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Guaranteed Cost Consensus for High-dimensional
Multi-agent Systems With Time-varying Delays

Zhong Wang, Ming He, Tang Zheng, Zhiliang Fan, and Guangbin Liu

Abstract—Guaranteed cost consensus analysis and design
problems for high-dimensional multi-agent systems with time-
varying delays are investigated. The idea of guaranteed cost con-
trol is introduced into consensus problems for high-dimensional
multi-agent systems with time-varying delays, where a cost
function is defined based on state errors among neighboring
agents and control inputs of all the agents. By the state space
decomposition approach and the linear matrix inequality (LMI),
sufficient conditions for guaranteed cost consensus and consensu-
alization are given. Moreover, a guaranteed cost upper bound of
the cost function is determined. It should be mentioned that these
LMI criteria are dependent on the change rate of time delays
and the maximum time delay, the guaranteed cost upper bound
is only dependent on the maximum time delay but independent
of the Laplacian matrix. Finally, numerical simulations are given
to demonstrate theoretical results.

Index Terms—Guaranteed cost consensus, high-dimensional,
multi-agent system, time-varying delay.

I. INTRODUCTION

RECENTLY many researchers paid much attention to the
distributed coordination control of multi-agent systems

due to its broad practical applications including formation
control of mobile agents [1], synchronization in wireless
sensor networks [2], distributed automatic generation control
for cyber-physical microgrid system [3], and rendezvous [4]
or flocking [5] of multiple vehicles. Consensus is an essential
problem for multi-agent systems and it has been extensively
investigated (see the survey papers [6]−[8] and the references
therein).

In the existing works, an important topic on the consensus
problems is the effect of time delays which include computa-
tional delays of agents and transmission delays in the transfer
of data between agents. Based on the frequency domain
analysis, the Lyapunov function and the concept of delayed
and hierarchical graph, many conclusions for low-dimensional
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multi-agent systems with time delays were obtained for single-
integrator cases (e.g., [9]−[12]) and double-integrator cases
(e.g., [13]−[16]). For high-dimensional cases, the dynamics
of each agent can be described as high-order integrator [17]−
[19]. In fact, agents of high-dimensional cases were depicted
by the state space approach in most of works [20]−[23],
where the analysis approach included the frequency domain
analysis, the Lyapunov function approach and the property of
nonnegative matrix.

With the development of the control theory, it is usually
desirable to design a controller which not only stabilizes the
system but also ensures an adequate level of performance.
To this end, a design approach is so-called guaranteed cost
control [24]−[26], where the performance and the energy
consumption are considered simultaneously. In the aforemen-
tioned works on consensus problems, only the consensus reg-
ulation performance for multi-agent systems was considered.
However, the energy consumption is also essential for the
consensus. Thus, the idea of guaranteed cost control should be
applied for the consensus problem to simultaneously consider
the consensus regulation performance and the control energy
consumption. To the best of our knowledge, there are very few
works to investigate guaranteed cost consensus problems. In
[27]−[30], the guaranteed cost consensus problems for low-
dimensional multi-agent systems were investigated. For high-
dimensional multi-agent systems, [31] studied the guaranteed
cost leader-follower control. In [32], the problem of event
based guaranteed cost consensus for high-dimensional multi-
agent systems was considered based on a sampled-data event
triggering mechanism. It should be pointed out that the effects
of time delays for guaranteed cost consensus problems were
not considered in [28]−[32].

Motivated by this, guaranteed cost consensus problems for
high-dimensional multi-agent systems with time-varying de-
lays are investigated in the current paper. Comparing with the
existing works, there are two contributions. On one hand, the
guaranteed cost consensus problems are introduced into high-
dimensional multi-agent systems. In [27]−[30], each agent
of multi-agent systems was described as low-dimensional
integrator dynamics. But those analysis approaches cannot
be directly used to the guaranteed cost consensus problem
for high-dimensional case. On the other hand, the effects of
time-varying delays are considered, while the works in [28]−
[32] did not consider this issue. In [27], the guaranteed cost
consensus problem for first-order multi-agent systems with
time delays were studied, but the time delay is time-invariant.

The remainder of this paper is organized as follows. In
Section II, the graph theory is given and the problem descrip-
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tion of guaranteed cost consensus is presented. In Section III,
sufficient conditions for guaranteed cost consensus are given,
an upper bound of the cost function is determined, and an
approach is proposed to obtain the consensus function. In Sec-
tion IV, a numerical simulation is given. Finally, concluding
remarks are stated in Section V. Throughout the current paper,
{A1, A2, . . . , An} represents a block-diagonal matrix with Ai

(i = 1, 2, . . . , n) on its diagonal, 1N ∈ RN denotes an N -
dimensional column vector with all components 1, 0 is used
to denote zero matrices of any size with zero vectors and
zero number as special cases. IN ∈ RN×N represents the
identity matrix of size N . The symbol ⊗ is used to represent
the Kronecker product. The notation asterisk ∗ represents the
elements below the main diagonal of a symmetric matrix.

II. PRELIMINARIES

An undirected graph G = G(V, E ,W ) consists of a node set
V = {v1, v2, . . . , vN}, an edge set E ⊆ {(vi, vj) : vi, vj ∈ V},
and a symmetric adjacency matrix W = [wij ] ∈ RN×N with
wij ≥ 0 and wii = 0, where wij > 0 if and only if (vj , vi) ∈
E . The node index belongs to a finite index set IN = {1, 2,
. . . , N}. The neighboring set of node vi is denoted by Ni =
{vj ∈ V : (vj , vi) ∈ E}. The degree of node vi is defined as
degin(vi) =

∑
j∈Ni

wij and the degree matrix of G as D =
diag{degin(v1),degin(v2), . . . ,degin(vN )}. The matrix L =
D −W is called the Laplacian matrix associated with G. If
there does not exist an isolated node in G, then G is said to
be connected.

The following lemma shows basic properties of the Lapla-
cian matrix of an undirected graph.

Lemma 1 [33]: Let L ∈ RN×N be the Laplacian matrix of
an undirected graph G, then 1) L at least has a zero eigenvalue,
and 1N is an associated eigenvector; that is, L1N = 0.
2) If G is connected, then 0 is a simple eigenvalue of L,
and all the other N − 1 eigenvalues are positive; that is,
0 = λ1 < λ2 ≤ · · · ≤ λN , where λi (i ∈ IN ) denotes
the eigenvalue of L.

A high-dimensional multi-agent system composed of N
homogeneous agents is considered. The interaction topology
can be described by an undirected graph G, each node stands
for an agent, the edge between any two nodes denotes the
interaction channel between them, and the weight of the edge
corresponds to the interaction strength. Each agent can be
described as general linear dynamics:

ẋi(t) = Axi(t) + Bui(t) (1)

where i = 1, 2, . . . , N , A ∈ Rd×d and B ∈ Rd×m are
constant matrices, xi(t) is the state of agent i, ui(t) is the
control input of agent i. The state x(t) is marked as x(t) =
[xT

1 (t), xT
2 (t), . . . ,xT

N (t)]T . Then, the multi-agent system can
be rewritten as

ẋ(t) = (IN ⊗A) x(t)− (IN ⊗B) u(t). (2)

Consider the following consensus protocol

ui(t) = K
∑

j∈Ni

wij (xj(t− τ(t))− xi(t− τ(t))) (3)

where i, j ∈ {1, 2, . . . , N}, K ∈ Rm×d is a control gain
matrix, Ni represents the neighboring set of agent i, wij is
the interaction strength of the edge from agent j to agent i
and τ(t) denotes the time-varying delay during the information
communication. The time-varying delay τ(t) satisfies 0 ≤ τ(t)
≤ τmax and |τ̇(t)| ≤ ` < 1, where τmax and ` are known
positive constants. In global form, the consensus protocol is

u(t) = − (L⊗K ) x(t− τ(t)). (4)

Then, the dynamics of multi-agent system (2) with protocol
(4) can be described by

ẋ(t) = (IN ⊗A) x(t)− (L⊗ BK )x(t− τ(t)) (5)

where x(t) = x(0), t ∈ [−τmax, 0].
Let δij(t) = xj(t)−xi(t) represents the state error between

agent j and agent i, define the following cost function for
multi-agent system (5) with symmetric and positive definite
matrices Qx ∈ Rd×d and Qu ∈ Rm×m:

JC = JCx + JCu (6)

where

JCx =
∫ ∞

0

N∑

i=1

N∑

j=1

wij

(
δT

ij(t)Qxδij(t)
)
dt

JCu =
∫ ∞

0

N∑

i=1

uT
i (t)Quui(t)dt.

Definition 1: Multi-agent system (5) is said to achieve guar-
anteed cost consensus if there exists a vector-valued function
c(t) such that limt→∞(x(t)−1N ⊗c(t)) = 0 and there exists
a positive scalar J∗C such that JC ≤ J∗C , where c(t) is called
a consensus function and J∗C is said to be a guaranteed cost.

Definition 2: Multi-agent system (2) is said to be guaranteed
cost consensualizable by control protocol (4) if there exists
a control gain matrix K such that the multi-agent system
achieves guaranteed cost consensus.

Remark 1: In cost function (6), JCx and JCu can be
regarded as the consensus regulation performance and control
energy consumption for high-dimensional multi-agent sys-
tems, respectively. Because consensus problems for multi-
agent systems focus on state errors among neighboring agents
instead of states of all agents, JCx is constructed by state
errors. The guaranteed cost consensus problem is to find a
control gain matrix K such that the cost function JC has a
guaranteed cost upper bound J∗C .

III. MAIN RESULTS

By Lemma 1, it can be obtained that the eigenvalue λ1 = 0
with the associated eigenvector 1N/

√
N and λ1 ≤ λ2 ≤ · · ·

≤ λN . Then, there exists an orthogonal matrix

U =




1
N

1T
N−1

N
1N−1

N
Ū




which satisfies that UT U = IN and

Λ = UT LU = diag{0,Λλ} = diag{0, λ2, λ3, . . . , λN}.
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Let

κ(t) = (UT ⊗ Id)x(t) =
[
κT

c (t),κT
r (t)

]T
(7)

where κc(t) ∈ Rd and κr(t) = [κT
r2(t),κ

T
r3(t), . . . ,κ

T
rN (t)]T

∈ R(N−1)d, then multi-agent system (5) can be transformed
into

κ̇c(t) = Aκc(t) (8)
κ̇ri(t) = Aκri(t)− λiBKκri(t− τ(t)) (9)

where i = 2, 3, . . . , N .
For cost function (6), it can be shown that

JCx =
∫ ∞

0

xT (t) (2L⊗Qx) x(t)dt

(10)

JCu =
∫ ∞

0

xT (t− τ(t))(L2 ⊗KT QuK)x(t− τ(t))dt.

(11)

Due to Λλ = diag{λ2, λ3, . . . , λN}, then

κT
r (t)(Λλ ⊗KT QxK)κr(t)

=
N∑

i=2

(
λiκ

T
ri(t)K

T QxKκri(t)
)
. (12)

Thus, by (7) and (10), it can be seen that

JCx =
N∑

i=2

∫ ∞

0

2λiκ
T
ri(t)Qxκri(t)dt. (13)

Similarly, by (7) and (11), one has

JCu =
N∑

i=2

∫ ∞

0

λ2
i κ

T
ri(t− τ(t))K T QuKκri(t− τ(t))dt.

(14)

Thus, one can obtain that cost function (6) can be rewritten
as

JC =
N∑

i=2

∫ ∞

0

2λiκ
T
ri(t)Qxκri(t)dt

+
N∑

i=2

∫ ∞

0

λ2
i κ

T
ri(t−τ(t))K T QuKκri(t−τ(t))dt.

(15)

Before obtaining the main result, the following lemma
should be introduced.

Lemma 2 [34]: Let κ(t) ∈ Rd be a vector-valued function
with first-order continuous-derivative entries. Then the follow-
ing integral inequality holds for any matrices Φ1,Φ2 ∈ Rd×d,
d-dimensional matrix W = WT > 0, and a scalar function
τ(t) ≥ 0:

−
∫ t

t−τ(t)

κ̇T (s)W κ̇(s)ds

≤ χT (t)Φaχ(t) + τmaxχ
T (t)ΦT

b W−1Φbχ(t)

where

χ(t) =
[

κ(t)
κ(t− τ(t))

]

Φa =
[

ΦT
1 + Φ1 −ΦT

1 + Φ2

∗ −ΦT
2 − Φ2

]
, Φb = [Φ1,Φ2] .

The following theorem presents a sufficient condition for
guaranteed cost consensus.

Theorem 1: Multi-agent system (5) with an undirected and
connected topology G achieves guaranteed cost consensus if
there exist d-dimensional matrices P = PT > 0, R = RT >
0, W = WT > 0, Φ1 and Φ2 such that

Ωi =
[

Ωi11 Ωi12

∗ Ωi22

]
< 0, i = 2, N

where

Ωi11 =




Ω111 Ωi112 τmaxA
T W

∗ Ω122 −τmaxλiK
T BT W

∗ ∗ −τmaxW




Ωi12 =




τmaxΦT
1 2λiQx 0

τmaxΦT
2 0 λiK

T Qu

0 0 0




Ωi22 = diag{−τmaxW,−2λiQx,−Qu}
Ω111 = AT P + PA + R + ΦT

1 + Φ1

Ωi112 = −λiPBK − ΦT
1 + Φ2

Ω122 = (`− 1)R− ΦT
2 − Φ2

Proof: Firstly, let

xc(t) = (U ⊗ Id)
[
κT

c (t), 0
]T

(16)

xr(t) = (U ⊗ Id)
[
0,κT

r (t)
]T

(17)

where 0 ∈ R1×(N−1)d in (16) and 0 ∈ R1×d in (17). Due to
U is an orthogonal matrix, then xc(t) and xr(t) are linearly
independent. By (7), one has

x(t) = xc(t) + xr(t). (18)

By (16), it can be obtained that

xc(t) =
1N√
N
⊗ κc(t). (19)

Thus, it follows that multi-agent system (5) achieves con-
sensus if and only if subsystem (9) is asymptotically stable;
that is,

lim
t→∞

κri(t) = 0, i = 2, 3, . . . , N. (20)

Next, consider the following Lyapunov-Krasovskii function
(LKF) candidate

V (t) = V1(t) + V2(t) + V3(t) (21)

where

V1(t) =
N∑

i=2

κT
ri(t)Pκri(t)
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V2(t) =
N∑

i=2

∫ t

t−τ(t)

κT
ri(t)Rκri(t)ds

V3(t) =
N∑

i=2

∫ 0

−τmax

∫ t

t+θ

κ̇T
ri(s)W κ̇ri(s)dsdθ.

Then, the time derivative of V (t) along the trajectory of (9)
is

V̇1(t) =
N∑

i=2

(
κT

ri(t)
(
AT P + PA

)
κri(t)

)

− 2
N∑

i=2

(
λiκ

T
ri(t)PBKκri(t− τ(t))

)
(22)

V̇2(t) ≤
N∑

i=2

(
κT

ri(t)Rκri(t)
)

− (1− `)
N∑

i=2

(
κT

ri(t− τ(t))Rκri(t− τ(t))
)

(23)

V̇3(t) =
N∑

i=2

(
τmaxκ̇

T
ri(t)W κ̇ri(t)

)

−
N∑

i=2

(∫ t

t−τmax

κ̇T
ri(s)W κ̇ri(s)ds

)
. (24)

From (9), one has

N∑

i=2

(
κ̇T

ri(t)W κ̇ri(t)
)

=
N∑

i=2

(
χT

ri(t)D
T
i WDiχri(t)

)

where χT
ri(t) = [κT

ri(t),κ
T
ri(t− τ(t))]T and the matrix Di =

[A, −λiBK]. By Lemma 2, it can be obtained that

N∑

i=2

(
−

∫ t

t−τmax

κ̇T
ri(s)W κ̇ri(s)ds

)

≤
N∑

i=2

(
−

∫ t

t−τ(t)

κ̇T
ri(s)W κ̇ri(s)ds

)

≤
N∑

i=2

(
χT

ri(t)Φaχri(t) + τmaxχ
T
ri(t)Φ

T
b W−1Φbχri(t)

)
.

Then,

V̇ (t) ≤
N∑

i=2

χT
ri(t)Θ̄iχri(t) (25)

where Θ̄i = ∆̄i + τmaxD
T
i WDi + τmaxΦT

b W−1Φb and

∆̄i =
[

Ω111 Ωi112

∗ Ω122

]
.

Moreover, define

=̇(t) = V̇ (t) + J̄C (26)

where

J̄C =
N∑

i=2

(
2λiκ

T
ri(t)Qxκri(t)

)

+
N∑

i=2

(
λ2

i κ
T
ri(t− τ(t))K T QuKκri(t− τ(t))

)
.

Note that if =̇(t) ≤ 0, then V̇ (t) ≤ 0. Thus,

=̇(t) ≤
N∑

i=2

χT
ri(t)Θiχri(t) (27)

where Θi = ∆i + τmaxD
T
i WDi + τmaxΦT

b W−1Φb and

∆i =
[

∆i11 Ωi112

∗ ∆i22

]

∆i11 = Ω111 + 2λiQx, ∆i22 = Ω122 + λ2
i K

T QuK.

Hence, by the Schur complement, if Ωi < 0 (i = 2, 3, . . . ,
N), then Θi < 0 (i = 2, 3, . . . , N). Thus, =̇(t) ≤ 0 and
=̇(t) = 0 if and only if x̃ri(t) ≡ 0 (i = 2, 3, . . . , N). Then,
V̇ (t) ≤ 0 and V̇ (t) = 0 if and only if x̃ri(t) ≡ 0 (i = 2, 3,
. . . , N). Moreover, by the convex property of linear matrix
inequalities (LMIs), if Ωi < 0 (i = 2, N) then Ωi < 0 (i = 2,
3, . . . , N). Therefore, if Ωi < 0 (i = 2, N), subsystems (9)
are asymptotically stable.

From (26) and =̇(t) ≤ 0, one has

J̄C ≤ −V̇ (t). (28)

Since V (t) > 0 and V̇ (t) ≤ 0, then limt→∞V (t) = 0.
Integrating both sides of (28), one has JC ≤ V (0), where
the fact that

∫∞
0

J̄Cdt = JC has been used. Therefore, from
Definition 1, Ωi < 0 (i = 2, N) can ensure that multi-agent
system (5) achieves guaranteed cost consensus and the cost
function satisfies JC ≤ V (0). The conclusion of Theorem 1
can be obtained. ¥

Remark 2: By using the state space decomposition approach,
guaranteed cost consensus problems for the high-dimensional
multi-agent systems with time delays are converted into
guaranteed cost stability problems for N − 1 time-delayed
subsystems. It is worth pointing out that Theorem 1 only needs
to judge whether two matrices are negative; that is, the LMI
criteria are only dependent on the second smallest eigenvalue
λ2 and the maximum eigenvalue λN of L. However, λ2 and
λN of L may be difficult to be obtained when the dimension
N of L is huge. Fortunately, [33] gives a method to estimate
λ2 and the Gersgorin Disc Theorem in [35] can be used to
approximately determine λN .

When multi-agent system (5) achieves guaranteed cost con-
sensus, an upper bound of guaranteed cost function (6) and
the explicit expression of the consensus function are obtained
by the following theorem and corollary, respectively.

Theorem 2: When multi-agent system (5) achieves guaran-
teed cost consensus with K and d-dimensions matrices P =
PT > 0, R = RT > 0, the guaranteed cost satisfies

J∗C = xT (0)(Υ⊗ (P + τmaxR))x(0)

where Υ = IN − 1N1T
N/N .

Proof: From (7), it can be obtained that κr(t) = ([0,
IN−1]UT ⊗ Id)x(t). Then, one can obtain that

V1(t) = xT (t)(Υ⊗ P )x(t) (29)
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V2(t) =
∫ t

t−τ(t)

xT (s)(Υ⊗R)x(s)ds (30)

V3(t) =
∫ 0

−τmax

∫ t

t+θ

ẋT (s)(Υ⊗W )ẋ(s)dsdθ (31)

where

Υ =




1T
N−11N−1

N

1T
N−1Ū

T

√
N

Ū1N−1√
N

ŪŪT


 .

By UUT = I in (5), one has 1T
N−1Ū

T /
√

N = −1T
N−1/N

and Ū ŪT = IN−1 − 1N−11T
N−1/N . Then, Υ = IN −

1N1T
N/N . Due to x(t) = x(0), t ∈ [−τmax, 0], it is obtained

that V2(0) ≤ τmaxx
T (0)(Υ ⊗ R)x(0) and V3(0) = 0. Then,

by V1(0) = xT (0)(Υ⊗ P )x(0), one has

JC ≤ xT (0) ((Υ⊗ P ) + τmax (Υ⊗R))x(0). (32)

Thus, the conclusion of Theorem 2 can be obtained. ¥
Corollary 1: When multi-agent system (5) achieves guaran-

teed cost consensus, the consensus function c(t) satisfies

lim
t→∞

(
c(t)− eAt

(
1
N

N∑

i=1

xi(0)

))
= 0.

Proof: From (8), one can obtain that κc(t) = eAtκc(0). By
(7), one has

κc(0) = [Id, 0, . . . , 0](UT ⊗ Id)x(0) =
1√
N

(1T
N ⊗ Id).

Thus, it can be obtained that

κc(t) = eAt

(
1√
N

N∑

i=1

xi(0)

)
. (33)

From the proof of Theorem 1, if multi-agent system (3)
achieves guaranteed cost consensus, then limt→∞(x(t) −
xc(t)) = 0. Thus, from Definition 1 and (19), one can see
that consensus function c(t) satisfies

lim
t→∞

(
c(t)− 1√

N
κc(t)

)
= 0. (34)

Then, by (33) and (34), the conclusions can be obtained. ¥
Remark 3: Theorem 2 shows that the guaranteed cost is

related to the initial states x(0) and the maximum time delay
τmax. Moreover, one can see that Corollary 1 implies that the
time-varying delay and the guaranteed cost function do not
impact on the consensus function.

In Theorem 1, it is difficult to give feasible LMI criteria
for obtaining guaranteed cost consensus since there exists
nonlinear term (PBK and KT BT W ) when K is unknown.
In the sequel, the result presents a design method of the
guaranteed cost consensus for multi-agent system (5), where
gives an approach to determine the control gain matrix.

Theorem 3: Multi-agent system (2) is said to be guaranteed
cost consensualizable by consensus protocol (4) if there exist
d-dimensional matrices P̃ = P̃T > 0, R̃ = R̃T > 0, W̃ =
W̃T > 0 and K̃ ∈ Rm×d such that

Ω̃i =
[

Ω̃i11 Ω̃i12

∗ Ω̃i22

]
< 0, i = 2, N

where

Ω̃i11 =




Ω̃i111 Ω̃i112 Ω̃i113

∗ (`− 3)R̃ −τmaxλiK̃
T BT

∗ ∗ −τmaxW̃




Ω̃i12 =




0 2λiP̃Qx λiK̃
T Qu P̃

τmaxW̃ 0 λiK̃
T Qu 0

0 0 0 0




Ω̃i22 = diag{−τmaxW̃,− 2λiQx,−Qu,−R̃}

Ω̃i111 = AP̃ + P̃T AT − λiBK̃ − λiK̃
T BT + (`− 1)R̃

Ω̃i112 = P̃ − λiBK̃ + (`− 2)R̃

Ω̃i113 = τmaxP̃AT − τmaxλiK̃
T BT .

In this case, the control gain matrix of multi-agent system
(5) satisfies K = K̃R̃−1 and the guaranteed cost function has
an upper bound

J∗C = xT (0)
(
Υ⊗

(
P̃−1 + τmaxR̃

−1
))

x(0)

where Υ = IN − 1N1T
N/N .

Proof: The method of changing variables is used to deter-
mine K. By the Schur complement, Ωi < 0, i = 2, N in
Theorem 1 is equivalent to

Ψi =
[

Ψi11 Ωi12

∗ Ωi22

]
< 0, i = 2, N (35)

where

Ψi11 =




Ω111 Ωi112 τmaxA
T

∗ Ω122 −τmaxλiK
T BT

∗ ∗ −τmaxW
−1


 .

Let

Ãi =
[

A −λiBK
Id −Id

]

S =
[

P 0
Φ1 Φ2

]
, ΛR =

[
R 0
0 (`− 1)R

]

then Ψi can be rewritten as

Ψi =




Ψi11 τmaxD
T
i τmaxΦ

T
b Ψi14 Ψi15

∗ −τmaxW
−1 0 0 0

∗ ∗ −τmaxW 0 0
∗ ∗ ∗ −2λiQx 0
∗ ∗ ∗ ∗ −Qu




with Ψ+i11 = ST Ãi + ÃT
i S + ΛR, Ψi14 = [2λiQx, 0]T and

Ψi15 = [0, λiQuK]T . Now, consider the case in which Φ1 =
−P and Φ2 = R. In this case, S is invertible and

S−1 =
[

P−1 0
R−1 R−1

]
.

Pre- and post-multiplying Ψi < 0 (i = 2, N) by

ΠT = diag{S−T , Id,W
−T , Id, Im}
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and

Π = diag{S−1, Id,W
−1, Id, Im}

respectively, one has

Ψ̃i = ΠT ΨiΠ

=




Ψ̃i11 Ψ̃i12 Ψ̃i13 Ψ̃i14 Ψ̃i15

∗ −τmaxW
−1 0 0 0

∗ ∗ −τmaxW
−1 0 0

∗ ∗ ∗ −2λiQx 0

∗ ∗ ∗ ∗ −Qu




< 0

where

Ψ̃i11 = ÃiS
−1 + S−T ÃT

i + S−T ΛRS−1

Ψ̃i12 = τmaxS
−T DT

i

Ψ̃i13 = [0, τmaxW
−1]T

Ψ̃i14 = [2λiQxP−1, 0]T

Ψ̃i15 = [λiQuKR−1, λiQuKR−1]T .

Setting P̃ = P−1, R̃ = R−1, W̃ = W−1 and K̃ = KR−1,
one has Ω̃i < 0 (i = 2, N). From Theorem 1, if Ω̃i < 0 (i
= 2, N) are feasible, then multi-agent system (5) can achieve
consensus. Therefore, the conclusion of Theorem 3 can be
obtained. ¥

Remark 4: Theorems 1 and 3 present the LMI conditions for
guaranteed cost consensus and consensualization respectively.
The feasibility of these LMI conditions can be checked by
using the MATLAB’s LMI Toolbox.

IV. NUMERICAL SIMULATIONS

A high-dimensional multi-agent supporting system is con-
sidered, where it is composed of eight agents labeled from 1
to 8. The dynamics of each agent is described as (1) with A
and B. In the cost function (6), Qx = 0.6I2 and Qu = 0.4 are
given. The interaction topology G is given in Fig. 1, where the
weights of edges of the interaction topology are 1. Then, it can
be obtained that λ2 = 0.5858 and λN = 4.7321. Let the time-
varying delay satisfies τ(t) = 0.05 + 0.04 sin(t), then τmax =
0.09 and ` = 0.04. The simulation step is Ts = 0.001 s. The
initial states of all agents are

Fig. 1. The interaction topology G.

x1(0) = [19,−14]T , x2(0) = [−12, 27]T

x3(0) = [−7, 16]T , x4(0) = [13,−9]T

x5(0) = [−18, 26]T , x6(0) = [5, 24]T

x7(0) = [11,−12]T , x8(0) = [−2, 19]T .

Two cases with different system matrix (A,B) are consid-
ered as

Case 1:

A =
[

0 1
−6.2 −0.8

]
, B =

[
0
1

]
.

Case 2:

A =
[ −0.5 0

−1 0

]
, B =

[
0

1.2

]
.

For Case 1, (A,B) are stable. From Theorem 3 and P =
P̃−1, R = R̃−1, W = W̃−1, K = K̃R, it can be obtained
that K = [−0.0019, 0.2387] and

P =
[

18.8334 1.1682
1.1682 3.0228

]

R =
[

8.4464 0.3792
0.3792 0.6010

]

W =
[

1.7615 0.0641
0.0641 0.4972

]
.

In Figs. 2 and 3, the state trajectories of the multi-agent
system are shown, where the trajectories marked by circles
denote the curves of the consensus function obtained by
Corollary 1. It is clear that the multi-agent system achieves
guaranteed cost consensus. In this case, the guaranteed cost
is J∗C = 26 840.4245 and the consensus function satisfies
limt→∞(c(t) − eAt[1.1250, 9.6250]T ) = 0. Fig. 4 shows the
trajectories of the cost function.

For Case 2, (A,B) are unstable. Then, one has K =
[−0.2019, 0.2839] and

P =
[

16.4035 −3.2391
−3.2391 4.8327

]

R =
[

7.3635 −1.7655
−1.7655 1.7549

]

W =
[

2.9528 −1.7730
−1.7730 2.0839

]
.

In Figs. 5 and 6, the state trajectories of the multi-agent
system are shown, and Fig. 7 shows the trajectories of the cost
function. In this case, J∗C = 32 497.6638 and the consensus
function satisfies limt→∞(c(t)− eAt[1.1250, 9.6250]T ) = 0.

From the simulation results of Case 1 and Case 2, three
aspects should be pointed out. Firstly, one can see that
the high-dimensional multi-agent supporting system is able
to achieve the guaranteed cost consensus by the proposed
approach. Secondly, the runtime may be different when the
multi-agent system achieves the guaranteed cost consensus.
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Fig. 2. Case 1: State trajectories of xi1(t) (i = 1, 2, . . . , 8).

Fig. 3. Case 1: State trajectories of xi2(t) (i = 1, 2, . . . , 8).

Fig. 4. Case 1: Trajectories of the guaranteed cost function.

Fig. 5. Case 2: State trajectories of xi1(t) (i = 1, 2, . . . , 8).

Fig. 6. Case 2: State trajectories of xi2(t) (i = 1, 2, . . . , 8).

Fig. 7. Case 2: Trajectories of the guaranteed cost function.
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The runtime of the unstable cases is 15 s in the above example,
while one of the stable cases is 5 s. Thirdly, there exists some
levels of the conservatism for the guaranteed cost function,
where the conservatism can be depicted by ∆J = J∗C − JC

and JC is used to represent the actual guaranteed cost.

V. CONCLUSION

The guaranteed cost consensus analysis and design for high-
dimensional multi-agent systems with time-varying delays
were studied in the current paper. In order to simultaneously
consider the control effort and consensus errors, guaranteed
cost consensus problems for multi-agent systems were in-
troduced. Sufficient conditions for guaranteed cost consensus
problems were presented and an upper bound of the cost
function was determined. Moreover, the analysis approach
in the current paper is based on the fact that the Laplacian
matrix is symmetric and only real Laplacian eigenvalues exist,
and the Laplacian matrix associated with a directed topology
is asymmetric and its nonzero eigenvalues may be complex
numbers. In the future, the influence of directed topologies
should be deeply studied.
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