocation method

1: procedure
2: set V r

i of each robot i

3: set V t
j of each robot j

4: set the initial resources of each robot
5: for all tj in T do
6: for all tjk in V t

j do
7: add all rik to arrayk

8: end for
9: for all ri1 in array1 do

10: for all ri2 in array2 do

11:
...

12: for all rik in arrayk do
13: traversing the V c

j

14: if cjx ∈ V c
j can execute the task

15: save cjx to the buffer array
16: end if
17: end for

18:
...

19: end for
20: end for
21: residual resources calculation
22: sorting in ascending order the residual resources of robots of cjx

23: calculating the Gini coefficient of cjx

24: If the number of elements in buffer array is not equal to 0
25: choose the combination corresponding to the minimum Gini

coefficient to execute task tj

26: output: Task has been executed
27: else
28: output: Task has interrupted
29: end if
30: end for
31: end procedure

1) Combinations Formation
For a task tj , there can form various robot combinations

within the coalition according to each robot’s capability vector
V r

i and the capability requirement vector V t
j (Line 9−15).

In order to be easily understood, we will make an illustration
in the following parts.

Assuming V t
j = {1, 2, 0}, where 1 denotes needing one unit

of capability 1, 2 denotes needing two units of capability 2,

0 denotes there is no need for capability 3; R = {r1, r2, r3},
V r

1 = {1, 1, 0}, V r
2 = {1, 1, 0}, V r

3 = {1, 0, 1}. So a set of
combinations V c

j that can perform task tj can be expressed
specifically as Table II.

TABLE II
A SET OF COMBINATIONS V c

j THAT CAN PERFORM TASK tj

V t
j V c

j r1 r2 r3

{1, 2, 0}
cj1 {1, 1, 0} {0, 1, 0} {0, 0, 0}
cj2 {0, 1, 0} {1, 1, 0} {0, 0, 0}
cj3 {0, 1, 0} {0, 1, 0} {1, 0, 0}

2) Residual Resources Calculation
Residual resource calculation finds the residual resources

of each robot after each combination executing the task tj
(Line 21). Assume that each robot’s initial resources number
is 2000, all for 2000, V rc

1 = {90, 80, 0}, V rc
2 = {50, 70, 0},

V rc
3 = {80, 0, 90}, and the weight of the task is 1, so the total

resource consumption rci and the residual resources rei of
each robot are shown in Table III.

3) Gini Coefficient Calculation
After each combination performing tj simulantly, Gini

coefficient calculation sorts the residual resources of all robots
in coalition from less to more (Line 22), and then calculates
the Gini coefficient (G-value) of the coalition according to the
(4) (Line 23). The specific calculation process is as follows:

G11 = 1− 1
n

(
2

n−1∑

i=1

Wi + 1

)

= 1− 1
3

[
2

(
1830

1830 + 1930 + 2000

+
1830 + 1930

1830 + 1930 + 2000

)
+ 1

]

≈ 0.020

G12 = 1− 1
n

(
2

n−1∑

i=1

Wi + 1

)

= 1− 1
3

[
2

(
1880

1880 + 1920 + 2000

+
1880 + 1920

1880 + 1920 + 2000

)
+ 1

]

≈ 0.014

G13 = 1− 1
n

(
2

n−1∑

i=1

Wi + 1

)

= 1− 1
3

[
2

(
1920

1920 + 1920 + 1930

+
1920 + 1920

1920 + 1920 + 1930

)
+ 1

]

≈ 0.001.

4) Optimal Combination Selection
It refers to select the robot combination corresponding to

the minimum G-value to execute task tj (Line 24−28).
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TABLE III
THE RESIDUAL RESOURCES OF EACH ROBOT AFTER EACH COMBINATION EXECUTES THE TASK tj

Initial resources V c
j rc1 re1 rc2 re2 rc3 re3

2000

cj1 = {{1, 1, 0} {0, 1, 0} {0, 0, 0}} 170 1830 70 1930 0 2000

cj2 = {{0, 1, 0} {1, 1, 0} {0, 0, 0}} 80 1920 120 1880 0 2000

cj3 = {{0, 1, 0} {0, 1, 0} {1, 0, 0}} 80 1920 70 1930 80 1920

C. Market-Gini Coefficient-based Task Allocation Approach

For a given set of tasks, market -based method can make the
robot coalition consume the least resources when executing
each task, but in general, the number of task completion is
fewer; Gini coefficient-based method can make the coalition
consider the executive capability for the future tasks by
keeping the resource difference degree minimum, so it can
complete more tasks within the limited resources, but the av-
erage resource consumed per task may increase. Two methods
have own advantages and disadvantages, therefore, we will
combine the advantages of Gini coefficient-based method and
marked-based method put forward a hybrid method, namely,
market-Gini coefficient-based method. The algorithm of hybrid
method is shown as Algorithm 2.

Algorithm 2. Market-Gini coefficient-based task allocation method

1: procedure
2: set V r

i of each robot i

3: set V t
j of each robot j

4: set a G-value
5: set the initial resources of each robot
6: for all tj in T do
7: Algorithm 1 is described concretely as follows: calculate the Gini

coefficient of the coalition
8: if the Gini coefficient is equal or greater than the value of set

G then
9: implement Gini coefficient-based method

10: else
11: implement market-based method
12: end if
13: end for
14: end procedure

The idea of the hybrid method: setting a value of G, using
the market-based method to allocate tasks at the beginning
stage (Line 10−11), then using the Gini coefficient-based
method when the G-value of the coalition is greater than or
equal to the set G-value in execution process (Line 8−9).

The setting of G-value is influenced by many factors, such
as the relative importance between task completion number
and average consumption of each task, the size of the robot
coalition, the degree of heterogeneity, the resource levels of
robots, the number of tasks, and so on (the verification of
influence can be seen in Sections V-A-2, V-B-2 and V-C-2.
According to the provisions of the relevant organization of
United Nations, the Gini coefficient below 0.2 denotes the
income absolute average; 0.2 to 0.3 denotes relative average;
0.3 to 0.4 denotes relatively reasonable; 0.4 to 0.5 denotes the
income inequality relatively large; more than 0.5 denotes a
huge income gap. Therefore, we make 0.5 as the upper limit

of the set value of G, and 0 ≤ G ≤ 0.5. In fact, when the set G
equals to 0, Gini coefficient- based method is used to allocate
tasks only. There will be a kind of situation: the same task
completion number and the same average resources consumed
per task under different relatively big set value of G. This
is because before reaching the set value, resources of some
robots have been fast consumed during the execution process
with market-based method, and the task allocation has been
interrupted before using the Gini coefficient-based method.

As we mentioned above, G can take any value between
0 and 0.5. We will downsize the value range to make it
possible for using the ideal point method of the multi-objective
evaluation function to select the optimal value of G as a set
point to the actual task allocation. The selection algorithm for
the optimal set value of G is shown as Algorithm 3.

Algorithm 3. The selection algorithm for the optimal set value of G

1: procedure
2: set V r

i of each robot i

3: set V t
j of each robot j

4: set G = {0, 0.1, 0.2, 0.3, 0.4, 0.5}
5: set the initial resources of each robot
6: for all gi in G do
7: for all tj in T do
8: calculate the Gini coefficient of the coalition
9: if the Gini coefficient is equal or greater than gi

10: implement Gini coefficient-based method
11: else
12: implement market-based method
13: end if
14: end for
15: input the number of tasks completed to infor

16: input average resource consumed per task to infor

17: end for
18: select the maximum task completion number as f0

1 and the minimum
average resource consumed per task as f0

2

19: input λ1, λ2

20: for each pair in infor do
21: calculate U(x)

22: end for
23: select the corresponding G-value of minimum U(x)

24: output the optimal set value of G

25: end procedure

1) Set G equals 0, 0.1, 0.2, . . . , 0.5, respectively (Line 4),
for a given set of tasks, making the simulation allocation
according to the market-based method at the beginning stage,
then use the Gini coefficient-based method when the G-value
of coalition is greater than or equal to the set value in execution
process (Line 5−14).
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2) Record the number of tasks completed f1(x) and the total
resource consumption (Line 15−16), total resource consump-
tion divided by the task completion number is the average
resource consumption per task f2(x). Now, we can acquire
the maximum task completion number f0

1 and the minimum
average resource consumed per task f0

2 (Line 18).
3) Structuring the multi-objective evaluation function U(x)

((5) or (6)), calculating U(x) under each set value of G,
(Line 19−22), and taking the G-value corresponding to the
minimum U(x) as the set value of G in the actual process of
task allocation (Line 23−24).

We construct multi-objective evaluation function based on
the weighted ideal point method, as shown in (5):

U(x) = λ1

[
f1(x)− f0

1

f0
1

]2

+ λ2

[
f2(x)− f0

2

f0
2

]2

(5)

λ1 and λ2 are the nonnegative weights, which are used to
measure the relative importance of the task completion number
and the average resource consumed per task, λ1 + λ2 = 1. λ1

and λ2 can be omitted when the importance of the number of
tasks completed and the average resource consumed per task
are fair, now (5) becomes:

U(x) = λ1

[
f1(x)− f0

1

f0
1

]2

+ λ2

[
f2(x)− f0

2

f0
2

]2

(6)

λ1 and λ2 are the nonnegative weights, which are used to
measure the relative importance of the task completion number
and the average resource consumed per task, λ1 + λ2 = 1. λ1

and λ2 can be omitted when the importance of task completed
number and average resource consumed per task is fairly, now
(5) becomes:

U(x) =
[
f1(x)− f0

1

f0
1

]2

+
[
f2(x)− f0

2

f0
2

]2

. (7)

V. EXPERIMENTS

In this part, we have performed three simulation experi-
ments. In the simulation experiments, the coalition executes
a task every time. The different type of unit capability
requirements of a task must not exist on the same robot
or on different robots but the same type of unit capability
requirements must exist on different robots. Tasks are gen-
erated randomly and injected into the coalition one by one.
The capability requirement of a task involves three types
of capability, each task can be executed when the resources
of corresponding robots are enough. The estimated resources
consumption that a robot spends on using a capability for a
particular task is obtained by multiplying the weight of the
task by corresponding capability element in the robots resource
consumption vector. It is assumed that a task is immediately
finished when all members of selected combination arrive at
the task. Robot parameters used in experiments are as shown
in Table IV.

TABLE IV
ROBOT PARAMETERS USED IN EXPERIMENTS

R
Capability Resource consumption Initial resources

vector (V r
i ) vector (V rc

i ) Balanced Unbalanced

r1 {1, 1, 0} {90, 80, 0} 2000 1850

r2 {1, 1, 0} {50, 70, 0} 2000 2460

r3 {1, 0, 1} {80, 0, 90} 2000 2900

r4 {0, 1, 1} {0, 90, 70} 2000 2750

r5 {1, 1, 1} {50, 60, 80} 2000 2600

A. Same and Different Initial Resources of Robots
We use the same robot coalition including four robots (r1

to r4 in Table IV) and the same task set including forty tasks
to carry out experiments in the conditions of the same and
different initial resources of robots.

Section V-A-1 compares the average number of tasks com-
pleted and average resource consumed per task of robot
coalition under the market-based method, the centralized load-
balanced sensor dispatch (CentralLBSD) algorithm [23], the
Gini coefficient-based method and the market-Gini coefficient-
based method, and shows the resource consumption process of
the market-based method and Gini coefficient-based method,
which can illustrate each method’s influence on resources
reserve capability of robot coalition for the future tasks, and
intuitively explain the reason of using the Gini coefficient-
based method which can complete more tasks than using
market-based method. Section V-A-2 validates that the initial
resources of robots have the influence on the optimal G-value
setting in the hybrid method.

As we mentioned in Section II, the CentralLBSD algorithm
is used to solve the dispatch problem of mobile sensor nodes.
The idea is to minimize their moving energy while keeping
their energy consumption balanced after each round. In this
paper, we use CentralLBSD to allocate tasks among different
robots. We make every unit capacity requirement as an event,
and make every robot as a sensor node. Each unit capacity
requirement needs a robot having the corresponding capacity.

1) Comparison of the Average Number of Tasks Completed
and the Average Resource Consumed Per Task

We have run the experiment for 30 times. Each time we have
produced a task set including forty tasks randomly as the test
case.

Figs. 2−4 intuitively show the average number of tasks
completed, the changing process of resources of each robot
in a test case and the average resource consumed per task.

As illustrated in Fig. 2, when we use the same robot
coalition with the same task set in the conditions of the robots
having the same and different initial resources, the number of
tasks completed by Gini coefficient-based method is higher
than the one obtained by the market-based method. Using
the market-Gini coefficient-based method, no matter G takes
which set value, the number of tasks completed is not less than
using the market-based method. About CentralLBSD algo-
rithm, we will make comparison with market-Gini coefficient-
based method combined with average resource consumed per
task after showing Fig. 4.

Fig. 3 intuitively explains why the number of tasks com-
pleted using the Gini coefficient-based method is more than
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Fig. 2. Average number of tasks completed under three methods. (a1) and (a2), the same initial resources of robots (in the hybrid method,
λ1 = λ2); (b1) and (b2), different initial resources of robots (in the hybrid method, λ1 = λ2).

Fig. 3. Residual resources of robots over time. (a) market-based in balanced condition; (b) Gini coefficient-based in balanced condition; (c)
market-based in unbalanced condition; (d) Gini coefficient-based in unbalanced condition.



WU et al.: GINI COEFFICIENT-BASED TASK ALLOCATION FOR MULTI-ROBOT SYSTEMS WITH LIMITED ENERGY RESOURCES 163

Fig. 4. Average resource consumed per task under three methods. (a1) and (a2), the same initial resources of robots (in the hybrid method,
λ1 = λ2); (b1) and (b2), different initial resources of robots (in the hybrid method, λ1 = λ2).

using the market-based method. Regardless of the robots have
the same (Fig. 3 (a) and (b)) or different initial resources
(Fig. 3 (c) and (d)), the residual resources of four robots under
the market-based method gradually diverge over time, eventu-
ally resulting in early exhaustion of two robots. In contrast, the
Gini coefficient-based method causes the residual resources
converge to each other even in the unbalanced setup, and
makes the resources of all robots exhaust simultaneously. The
method effectively controls the resources difference degree
of the coalition and gives full consideration to the resource
reserves for the subsequent tasks, thereby, the robot coalition
can keep maximal synergism over time.

The total resource consumption of coalition divided by the
number of tasks completed is the average resource consumed
per task, as illustrated in Fig. 4. It is obvious that, when we
use market-based method, in general, the average resource
consumed per task is lower than the Gini coefficient-based
method; when we use market-Gini coefficient-based method,
the average resource consumed per task under different set
G-values is not more than using Coefficient-based method in
general.

When using the CentralLBSD algorithm to allocate tasks,
Fig. 2 (a1), (b1) and Fig. 4 (a1), (b1) show that the average
number of tasks completed is more than using the marked-
based method, and the average resource consumed per task
is less than Gini coefficient-based method. However, Cen-
tralLBSD algorithm’s flexibility is obviously inadequate com-
pared with market-Gini coefficient-based method. Market-Gini
coefficient-based method can set the different optimal values

of G according to the different application environments. In
addition, when the number of completed tasks of CentralLBSD
is close to market-Gini coefficient-based method, the aver-
age resource consumed per task is more than market-Gini
coefficient-based method, such as in the condition of the same
initial resources of robots, the task completion number of
CentralLBSD is 25.2 ((Fig. 2 (a1)), which is close to 25.7 and
24.2 when the setting value of G is 0.2 and 0.3 respectively
(Fig. 2 (a2)), and the average resource consumed per task
of CentralLBSD is 295.5 (Fig. 4 (a1)), which is more than
the 293.2 and 288.8 when the setting value G is 0.2 and
0.3 respectively (Fig. 4 (a2)). The case under different initial
resources of robots is also like this. In a word, the results
prove the advantage of market-Gini coefficient-based method
in realizing the dual optimization objectives.

In conclusion, the experiment results prove that no matter
what initial resources the robots possess, the Gini coefficient-
based method in task allocation can effectively improve the
number of tasks completed by robot coalition, and the market-
Gini coefficient-based method can make a balance between
the number of tasks completed and the resource consumption
according to their importance degree.

2) Whether the Initial Resources of Robots Have an Influ-
ence on Optimal G-value Setting?

The purpose of this experiment is to validate whether
the initial resources of robots have an influence on G-value
setting under the same task set and the same robot coalition
conditions.

We choose five pairs of (λ1, λ2) to represent the relative
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Fig. 5. Average number of tasks completed under three methods. (a1) and (a2), three robots (in the hybrid method, λ1 = λ2); (b1) and
(b2), five robots (in the hybrid method, λ1 = λ2).

importance of the number of tasks completed and the average
resource consumed per task, then utilize the selection algo-
rithm for the G-value setting to calculate the optimal G-values
under the same and different initial resources setups, as shown
in Table V.

TABLE V
THE OPTIMAL G-VALUE UNDER THE SAME AND DIFFERENT

INITIAL RESOURCES SETUPS

Initial resource
λ1, λ2

(1, 1) (0.1, 0.9) (0.1, 0.9) (0.1, 0.9) (0.1, 0.9)

Same 0.2 0.3 0.3 0.2 0.1

Different 0.0 0.2 0.0 0.0 0.0

From Table V, we can conclude that the G-value setting in
the market-Gini coefficient-based method is influenced by the
initial resources setup of the robots.

B. Different Numbers of Robots
This experiment uses different numbers of robots with the

same task set under the condition that the robots have the
same initial resources. Part 1) compares the average number
of tasks completed and the average resource consumed per
task by using market-based method, the centralized load-
balanced sensor dispatch (CentralLBSD) algorithm [23], Gini
coefficient-based method and market-Gini coefficient-based
method. Part 2) validates the influence of the number of robots
on the optimal G-value setting in the hybrid method.

1) Comparison of the Average Number of Tasks Completed
and the Average Resource Consumed Per Tasks

We have run the test for thirty times. Each time we have
produced a task set including sixty tasks randomly as the test
case, and we respectively allocate tasks to two robot coalitions.
The first coalition contains three robots (r1 to r3 in Table
IV), and the second contains five robots (r1 to r5 in Table
IV), the robots are initially endowed with the same amount
of resources. Figs. 5 and 6 intuitively compare the average
number of tasks completed and the average resource consumed
per task in thirty tests.

Fig. 5 shows the average number of tasks completed by
three different methods respectively when we use different
numbers of robot with the same task set under the condition
that the robots have the same initial resources. We observe that
the average number of tasks completed by Gini coefficient-
based method is higher than the one obtained by market-
based method. In the market-Gini coefficient-based method,
no matter G adopts which set point, it can complete more
tasks than the market-based method. Furthermore, with some
set points, the average number of tasks completed is more than
Gini coefficient-based method, which reflects the advantage of
hybrid method clearly. About CentralLBSD algorithm, we will
make comparison with market-Gini coefficient-based method
combined with average resource consumed per task after
showing Fig. 6.

The total resource consumption of coalition divided by the
number of tasks completed is the average resource consumed
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Fig. 6. Average resource consumed per task under three methods. (a1) and (a2), three robots (in the hybrid method, λ1 = λ2); (b1) and
(b2), five robots (in the hybrid method, λ1 = λ2).

per task, as illustrated in Fig. 6. It is obvious that, when
we use the market-based method, in general, the average
resource consumed per task is lower than the Gini coefficient-
based method; when we use the market-Gini coefficient-
based method, the average resource consumed per task under
different G-values is no more than using Gini coefficient-based
method. Furthermore, with some set points (Fig. 6 (a2)), the
average resource consumed per task is less than the market-
based method, which reflects the advantage of hybrid method
clearly.

When using the CentralLBSD algorithm to allocate tasks,
Fig. 5 (a1), (b1) and Fig. 6 (a1), (b1) show that the average
number of tasks completed is more than using the marked-
based method, and the average resource consumed per task
is less than using the Gini coefficient-based method under
the condition of different numbers of robots. However, Cen-
tralLBSD algorithm’s flexibility is obviously inadequate com-
pared with market-Gini coefficient-based method. In addition,
when the task completion number of CentralLBSD is close
to market-Gini coefficient-based method, the average resource
consumed per task is more than market-Gini coefficient-based
method, such as the task completion number of CentralLBSD
is 22.7 ((Fig. 5 (a1)), which is close to 23.0 and 22.5 when the
value of G is 0.3 and 0.4 respectively (Fig. 5 (a2)), and the
average resource consumed per task of CentralLBSD is 228.1
(Fig. 6 (a1)), which is more than the 224.0 and 222.0 when the
setting value G is 0.3 and 0.4 respectively (Fig. 6 (a2)). The

results prove the advantage of market-Gini coefficient-based
method in realizing the dual optimization objectives.

In conclusion, the experiment results prove that no matter
what number of robots, the Gini coefficient-based method in
task allocation can effectively improve the number of tasks
completed by the coalition, and the market-Gini coefficient-
based can make a balance between the number of tasks
completed and the resource consumption according to their
importance degree.

2) Whether the Size of the Robot Coalition Has an Influence
on Optimal G-value Setting?

The purpose of this experiment is to validate whether the
size of the robot coalition has an influence on G-value setting
with the same task set and the same initial resources of robots.

We choose five pairs of (λ1, λ2) to represent the relative
importance of the number of tasks completed and the average
resource consumed per task, then utilize the selection algo-
rithm for the G-value setting to calculate the optimal G-values
under different numbers of robot, as shown in Table VI . From
Table VI, we can conclude that the G-value setting in market-
Gini coefficient-based method is influenced by the size of the
robot coalition.

C. Different Task Sets
This experiment respectively uses the market-based method,

the centralized load-balanced sensor dispatch (CentralLBSD)
algorithm [23], the Gini coefficient-based method and the
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Fig. 7. Average number of tasks completed under three methods. (a1) and (a2), 30 tasks (in the hybrid method, λ1 = λ2); (b1) and (b2),
50 tasks (in the hybrid method, λ1 = λ2).

TABLE VI
THE OPTIMAL G-VALUE UNDER DIFFERENT NUMBERS OF

ROBOT

Robot number
λ1, λ2

(1,1) (0.1, 0.9) (0.1, 0.9) (0.1, 0.9) (0.1, 0.9)

3 0.4 0.4 0.4 0.4 0.1

5 0.4 0.5 0.5 0.4 0.4

market-Gini coefficient-based method to allocate tasks. Part
1) compares the number of tasks completed and the average
resource consumed per task under the conditions of the same
number of robots, the same initial resources setup and the
different task sets. Part 2) validates that the task set has an
influence on the G-value setting in the hybrid method.

1) Comparison of the Average Number of Tasks Completed
and the Average Resource Consumed Per Task

We have run the tests for 30 times. Each time we used two
different task sets, task set 1 includes thirty tasks and task set
2 includes fifty tasks, and we used a coalition including four
robots (r1 to r4 in Table IV), the robots are initially endowed
with the same amount of resources. Figs. 7 and 8 intuitively
show the average number of tasks completed per test and the
average resource consumed per task.

Fig. 7 shows the average number of tasks completed by three
different methods respectively when we use different task sets
with the same robot coalition under the condition that the
robots have the same initial resources. We observe that the
average number of tasks completed by Gini coefficient-based

method is higher than the one obtained by the market-based
method. And in the market-Gini coefficient-based method, no
matter G takes which set value, the average number of tasks
completed is not less than the market-based method. Further-
more, as shown in Fig. 7, in some set points, the average
number of tasks completed is more than Gini coefficient-
based method, which reflects the advantage of the hybrid
method ulteriorly. About CentralLBSD algorithm, we will
make comparison with market-Gini coefficient-based method
combined with average resource consumed per task as shown
in Fig. 8.

The total resource consumption of the coalition divided
by the number of tasks completed is the average resource
consumed per task, as shown in Fig. 8. It is obvious that,
when we use the market-based method, in general, the average
resource consumed per task is lower than the Gini coefficient-
based method; and when we use the market-Gini coefficient-
based method, the average resource consumed per task under
different G-values is not more than the Gini coefficient-based
method in general.

When using the CentralLBSD algorithm to allocate tasks,
Fig. 7 (a1), (b1) and Fig. 8 (a1), (b1) show that the average
number of tasks completed is more than using the market-
based method, and the average resource consumed per task
is less than using the Gini coefficient-based method under
the condition of different task sets. However, CentralLBSD
algorithm’s flexibility is obviously inadequate compared with
market-Gini coefficient-based method. In addition, when the
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Fig. 8. Average resource consumed per task under three methods. (a1) and (a2), 30 tasks (in the hybrid method λ1 = λ2); (b1) and (b2),
50 tasks (in the hybrid method, λ1 = λ2).

task completion number of CentralLBSD is close to market-
Gini coefficient-based method, the average resource consumed
per task is more than market-Gini coefficient-based method,
such as the task completion number of CentralLBSD is 24.3
((Fig. 7 (a1)), which is same when the setting value G is 0.2
(Fig. 7 (a2)), and the average resource consumed per task of
CentralLBSD is 302.6 (Fig. 8 (a1)), which is more than 301.0
when the setting value G is 0.2 (Fig. 8 (a2)). The results
prove the advantage of market-Gini coefficient-based method
in realizing the dual optimization objectives.

In conclusion, the experiment results prove that under any
task set, the Gini coefficient-based method in task allocation
can effectively improve the number of tasks completed by
robot coalition, and the market-Gini coefficient-based method
can make a balance between the number of tasks completed
and the resource consumption according to their importance
degree.

2) Whether the Task Set Has an Influence on the Optimal
G-value Setting?

The purpose of this experiment is to validate whether the
task set has an influence on the G-value setting under the
same robot coalition and the same initial resources of robots
conditions.

We choose five pairs of (λ1, λ2) to represent the relative
importance of the number of tasks completed and the average
resource consumed per task, then utilize the selection algo-
rithm for the G-value setting to calculate the optimal G-values
under different task set, as shown in Table VII.

From Table VII, we can conclude that the G-value setting

in the market-Gini coefficient-based method is influenced by
the task set.

TABLE VII
THE OPTIMAL G-VALUE UNDER DIFFERENT TASK NUMBERS

Task number
λ1, λ2

(1, 1) (0.1, 0.9) (0.2, 0.8) (0.3, 0.7) (0.7, 0.3)

30 0.1 0.2−0.5 0.1 0.1 0.1

50 0.2 0.4−0.5 0.4−0.5 0.4−0.5 0.2

VI. CONCLUSIONS

Although task allocation problem of multi-robot has been
studied extensively, few literatures have been provided on the
basis of energy resource constraint of robot. And in practical
multi-robot systems, the number of tasks completed is crucial
to system performance in some applications such as search
and rescue, exploration, and site clearing. Inspired by the
idea of “reducing internal resources distribution difference
among robots”, we investigate the task allocation problem
with resource constraint in the multi-robot systems using Gini
coefficient. We find that task allocation based on Gini coeffi-
cient can effectively improve the number of tasks completed
by robots system. On the other hand, we also find that it is
better to make a compromise between the number of tasks
completed and resource consumed when resource cost has to
be considered. Therefore, we focus on “minimizing resource
consumed” and “maximizing the number of tasks completed”
as two optimization objectives in the task allocation of multi-
robot systems, and propose the market-Gini coefficient-based
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method. Our market-Gini coefficient-based method allows a
robot coalition to select the optimal value of G according
to the importance of the two optimization objectives, so the
method can be flexibly adapted and easily implemented in
various application contexts. In the paper, we demonstrated
the superiority of our proposed methods over the market-based
approach using simulation experiments.
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