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Abstract—This work deals with the development of a decen-
tralized optimal control algorithm, along with a robust observer,
for the relative motion control of spacecraft in leader-follower
based formation. An adaptive gain higher order sliding mode
observer has been proposed to estimate the velocity as well as
unmeasured disturbances from the noisy position measurements.
A differentiator structure containing the Lipschitz constant and
Lebesgue measurable control input, is utilized for obtaining
the estimates. Adaptive tuning algorithms are derived based
on Lyapunov stability theory, for updating the observer gains,
which will give enough flexibility in the choice of initial estimates.
Moreover, it may help to cope with unexpected state jerks. The
trajectory tracking problem is formulated as a finite horizon
optimal control problem, which is solved online. The control
constraints are incorporated by using a nonquadratic perfor-
mance functional. An adaptive update law has been derived
for tuning the step size in the optimization algorithm, which
may help to improve the convergence speed. Moreover, it is an
attractive alternative to the heuristic choice of step size for diverse
operating conditions. The disturbance as well as state estimates
from the higher order sliding mode observer are utilized by the
plant output prediction model, which will improve the overall
performance of the controller. The nonlinear dynamics defined
in leader fixed Euler-Hill frame has been considered for the
present work and the reference trajectories are generated using
Hill-Clohessy-Wiltshire equations of unperturbed motion. The
simulation results based on rigorous perturbation analysis are
presented to confirm the robustness of the proposed approach.

Index Terms—Adaptive gain higher order sliding mode ob-
server, leader-follower formation, nonlinear model predictive
control, spacecraft formation flying, tracking control.

I. INTRODUCTION

THE past few decades have witnessed tremendous ad-
vances in space science and satellite technology. It has

revolutionized our knowledge and understanding of Earth’s
diverse landscapes, with enormous scientific applications in
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various fields ranging from biological and geological stud-
ies to disaster management. The low Earth orbiting (LEO)
satellites have already proven their efficacy in imaging and
remote sensing applications in prior missions, with their high
resolution imaging capability, which may help in educing
pivotal information in various applications. The wider area
of coverage, coupled with the added advantages of smaller
spacecraft formation, make the constellation of miniaturized
satellites more preferable over a single large platform, in many
real missions.

The success of the constellation observing system for mete-
orology, ionosphere, and climate (COSMIC) mission, a collab-
orative project of the National Space Organization (NSPO) in
Taiwan, China and the University Corporation for Atmospheric
Research (UCAR) in the United States, making use of a
constellation of six LEO micro satellites, is an example for
this.

A decentralized optimal control segment, with good
disturbance rejection capability, is a prerequisite for the
success of a spacecraft formation flying (SFF) mission.
Most of the SFF control strategies depicted in literature, are
derived from multi-robotic systems. A brief survey on various
spacecraft formation flying control and guidance strategies has
been provided in [1]. In [2], Liu and Kumar deal with a digital
control technique for the tracking control of spacecraft in
formation, with network-induced communication delays and
external disturbances. Sliding mode control is one of the robust
techniques commonly used in formation control applications
[3]−[5]. In [6], Nair et al. deal with the formation control
of multiple satellites using artificial potential field based
path planning scheme, combined with adaptive fuzzy sliding
mode control. A Lyapunov-based, robust, nonlinear, adaptive
control law for the relative position control of spacecraft is
depicted in [7]. The design of consensus protocol for the
time varying formation control of swarm systems is presented
in [8] and [9]. But in all these strategies, the optimality in
control input cannot be guaranteed. A comprehensive survey
on the distributed attitude coordination control, provided
in [10], points out optimal fuel consumption as one of the
key features to be considered in formation control problem.
A linear quadratic regulator based approach applied to in-
plane satellite formation keeping using tangential maneuvers,
is presented in [11], in which a linearized model is used, where
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the margin of stability is limited. In [12], McCamish et al.
deal with a distributed control algorithm for a multi-spacecraft
system using LQR technique, combined with artificial poten-
tial field based collision avoidance; but it is limited to close
proximity operations.

Model predictive control (MPC) is a widely used planning
based approach, in which the concept of prediction in control
makes it unique from other optimal control strategies. An
MPC technique, in which a distributed decision-making with
systematic constraint handling, to operate a linear dynamic net-
work, is proposed in [13]. In [14], Xia and Zhang have utilized
an MPC approach for the operation efficiency improvement
in energy systems. Reference [15] depicts an MPC approach
applied to a linearized spacecraft formation dynamics with
sensing noise. There are only very few researches done in
the area of SFF, using nonlinear model predictive control
(NMPC) approach. Most of the works are based on linear
MPC approach. An NMPC technique applied to a nonlinear
submarine system, is presented in [16], where the finite hori-
zon open loop optimization problem is solved online. A similar
approach is also utilized in [17] for the formation control
of multiple unmanned aerial vehicles, in which inequality
constraints for control inputs, collision avoidance and obstacle
avoidance are included in the optimization routine. In that
case, the step size has been chosen heuristically based on
the operating conditions. But it is not recommendable for
complex systems with diverse, unpredictable operating con-
ditions. Moreover, Karush-Kuhn-Tucker variables are used for
handling the constraints. It may further increase the complexity
of the optimization problem. In [18], Muske and Badgwell deal
with an offset-free linear model predictive control, in which
the plant model is augmented with a state space disturbance
model.

The precision in position and velocity measurements are
also crucial for the efficient performance of decentralized
control and guidance segment. The relative positions of the
spacecraft are measurable using inertial navigation systems,
viz. GPS. Velocity can either be obtained from the Doppler
shift, which needs more complex post processing for compen-
sating the Doppler noise, or by differentiating the position.
The latter one using conventional differentiation, will give
more erroneous result, if there is noise in the original position
measurements. A robust observer can be utilized for obtaining
the velocity as well as disturbance estimates from the noisy po-
sition measurements. Among the various estimation schemes
available in literature, higher order sliding mode (HOSM)
based approach is found to be highly robust to disturbances
and insensitive to parametric variations. Moreover, chattering
in HOSM is very less compared to that of conventional sliding
mode observers.

Different types of higher order sliding mode differentiator
structures are available in [19]−[22]. A second order super
twisting sliding mode observer for state as well as disturbance
estimation, along with robust distributed output feedback
control scheme for an SFF system, are depicted in [23]. In
this work, the authors have used only radial and tangential
plane linearized dynamics based on Hill’s equations, where
the out-of-plane dynamics is decoupled. [22] deals with the

simultaneous fault and disturbance reconstruction in a multi-
input multi-output (MIMO) nonlinear system using a network
of interconnected sliding mode observers, where a complex
HOSM structure has been used. HOSM observer for unknown
input reconstruction and state estimation, for a MIMO system
is described in [24], where the observer structure is inde-
pendent of the control input and Lipschitz constant. Also, a
system dynamics, with total vector relative degree less than
the total number of states, has been considered. In [25],
Iqbal et al. propose a robust feedback linearization technique,
in which an HOSM differentiator, incorporating Lebesgue
measurable control input and Lipschitz constant, is used for
approximating the dynamics in a single-input single-output
(SISO) system. Similarly, a continuous sliding mode controller
and an HOSM based disturbance observer are designed for the
tracking control of air-breathing hypersonic vehicles in [26].
In all the above works, the observer gains are precomputed
offline, where trajectory convergence cannot be guaranteed,
if the initial estimates are chosen arbitrarily, or if there are
unexpected state jerks.

The objective of the present work is to develop a robust
decentralized control scheme for the tracking control of LEO
satellites in a leader-follower based formation. Here, we pro-
pose a robust NMPC technique with a real time finite horizon
open loop optimization [16], [17] for achieving the same.
A nonquadratic cost function [27] has been considered for
incorporating the control constraints, which can reduce the
additional burden of constraint handling in the optimization al-
gorithm. The heuristic choice of step size in optimization algo-
rithm is not recommendable in all operating conditions. Hence,
an adaptive tuning algorithm has been derived for updating the
step size, which may improve the convergence speed. We have
applied the HOSM observer structure containing the Lipschitz
constant and Lebesgue measurable control input [19], [25] for
obtaining the disturbance as well as velocity estimates from
noisy position measurements. The system dynamics, having
a total vector relative degree equal to the total number of
system states, has been considered. The system is transformed
into canonical form using nonlinear coordinate transformation
[24]. For the observers with precomputed fixed gains, the
convergence can be guaranteed, only when initial estimates
are chosen in the neighborhood of the actual values of the
states [28]. Moreover, it may not cope with unexpected state
jerks. To handle these issues, here, we have proposed adaptive
tuning algorithms, derived on the basis of Lyapunov stability
theory, for updating the observer gains. The disturbance as
well as the velocity estimates from the HOSM disturbance
observer have been utilized by the output prediction model, in
the NMPC [16], [17]. The prescribed differentiator structure
has good estimation accuracy [19]. The observer design is
repeated with an alternate HOSM differentiator structure as
well. Simulation studies are conducted for a two-spacecraft
system, for different levels of perturbations, along with added
random noise. The results are compared with that of two recent
references [26] and [29] respectively.

The rest of this paper is organized as follows. In Section
II, the adaptive gain HOSM based technique for state as well
as disturbance estimation is presented. Section III deals with
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the complete NMPC algorithm. The nonlinear model, and the
design of proposed HOSM based predictive controller for the
SFF system, are provided in Section IV. Simulation results
are provided in Section V to validate the robustness of the
proposed control scheme. Conclusions are drawn in Section
VI.

II. ADAPTIVE GAIN HIGHER ORDER SLIDING
MODE OBSERVER

For the completeness of the discussion, we begin with the
HOSM based state estimation technique, depicted in [19], [22],
[24]. Consider the following nonlinear system

ṗ = f(p) + g(p)u + w(p)d
Y = Q(p) (1)

where f(p) ∈ Rn, g(p) = [g1, g2, . . . , gm] ∈ Rn×m, Q(p) =
[Q1, Q2, . . . , Qm] ∈ Rm, w(p) = [w1, w2, . . . , wm] ∈ Rn×m,
p ∈ Rn, Y ∈ Rm, u ∈ Rm is the control input, and d ∈ Rm is
the disturbance, defined in an open set Υ ⊂ Rn. The system
with motion dynamics given by (1), is locally detectable, if
the following conditions [24], [30] are satisfied,

Condition 1: The outputs of the system are assumed to have
a vector relative degree, e = {e1, e2, . . . , em}, corresponding
to w(p), if Lwj

Lk
fQi(p) = 0, ∀i = 1, 2, . . . , m, ∀j =

1, 2, . . . , m, ∀k = 1, 2, . . . , ei − 2, and
∑m

i=1 ei = n.
Condition 2: M(p) =




Lw1(L
e1−1
f Q1) Lw2(L

e1−1
f Q1) . . . Lwm(Le1−1

f Q1)

Lw1(L
e2−1
f Q2) Lw2(L

e2−1
f Q2) . . . Lwm(Le2−1

f Q2)
...

...
. . .

...
Lw1(L

em−1
f Qm) Lw2(L

em−1
f Qm) . . . Lwm(Lem−1

f Qm)




is nonsingular.
Condition 3: The distribution Λ = span{w1, w2, · · · , wm}

is involutive.
These are necessary conditions for checking the observ-

ability of the nonlinear system in the presence of unknown
inputs. The system given by (1) can be transformed into new
coordinates as follows: ∀i = 1, 2, . . . , m,

γi =




γi
1

γi
2

...
γi

ei


 = ψ(p) =




ψi
1(p)

ψi
2(p)
...

ψi
ei

(p)


 =




Qi(p)
LfQi(p)

...
Lei−1

f Qi(p)


 .

The transformation, x = ψ−1(γ), is a local diffeomorphism,
since, it is described only in the neighborhood of any point,
p, defined on an openset, Υ ⊂ Rn. Hence, the system given
by (1) can be reformulated as

γ̇i
j = γi

j+1, j = 1, 2, . . . , ei − 1 ∀i = 1, 2, . . . , m (2)

γ̇i
ei

= Lei

f Qi(ψ−1(γ)) + LwLei−1
f Qi(ψ−1(γ)d

︸ ︷︷ ︸
F i(t,γ,d)

+ LgLei−1
f Qi(ψ−1(γ))

︸ ︷︷ ︸
Bi

u. (3)

In this work, we have applied the HOSM differentiator
structure [19], [25], incorporating the Lipschitz constant and

Lebesgue measurable control input, to a complex multi-input
multi-output system, to obtain the state as well as disturbance
estimates from the noisy measurements. The observer gains
are updated using adaptive tuning laws, derived based on
Lyapunov stability theory. Hence the initial values of estimates
can be chosen arbitrarily in the large compact subset of
statespace. Moreover, it can handle unexpected state jerks.
Using the system canonical form [24] given by (2) and (3),
the HOSM observer can easily be designed. Here, the system
dynamics under consideration has a total vector relative degree
equal to n. The HOSM differentiator structure is defined as
follows [19], [25],

˙̂γi
1 = −αi

1δ
1

ei+1

i |γ̂i
1 − Yi|

ei
ei+1 sign(γ̂i

1 − Yi) + γ̂i
2

˙̂γi
2 = −αi

2δ
1
ei
i |γ̂i

2 − ˙̂γi
1|

ei−1
ei sign(γ̂i

2 − ˙̂γi
1) + γ̂i

3

...
˙̂γi
ei

= F̂ i + Biu

F̂ i = −αi
ei

δ
1
2
i |γ̂i

ei
− ˙̂γi

ei−1|
1
2 sign(γ̂i

ei
− ˙̂γi

ei−1) + γ̂i
ei+1

˙̂γi
ei+1 = −αi

ei+1δisign(γ̂i
ei+1 − F̂ i) (4)

where |Ḟ i(t, γ, d)| < δi, δi is the Lipschitz constant.
Theorem 1: Suppose that for the given nonlinear system,

with the transformed dynamics as given in (2) and (3), and
state observer structure as given in (4), the conditions (1)−(3)
have been satisfied and the control input is Lebesgue measur-
able. Then, for any initial values of estimates chosen arbitrarily
in the large compact subset of state space, the estimation error
trajectories converge to origin along the sliding surface in finite
time, if the observer gains are updated using the following
adaptive tuning laws:

˙̂αi
1 =

1
βi

1

δ
1

ei+1 |ηi
1|

ei
ei+1+1 (5)

˙̂αi
2 =

1
βi

2

δ
1
ei |ηi

2|
ei−1

ei
+1 (6)

...

˙̂αi
ei

=
1

βi
ei

δ
1
2 |ηi

ei
| 32 (7)

˙̂αi
ei+1 =

1
βi

ei+1

δ|ηi
ei+1| (8)

where βi
j > 0, j = 1, 2, . . . , ei + 1.

Proof: The estimation error can be defined as

ηi
1 = γ̂i

1 − Yi = γ̂i
1 − γi

1

ηi
2 = γ̂i

2 − γi
2

...

ηi
ei

= γ̂i
ei
− γi

ei

ηi
ei+1 = γ̂i

ei+1 − F i(t, γ, d). (9)

Since,

γ̂i
2 − ˙̂γi

1 = γ̂i
2 − γ̇i

1 − η̇i
1 = ηi

2 − η̇i
1

γ̂i
3 − ˙̂γi

2 = γ̂i
3 − γ̇i

2 − η̇i
2 = ηi

3 − η̇i
2

...
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γ̂i
ei
− ˙̂γi

ei−1 = γ̂i
ei
− γ̇i

ei−1 − η̇i
ei−1 = ηi

ei
− η̇i

ei−1

γ̂i
ei+1 − F̂ i = γ̂i

ei+1 − ˙̂γi
ei

+ Biu = γ̂i
ei+1 − ˙̂γi

ei

+ γ̇ei
− F i(t, γ, d) = ηi

ei+1 − η̇i
ei

. (10)

The error dynamics can be written as follows [31]:

η̇i
1 = −αi

1δ
1

ei+1

i |ηi
1|

ei
ei+1 sign(ηi

1) + ηi
2

η̇i
2 = −αi

2δ
1
ei
i |ηi

2 − η̇i
1|

ei−1
ei sign(ηi

2 − η̇i
1) + ηi

3

...

η̇i
ei

= −αi
ei

δ
1
2
i |ηi

ei
− η̇i

ei−1|
1
2 sign(ηi

ei
− η̇i

ei−1) + ηi
ei+1

η̇i
ei+1 ∈ −αi

ei+1δisign(ηi
ei+1 − η̇i

ei
) + [−δi,+δi]. (11)

Step 1: For the time 0 ≤ t ≤ t1, the Lyapunov candidate
can be chosen as

V i
1 =

(ηi
1)

2

2
. (12)

Taking derivative of the Lyapunov function yields

V̇ i
1 = ηi

1η̇
i
1. (13)

Substituting for η̇i
1

V̇ i
1 = ηi

1

(
−αi

1δ
1

ei+1

i |ηi
1|

ei
ei+1 sign(ηi

1) + ηi
2

)

= −αi
1δ

1
ei+1

i |ηi
1|

ei
ei+1 |ηi

1|+ ηi
1η

i
2

≤ −|ηi
1|

(
αi

1δ
1

ei+1

i |ηi
1|

ei
ei+1 − |ηi

2|
)

. (14)

If αi
1 >

|ηi
2|max

δ
1

ei+1
i (|ηi

1|max)
ei

ei+1
, the condition V̇ i

1 ≤ 0 can be

satisfied. But an observer with precomputed fixed gains, will
not guarantee convergence of estimation error to the origin, if
the initial estimate is not chosen properly in the neighborhood
of the actual state, or if there are unexpected state jerks.
Hence, we are proposing an adaptive tuning rule for updating
the gains. We have derived the adaptation rule for a given
operating condition. Suppose that, there exists a finite, optimal
value for gain, αi∗

1 , at the given operating condition, which
can ensure the convergence of the trajectories to the sliding
manifolds, and it can be defined as

αi∗
1 = |ηi

2|
(

δ
1

ei+1

i |ηi
1|

ei
ei+1
max

)−1

+ Θi
1 (15)

where |ηi
1|max represents the upper bound on the estimation

error. Since the updation of gains and the convergence of the
estimation error take place sequentially, ηi

2 remains constant
at the initial value, during the time step, 0 ≤ t ≤ t1, for the
given operating condition. The value of constant Θi

1 is chosen
sufficiently high enough to ensure that the condition, V̇ i

1 ≤ 0,
always holds. Hence α̇i∗

1 = 0. The adaptation error can be
defined as

α̃i
1 = α̂i

1 − αi∗
1 . (16)

The Lyapunov function can be modified as

V i
1 =

1
2
(ηi

1)
2 +

βi
1

2
(α̃i

1)
2, βi

1 > 0.

Hence,

V̇ i
1 = −η1η̇1 + βi

1α̃1
˙̂α1

= −α̂i
1δ

1
ei+1

i |ηi
1|

ei
ei+1 |ηi

1|+ ηi
1η

i
2 + βi

1α̃
i
1
˙̂αi
1

≤ −|ηi
1|

(
α̂i

1δ
1

ei+1

i |ηi
1|

ei
ei+1 − |ηi

2|
)

+ βi
1α̃

i
1
˙̂α1

= −|ηi
1|

(
α̂i

1δ
1

ei+1

i |ηi
1|

ei
ei+1 − |ηi

2|

+ αi∗
1 δ

1
ei+1

i |ηi
1|

ei
ei+1 − αi∗

1 δ
1

ei+1

i |ηi
1|

ei
ei+1

)
+ βi

1α̃
i
1
˙̂αi
1

= −|ηi
1|

(
(α̂i

1 − αi∗
1 )δ

1
ei+1

i |ηi
1|

ei
ei+1

− |ηi
2|+ αi∗

1 δ
1

ei+1

i |ηi
1|

ei
ei+1

)
+ βi

1α̃
i
1
˙̂αi
1. (17)

Substituting for αi∗
1 from (15),

V̇ i
1 =− |ηi

1|
(

(α̂i
1 − αi∗

1 )δ
1

ei+1

i |ηi
1|

ei
ei+1 − |ηi

2|

+ |ηi
2|

(
δ

1
ei+1

i |ηi
1|

ei
ei+1
max

)−1

δ
1

ei+1

i |ηi
1|

ei
ei+1

+ Θi
1δ

1
ei+1

i |ηi
1|

ei
ei+1

)
+ βi

1α̃
i
1
˙̂αi
1.

Since (−|ηi
2| + |ηi

2|(δ
1

ei+1

i |ηi
1|

ei
ei+1
max )−1δ

1
ei+1

i |ηi
1|

ei
ei+1 ) ≤ 0,

we can write

V̇ i
1 ≤ − |ηi

1|
(

α̃i
1δ

1
ei+1

i |ηi
1|

ei
ei+1

+ Θi
1δ

1
ei+1

i |ηi
1|

ei
ei+1

)
+ βi

1α̃
i
1
˙̂αi
1. (18)

If ˙̂αi
1 =

1
βi

1

δ
1

ei+1 |ηi
1|

ei
ei+1+1 (19)

then V̇ i
1 ≤ −|ηi

1|Θi
1δ

1
ei+1

i |ηi
1|

ei
ei+1 . (20)

Since Θi
1, δi > 0, V̇ i

1 ≤ 0, and hence, ηi
1 and α̃i

1 are
bounded. The initial values of the estimates as well as the
observer gains are chosen such that the estimation error dy-
namics stay uniformly bounded [22]. Moreover, the updation
of the observer gains as well as convergence of the estimation
error to the origin, take place sequentially. Hence, ηi

2 remains
bounded during this time step. Since, ηi

1 and ηi
2 are bounded,

from (15) and (16), it is clear that α̂i∗
1 , and α̂i

1 are bounded.
From this, using (11) and (20), we found that V̈ i

1 is bounded.
Hence, V̇ i

1 is uniformly continuous, and by Barbalat’s Lemma
[32], system is asymptotically stable. The observer gain, αi

1

is bounded, where αi∗
1 is the bound at the given operating

condition.
From (11), using Filippov theory [19], [31], we can find

that the differential inclusion is consistent with the dilation,
t → τt, ηi

j → τei−j+1, j = 0, 1, . . . , ei, ∀i. Hence it is
homogeneous with a homogeneity degree of −1. Since the
homogeneity degree is negative, the finite time convergence
[19], [21], [25], [33] of ηi

1 to zero can be guaranteed. The same
has already been proved by Levant in [34], using the property
of contractivity. Moreover, by Orlov’s theorem [33], [35], the
finite time stability of the system can be guaranteed, if the
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system is asymptotically stable and the degree of homogeneity
is negative. Since V̇ i

1 is uniformly continuous, the system is
asymptotically stable. Hence, using Orlov’s theorem, the finite
time stability can also be guaranteed, and the estimation error
converges to zero in finite time say t1, and the remaining error
dynamics will converge to a hyper ball in finite time [32].

Step 2: For the time t1 ≤ t ≤ t2, the remaining error
dynamics becomes

0 = −αi
1δ

1
ei+1

i |ηi
1|

ei
ei+1 sign(ηi

1) + ηi
2

η̇i
2 = −αi

2δ
1
ei
i |ηi

2|
ei−1

ei sign(ηi
2) + ηi

3

...

η̇i
ei

= −αi
ei

δ
1
2
i |ηi

ei
− η̇i

ei−1|
1
2 sign(ηi

ei
− η̇i

ei−1) + ηi
ei+1

η̇i
ei+1 ∈ −αi

ei+1δisign(ηi
ei+1 − η̇i

ei
) + [−δi,+δi]. (21)

The Lyapunov candidate function can be chosen as

V i
2 =

(ηi
2)

2

2
. (22)

Taking derivative of the Lyapunov function and, substituting
for η̇i

2, as in Step 1 yields

V̇ i
2 ≤ −|ηi

2|
(

αi
2δ

1
ei
i |ηi

2|
ei−1

ei − |ηi
3|

)
. (23)

If αi
2 >

|ηi
3|max

δ
1
ei
i (|ηi

2|max)
ei−1

ei

, the condition V̇ i
1 ≤ 0 can be

satisfied. Similar to that in the previous step, the nominal value
of the gain αi∗

2 can be defined as

αi∗
2 = |ηi

3|
(

δ
1
ei
i (|ηi

2|)
ei−1

ei
max

)−1

+ Θi
2 (24)

where Θi
2 > 0. The adaptation error can be defined as

α̃i
2 = α̂i

2 − αi∗
2 . (25)

The Lyapunov function can be modified as

V i
2 =

1
2
(ηi

2)
2 +

βi
2

2
(α̃i

2)
2, βi

2 > 0.

Taking the derivative of V i
2 , and proceeding in the same

way as in Step 1 yields,

V̇ i
2 ≤ −|ηi

2|
(

α̃i
2δ

1
ei
i |ηi

2|
ei−1

ei + Θi
2δ

1
ei
i |ηi

2|
ei−1

ei

)
+ βi

2α̃
i
2
˙̂αi
2.

(26)

If ˙̂αi
2 =

1
βi

2

δ
1
ei |ηi

2|
ei−1

ei
+1 (27)

then V̇ i
2 ≤ −|ηi

2|Θi
2δ

1
ei
i |ηi

2|
ei−1

ei . (28)

Just as in the previous step, we can prove that V̇ i
2 is

uniformly continuous, and the finite time convergence of the
trajectories to the sliding manifolds can be guaranteed; ηi

2 →
0. Hence, after t2, the estimation error stays equal to zero.

Step 3: For the time t2 ≤ t ≤ tn, the remaining error
dynamics becomes

0 = −αi
1δ

1
ei+1

i |ηi
1|

ei
ei+1 sign(ηi

1) + ηi
2

0 = −αi
2δ

1
ei
i |ηi

2|
ei−1

ei sign(ηi
2) + ηi

3

... (29)

0 = −αi
ei−1δ

1
3
i |ηi

ei−1|
2
3 sign(ηi

ei−1) + ηi
ei

η̇i
ei

= −αi
ei

δ
1
2
i |ηi

ei
| 12 sign(ηi

ei
) + ηi

ei+1

η̇i
ei+1 ∈ −αi

ei+1δisign(ηi
ei+1 − η̇i

ei
) + [−δi,+δi]. (30)

The Lyapunov candidate function can be chosen as

V i
ei

=
(ηi

ei
)2

2
. (31)

Taking derivative of the Lyapunov function and substituting
for η̇i

ei
as in Step 1 yields,

V̇ i
ei
≤ −|ηi

ei
|
(
αi

ei
δ

1
2
i |ηi

ei
| 12 − |ηi

ei+1|
)

. (32)

If αi
ei

>
|ηi

ei+1|max

δ
1
2
i (|ηi

ei
|max)

1
2

, then V̇ i
ei
≤ 0. As in the previous

step, the nominal value of the gain αi∗
ei

can be defined as

αi∗
ei

= |ηi
ei+1|

(
δ

1
2
i (|ηei)

i|
1
2
max

)−1

+ Θi
ei

(33)

where Θi
ei

> 0. The adaptation error can be defined as

α̃i
ei

= α̂i
ei
− αi∗

ei
. (34)

The Lyapunov function can be modified as

V i
ei

=
1
2
(ηi

ei
)2 +

βi
ei

2
(α̃i

ei
)2, βi

ei
> 0.

Taking the derivative of V i
ei

, and proceeding in the same
way as in Step 1 yields,

V̇ i
ei
≤ −|ηi

ei
|
(
α̃i

ei
δ

1
2
i |ηi

ei
| 12 + Θi

ei
δ

1
2
i |ηi

ei
| 12

)
+ βi

ei
α̃i

ei
˙̂αi
ei

.

(35)

If ˙̂αi
ei

=
1

βi
ei

δ
1
2 |ηi

ei
| 32 (36)

then V̇ i
ei
≤ −|ηi

ei
|Θi

ei
δ

1
2
i |ηi

ei
| 12 . (37)

Similar to Step 1, we can find V̇ i
ei

as uniformly continuous,
and the finite time convergence of the trajectories to the sliding
manifolds can be guaranteed; ηi

ei
→ 0. Hence, after tei

, the
estimation error stays equal to zero.

Step 4: For the time tei ≤ t ≤ tei+1, the remaining error
dynamics becomes

0 = −αi
1δ

1
ei+1

i |ηi
1|

ei
ei+1 sign(ηi

1) + ηi
2

0 = −αi
2δ

1
ei
i |ηi

2|
ei−1

ei sign(ηi
2) + ηi

3

...

0 = −αi
ei−1δ

1
3
i |ηi

ei−1|
2
3 sign(ηi

ei−1) + ηi
ei

0 = −αi
ei

δ
1
2
i |ηi

ei
| 12 sign(ηi

ei
) + ηi

ei+1

η̇i
ei+1 ∈ −αi

ei+1δisign(ηi
ei+1) + [−δi,+δi]. (38)
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The Lyapunov candidate function can be chosen as

V i
ei+1 =

(ηi
ei+1)

2

2
. (39)

Taking derivative of the Lyapunov function yields

V̇ i
ei+1 = ηi

ei+1η̇
i
ei+1. (40)

Substituting for η̇i
ei+1

V̇ i
ei+1 = V

′
i ∈ ηi

ei+1(−αi
ei+1δisign(ηi

ei+1) + [−δi,+δi])

= V
′
i ∈ −αi

ei+1δi|ηi
ei+1|+ ηi

ei+1[−δi,+δi]

≤ V
′
i ∈ −|ηi

ei+1|(αi
ei+1δi − |[−δi,+δi]|) (41)

where |[−δi,+δi]| represents the absolute values of the ele-
ments of the closed set. The nominal value of αi

ei+1 can be
chosen as

αi∗
ei+1 ∈ |[−δi,+δi]|δ−1

i + Θei+1 (42)

where Θei+1 > 0. The adaptation error can be defined as

α̃i
ei+1 = α̂i

ei+1 − αi∗
ei+1.

The Lyapunov function can be modified as

V i
ei+1 =

1
2
(ηi

ei+1)
2 +

βi
ei+1

2
(α̃i

ei+1)
2, βi

ei+1 > 0.

Taking the derivative,

V̇ i
ei+1 = V

′′
i ∈ ηi

ei+1(−α̂i
ei+1δisign(ηi

ei+1) + [−δi,+δi])

+ βi
ei+1α̃

i
ei+1

˙̂αi
ei+1

≤ V
′′
i ∈ −|ηi

ei+1|(α̂i
ei+1δi − |[−δi,+δi]|)

+ βi
ei+1α̃

i
ei+1

˙̂αi
ei+1

≤ V
′′
i ∈ −|ηi

ei+1|(α̂i
ei+1δi − |[−δi,+δi]|

+ αi∗
ei+1δi − αi∗

ei+1δi) + βi
ei+1α̃

i
ei+1

˙̂αi
ei+1.

Using (42),

V̇ i
ei+1 ≤ −|ηi

ei+1|(α̃i
ei+1δi + Θei+1δi) + βi

ei+1α̃
i
ei+1

˙̂αi
ei+1.

(43)

If ˙̂αi
ei+1 =

1
βi

ei+1

δi|ηi
ei+1|

then V̇ i
2 ≤ −|ηi

ei+1|Θi
ei+1δi.

Hence, as in the previous steps, the finite time convergence
of the trajectories to the sliding manifolds can be guaranteed.
From (41), it is clear that α̂i

ei+1 > 1 is a simple and sufficient
condition to ensure the same. ¥

Theorem 2: Upon satisfaction of Conditions 1−3, for any
nonlinear system, with the transformed motion dynamics given
by (2) and (3), and the control input is Lebesgue measurable,
the disturbance inputs can be estimated from the observer
structure, represented by (4), as

d̂ = M−1(ψ−1(γ̂))








γ̂1
e1+1

γ̂2
e2+1

...
γ̂m

em+1




−





Le1
f Q1(ψ

−1(γ̂))

Le2
f Q2(ψ

−1(γ̂))
...

Lem
f Qm(ψ−1(γ̂))






.

Proof: When ηi
1 → 0, from (11), it is clear that η̇i

1 = ηi
2,

since sign(ηi
1) = 0. When η̇i

1 = ηi
2, sign(ηi

2 − η̇i
1) = 0, hence

η̇i
2 = ηi

3. Proceeding in this way, the following results can be
obtained from (11):

η̇i
1 = ηi

2

η̇i
2 = ηi

3

...

η̇i
ei

= ηi
ei+1. (44)

From (10) and (44), γ̂i
ei+1 − F̂ i(t, γ, d) = 0. Hence, using

(3), the disturbance estimates can be obtained as

d̂ = M−1(ψ−1(γ̂))








γ̂1
e1+1

γ̂2
e2+1

...
γ̂m

em+1




−





Le1
f Q1(ψ

−1(γ̂))

Le2
f Q2(ψ

−1(γ̂))
...

Lem
f Qm(ψ−1(γ̂))








(45)

where γ̂1, γ̂2, . . . , γ̂ei
give the respective state estimates.

The observer design is repeated with an alternate HOSM
differentiator structure as well. ¥

Corollary 1: Upon satisfaction of Conditions 1−3, for any
nonlinear system, with the transformed motion dynamics given
by (2) and (3), and the control input is Lebesgue measurable,
choosing an alternate structure for an HOSM differentiator
[19], [24] given by,

˙̂γi
1 = −αi

1|γ̂i
1 − Yi|

ei
ei+1 sign(γ̂i

1 − Yi) + γ̂i
2

˙̂γi
2 = −αi

2|γ̂i
2 − ˙̂γi

1|
ei−1

ei sign(γ̂i
2 − ˙̂γi

1) + γ̂i
3

...
˙̂γi
ei

= F̂ i

F̂ i = −αi
ei
|γ̂i

ei
− ˙̂γi

ei−1|
1
2 sign(γ̂i

ei
− ˙̂γi

ei−1) + γ̂i
ei+1

˙̂γi
ei+1 = −αi

ei+1sign(γ̂i
ei+1 − F̂ i) (46)

the disturbance inputs can be estimated as

d̂ = M−1(ψ−1(γ̂))








γ̂1
e1+1

γ̂2
e2+1

...
γ̂m

em+1




−





Le1
f Q1(ψ

−1(γ̂))

Le2
f Q2(ψ

−1(γ̂))
...

Lem
f Qm(ψ−1(γ̂))





−





LgLe1−1
f Q1(ψ

−1(γ))u

LgLe2−1
f Q2(ψ

−1(γ))u
...

LgLem−1
f Qm(ψ−1(γ))u






. (47)

Proof: Unlike Theorems 1 and 2, in this case, F i(t, γ, d) is
defined as

F i(t, γ, d) = Lei

f Qi(ψ−1(γ)) + LwLei−1
f Qi(ψ−1(γ)d

+ LgL
ei−1
f Qi(ψ−1(γ))u. (48)

The proof will be similar to that of Theorem 2. The update
laws for the observer gains also remain the same, provided the
value of δi is to be taken as 1. Finally, as in previous case,
we will arrive at the condition, γ̂i

ei+1 − F̂ i(t, γ, d) = 0. From
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Fig. 1. Block schematic of the proposed scheme.

this, making use of (48), the required expression for distur-
bance observer can be obtained. ¥

The complete NMPC algorithm, incorporating the distur-
bance estimates from an HOSM disturbance observer, is given
in next section.

III. NONLINEAR MODEL PREDICTIVE CONTROL

The block schematic of the proposed scheme is shown in
Fig. 1. The fundamentals of NMPC problem and the optimiza-
tion algorithm used [16], [17], can be detailed as follows.
The objective is to find the control input sequence u0, u1,
. . . , uN−1, that minimizes the following nonquadratic cost
function:

J = χ(p̃N ) +
N−1∑

k=0

L(p̃k, uk) (49)

χ(p̃N ) =
1
2
p̃T

NSp̃N (50)

L(p̃k, uk) =
1
2
p̃T

k P p̃k + A(uk) (51)

where A : Rn → R, is utilized to incorporate the control
constraints, and it can be defined in terms of continuous
one-to-one real-analytic integrable inverse hyperbolic tangent
function [27] as

A(uk) =
∫ uk

0

tanh−1

(
uk

umax

)T

Rduk (52)

where umax is the bound on control input. The discretized
dynamic constraints to be satisfied, is given by

ppp(k + 1) = p(k) + T ṗ = fk (53)

where fk is a function of dk, which can be estimated using
HOSM disturbance observer; p̃ = pd − p; and pd is the
reference trajectory.

The Hamiltonian can be written as

Hk = L(p̃k, uk) + λT
k+1fk.

For driving the derivatives of the cost function to zero, the
Lagrange multipliers can be chosen as

λT
N = −p̃T

NS (54)

λT
k = λT

k+1

∂fk

∂pk
− p̃T

k P. (55)

The gradient of the Hamiltonian is given by
(

∂Hk

∂uk

)T

= tanh−1

(
uk

umax

)T

R + λT
k+1

∂fk

∂uk
. (56)

The control update law [16] can be written as

uj+1
k = uj

k + ξk
∂Hk

∂uk
, k = 0, 1, . . . , N − 1 (57)

where ξk is the step size.
Theorem 3: For the given nonquadratic cost function, the

Hamiltonian can be minimized, and convergence to the optimal
value function can be guaranteed, if the step size is updated
using the adaptive update law.

˙̂
ξk = − 1

ΩT

(
∂H

∂u

)T (
∂H

∂u

)
H (58)

where T is the sampling time.
Proof: Consider the energy function

V (Hk) =
1
2
H2

k . (59)

Taking the derivative,

V̇ (Hk) = Hk

[(
∂Hk

∂uk

)T
duk

dt
+

(
∂Hk

∂pk

)T
dpk

dt

+
(

∂Hk

∂p̃k

)T
dp̃k

dt
+

(
∂Hk

∂dk

)T
ddk

dt

]
.

From (57),
∂uk

dt
=

1
T

ξk
∂Hk

∂uk
. (60)

Hence,

V̇ (Hk) = Hk

[
1
T

ξk

(
∂Hk

∂uk

)T (
∂Hk

∂uk

)
+

(
∂Hk

∂pk

)T
dpk

dt

+
(

∂Hk

∂p̃k

)T
dp̃k

dt
+

(
∂Hk

∂dk

)T
ddk

dt

]
.
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Suppose that, there exists a finite optimal value for step size,
ξ∗k , at the given operating condition, such that the Hamiltonian
can be minimized, and convergence to the optimal value
function can be guaranteed.

ξ∗k = T

[(
∂Hk

∂uk

)T (
∂Hk

∂uk

)]−1 {
−

(
∂Hk

∂pk

)T
dpk

dt

−
(

∂Hk

∂p̃k

)T
dp̃k

dt
−

(
∂Hk

∂dk

)T
ddk

dt
− µ1Hk

}

where µ1 > 0. Since the computation of ξ∗k involves the
unknown parameters such as derivative of disturbance vector,
and the gradient of Hamiltonian with respect to the disturbance
vector, it is not possible to compute ξ∗k from the above equa-
tion. Hence we are proposing an adaptive tuning algorithm for
updating the step size for the given operating condition. For
a given operating condition, the optimal value of step size,
should be a fixed value. From the above equation, the optimal
value of step size, ξ∗k , is assumed to be slowly varying with
respect to time. Hence it is reasonable to assume that ξ̇∗k = 0
at the given operating condition. The response of ξ̂k shown in
Section V confirms this, i.e., ξ̂k is settling to different fixed
values of ξ∗k , at different operating conditions. If ξ̂k represents
the estimated value of the step size, the adaptation error can
be defined as

ξ̃k = ξ̂k − ξ∗k. (61)

The energy function can be modified as

V (Hk, ξ̃k) =
1
2
H2

k +
1
2
Ωξ̃2

k, Ω > 0

V̇ (Hk, ξ̃k) = Hk

[
1
T

ξ̂k

(
∂Hk

∂uk

)T (
∂Hk

∂uk

)

+
(

∂Hk

∂pk

)T
dpk

dt
+

(
∂Hk

∂p̃k

)T
dp̃k

dt

+
(

∂Hk

∂dk

)T
ddk

dt

]
+ Ωξ̃k

˙̂
ξk

= Hk

[
1
T

ξ̂k

(
∂Hk

∂uk

)T
∂Hk

∂uk
+

(
∂Hk

∂pk

)T
dpk

dt

+
(

∂Hk

∂p̃k

)T
dp̃k

dt
+

(
∂Hk

∂dk

)T
ddk

dt

+
ξ∗k
T

(
∂Hk

∂uk

)T
∂Hk

∂uk
− ξ∗k

T

(
∂Hk

∂uk

)T
∂Hk

∂uk

]

+ Ωξ̃k
˙̂
ξk

= Hk

[
1
T

ξ̃k

(
∂Hk

∂uk

)T
∂Hk

∂uk
+

(
∂Hk

∂pk

)T
dpk

dt

+
(

∂Hk

∂p̃k

)T
dp̃k

dt
+

(
∂Hk

∂dk

)T
ddk

dt

+
ξ∗k
T

(
∂Hk

∂uk

)T
∂Hk

∂uk

]
+ Ωξ̃k

˙̂
ξk.

Substituting for ξ∗k , yields

V̇ (Hk, ξ̃k) =
ξ̃k

T
Hk

(
∂Hk

∂uk

)T (
∂Hk

∂uk

)

− µ1H
2
k + Ωξ̃k

˙̂
ξk.

If the update law is chosen such that

˙̂
ξk = − 1

ΩT
Hk

(
∂Hk

∂uk

)T (
∂Hk

∂uk

)
(62)

V̇ (Hk, ξ̃k) = −µ1H
2
k . Hence V̇ (Hk, ξ̃k) is negative semidef-

inite, this implies that Hk and ξ̃k are bounded. Taking the
derivative of V̇ (Hk, ξ̃k)

V̈ (Hk, ξ̃k) = −µ1Hk

[
1
T

ξ̂k

(
∂Hk

∂uk

)T (
∂Hk

∂uk

)

+
(

∂Hk

∂pk

)T
dpk

dt
+

(
∂Hk

∂p̃k

)T
dp̃k

dt

+
(

∂Hk

∂dk

)T
ddk

dt

]
+ Ωξ̃k

˙̂
ξk.

Replacing ξ̂k by (ξ̃k + ξ∗k), and substituting for ξ∗k , yields

V̈ (Hk, ξ̃k) = −µ1Hk

(
∂Hk

∂uk

)T (
∂Hk

∂uk

)
ξ̃k + Tµ2

1H
2
k .

The optimal value of gain, ξ∗k is a bounded value. Since
ξ̃k is bounded, ξ̂k is also bounded. Since u is assumed to
be Lebesgue measurable, bounded and Lipschitz, from (60),
we can find that ∂Hk

∂uk
is bounded. Since, we have already

proved that Hk is bounded, from the above equation, it is clear
that V̈ (Hk, ξ̃k) is bounded. Hence, V̇ (Hk, ξ̃k) is uniformly
continuous, and by Barbalat’s Lemma [32], it has been found
that Hk, ξ̃k → 0 as t →∞. ¥

The complete NMPC algorithm [16], [17], with the real time
finite horizon optimization technique, is provided in the next
section.

IV. TRACKING CONTROL OF SFF USING
THE PROPOSED SCHEME

A schematic of the Earth orbiting SFF system in a leader-
follower based framework is shown in Fig. 2.

Fig. 2. Schematic representation of the satellite formation flying system.

The chief (leader) is assumed to be in circular orbit.
The equations of motion of the deputy (follower) spacecraft
[2], [36] are defined in local-vertical-local-horizontal (LVLH)
frame, fixed at the center of the chief. Let r = [r, 0, 0]T

denotes the position vector of the chief in Earth centered
inertial reference frame, and ρ = [x, y, z]T denotes the relative
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position vector of the deputy with respect to the chief in LVLH
frame. The nonlinear SFF model can be written as follows:

r̈ − rθ̇2 +
µ

r2
= 0

rθ̈ + 2θ̇ṙ = 0

ẍ− 2θ̇ẏ − θ̈y − θ̇2x +
µ(r + x)

l3
− µ

r2
= ux + dx (63)

ÿ + 2θ̇ẋ + θ̈x− θ̇2y +
µy

l3
= uy + dy

z̈ +
µz

l3
= uz + dz

where l =
√

(r + x)2 + y2 + z2; d = [dx, dy, dz]T , and u =
[ux, uy, uz]T , represent the bounded external disturbance and
the thrust acceleration (control input) respectively; µ denotes
the gravitational constant of the Earth; and θ̇ is the angular
velocity of the circular orbit. The reference trajectories for the
relative position and velocity of the deputy with respect to
chief, have been derived based on Hill’s linearized equations
of relative unperturbed motion [2], [37], and that is having the
following form:

ẍ− 2ωẏ − 3ω2x = 0 (64)
ÿ + 2ωẋ = 0 (65)

z̈ + ω2z = 0 (66)

where ω = θ̇ =
√

µ
r3 . If p = [x, ẋ, y, ẏ, z, ż]T , the dynamics

given by (64)−(66) can be expressed as ṗ = Ap, where

A =




0 1 0 0 0 0
3ω2 0 0 2ω 0 0
0 0 0 1 0 0
0 −2ω 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −ω2 0




.

The reference trajectory is chosen such that it satisfies:

ṗd = Apd (67)

where pd represents the desired trajectory. Our objective is
to design an optimal control law for controlling the relative
positions and velocities of the deputy with respect to chief. It is
assumed that deputy has the onboard arrangements to acquire
the information regarding its relative position with respect to
chief. For the system model given by (63),

M(p) =




1 0 0
0 1 0
0 0 1


 (68)

is nonsingular; hence, the relative degree of the system is {2,
2, 2}. The distribution, Λ = span{w1, w2, w3}, is involutive.
Therefore, the system is locally detectable in the domain Υ.
The structure of the adaptive gain HOSM can be defined as
follows:

˙̂γi
1 = −αi

1δ
1
3
i |γ̂i

1 − Yi| 23 sign(γ̂i
1 − Yi) + γ̂i

2

˙̂γi
2 = F̂ i + Biu

F̂ i = −αi
2δ

1
2
i |γ̂i

2 − ˙̂γi
1|

1
2 sign(γ̂i

2 − ˙̂γi
1) + γ̂i

3

˙̂γi
3 = −αi

3δisign(γ̂i
3 − F̂ i) (69)

where Y = [x, y, z]T . Using Theorem 2, the disturbance
estimates can be obtained as

d̂x = γ̂1
3 −

√
4µ

r3
γ̂2
2 −
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1

r3

+
µ(γ̂1

1 + r)
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− µ
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The velocity estimates can be obtained as ẋ = γ̂1
2 , ẏ = γ̂2

2

and ż = γ̂3
2 . These estimates are utilized by the prediction

model in the NMPC. Using the alternate observer structure
given by (46), the disturbances can be estimated as follows:
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The complete tracking scheme is detailed in Algorithm 1.
The simulation results, given in the next section, confirm

the efficacy of the proposed scheme.

V. RESULTS AND DISCUSSION

The simulation studies have been done for a two-spacecraft
formation flying model given by (63). We have considered a
projected circular formation, in which the chief is moving in a
circular orbit with an angular velocity of ω =

√
µ
r3 . The refer-

ence trajectory for relative position [2] has been taken as, ρd(t)
= ( rf

2 sin(ωt+φ), rf cos(ωt+φ), rf sin(ωt+φ))T , where φ is
the in-plane phase angle between the chief and deputy, and rf

is the formation size. The simulation parameters are shown in
Table I. The reference trajectories have been chosen such that,
they satisfy (67). For improving the computational efficiency,
the length of the control horizon, N , is taken as 3. To validate
the proposed strategy, simulations are done for different levels
and types of perturbations. Random noise has been added to
the output measurements in all the cases.

Random intermediate perturbations are applied, with an
initial offset of (ρ−ρd) = [400, 400, 300]T m, and (ρ̇−ρ̇d) =
[0, 0, 0]T m. The Lipschitz constants are chosen as δ1 = 1.7
× 10−4, δ2 = 8× 10−4 and δ3 = 6× 10−6 respectively. The
values of β are chosen as [β1

1 , β1
2 , β1

3 ]T = [0.1, 0.1, 5E−5]T ,
[β2

1 , β2
2 , β2

3 ]T = [5E−3, 1E−2, 2E−4]T , and [β3
1 , β3

2 , β3
3 ]T =

[6E−3, 3E−2, 1E−6]T respectively. The value of Ω used in the
update law for step size is taken as 0.1. The control constraint,
ui

max, is chosen as 80 mm/s2, ∀i, since we have considered a
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Algorithm 1. NMPC algorithm
1: Initialize the control sequence u0, u1, . . . , uN−1; obtain the

position measurements.
2: Estimate the velocities and disturbance inputs using HOSM

observer, given by (4). The observer gains can be updated
using the adaptive tuning rules given in (5)−(8). The velo-
city estimates can be obtained as ẋ = γ̂1

2 , ẏ = γ̂2
2 , and ż =

γ̂3
2 , respectively, and the disturbance estimates can be com-

puted using (70).
3: while |4J | > ε do
4: for k ← 0, N − 1 do
5: Obtain pk+1 and dk+1

6: end for
7: for k ← N , 1 do
8: Find λk using (54) and (55)
9: end for

10: for k ← 0, N − 1 do
11: Compute ∂Hk

∂uk
using (56)

12: end for
13: for k ← 0, N − 1 do
14: Update ξk using the adaptive tuning law given in (62)
15: end for
16: Determine 4J = J i − Jj−1

17: if 4J ≤ 0 then
18: Update the control sequence u0, u1, . . . , uN−1 using (57)
19: else
20: Continue
21: end if
22: J + +

23: end while
24: Apply u0 to the system and reinitialize the control sequ-

ence as u0, u1, . . . , uN−1 for improving the computatio-
nal performance [17].

TABLE I
SIMULATION PARAMETERS

Parameters Values

The Earth’s gravitational constant µ = 3.985× 1014 m3/s2

Orbital radius of the circular reference orbit 6878.137 km

Formation size rf = 1 km

In-plane phase angle between chief and deputy φ = 0

ε 1E−4

very high initial distance separation of 640.3 m, for the desired
formation size of 1000 m. All the observer gains are initialized
as zero. The other parameters such as R = (1E−3)I(3), and S
= (2E− 2)I(6), are chosen heuristically, where I is identity
matrix. The phase portrait given by Fig. 3, and the relative
position trajectories of the deputy given by Fig. 4, confirm
the robustness of the proposed approach. A projected circular
formation [2] is maintained along the y-z plane. Fig. 5 shows
the applied intermediate disturbances and the reconstructed
signal using the proposed HOSM observer. Different types of
perturbations have been applied along x, y and z directions.
The perturbing accelerations are expressed as functions of

angular velocity of the circular reference orbit (ω). The HOSM
disturbance observer is found to be capable of rebuilding even
the worst case disturbances. The estimated relative velocity
trajectories, and the corresponding error histories are shown
in Figs. 6 and 7 respectively. The rotated magnified version of
the initial region of tracking result is shown in cubical box.
Irrespective of the initial values, the estimated trajectories are
found to be converging to the actual one within 100 s. To show
the convergence speed, the velocity error histories are provided
in Fig. 8.

Fig. 3. Phase portrait: (a) X-Y -Z coordinates, (b) X-Y coordinates, (c) Y -
Z coordinates and, (d) X-Z coordinates.

Fig. 4. Relative position trajectories of the deputy.

Fig. 5. Disturbance trajectories of the deputy.



NAIR AND BEHERA: ROBUST ADAPTIVE GAIN HOSM OBSERVER BASED CONTROL-CONSTRAINED NMPC FOR SFF 377

Fig. 6. Estimated relative velocity trajectories of the deputy.

Fig. 7. Relative velocity estimation error trajectories of the deputy.

Fig. 8. Relative velocity error trajectories of the deputy.

The control histories given by Fig. 9, show that the required
thrust acceleration inputs are staying within the available
control authority. The maximum control effort is found to
be less than 60 mm/s2, even though the relative position has
been perturbed by 64%, when compared to the required
formation size. The control accuracy can be further improved
by increasing the length of control horizon, but it can affect
the computational performance. The computation time is a
key factor in determining the performance of an optimal
control technique. Fig. 10 shows the computation time at each
sampling instant, and the average computational effort per
sampling instant is found to be less than 0.5 ms. Proper
choice of ε can also considerably save the computation time.
Fig. 11 (a) provides the cost function trajectory and Fig. 11 (b)
shows the net distance separation error.

In order to show the tuning drift, the time responses of the
various adapted parameters such as observer gains and step
size are presented in Fig. 12. Fig. 13 verifies the input const-

Fig. 9. Control inputs to the deputy.

Fig. 10. Computation time.

Fig. 11. (a) Cost function trajectory and (b) Net relative distance error.

raint handling capability of the proposed NMPC scheme.
The simulations are repeated for different values of umax,
with the same level of initial and intermediate disturbances
applied as in the previous case. Even though the trajectories
are found to be converging with a reasonable speed in all
the cases, comparatively more smooth and fast convergence is
observed for umax = 70 mm/s2. From Fig. 14, it is clear that
the robustness and convergence speed of proposed adaptive
gain HOSM are preserved in all the cases, where different
initial estimates are chosen in different cases. The performance
of the proposed observer, in case of unexpected state jerks,
can be validated using Fig. 15. The magnified versions of the
respective regions of interest confirm the efficiency of the
proposed adaptive observer, in dealing with unpredicted state
jerks. In order to show the step size adaptation, simulations
are repeated for different initial distance separations, and the
corresponding tuning responses are provided in Fig. 16. From
this, it is clear that a heuristic choice of step size may not be
appropriate at all operating conditions.

The estimation responses show that the proposed HOSM
will work satisfactorily for locally Lipschitz case as well,
provided the Lipschitz nonlinearity is bounded. Fig. 17 shows
the disturbance estimates obtained using the alternate HOSM
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Fig. 12. Tuning response: (a) gain α1, (b) gain α2, (c) gain α3 and, (d) step
size ξk .

Fig. 13. Control histories and net distance separation error for different input
constraints (a) and (b) umax = 20 mm/s2, (c) and (d) umax = 50 mm/s2,
(e) and (f) umax = 70 mm/s2.

Fig. 14. Relative velocity trajectories for different initial estimates.

observer structure, given by (47). The same levels of random
perturbations as in the previous case, have been applied. The
results are compared with that of the estimates obtained in
Fig. 5. The performance of this observer is found to deteriorate,
for very high levels of initial perturbations. This reaffirms the
efficacy of the proposed observer structure.

We have compared the results with that of two recent
relevant literature, [26] and [29]. In [26], an HOSM based
disturbance observer has been used, for improving the distur-

Fig. 15. Relative velocity estimation trajectories in the case of induced state
jerks.

Fig. 16. Tuning response of ξk for different initial conditions.

Fig. 17. Disturbance trajectories using alternate HOSM differentiator struc-
ture.

bance rejection capability of continuous sliding mode con-
troller. There are only slight differences in the differentiator
structure, when compared to that of the proposed one. The
structure is given by

˙̂Γi
1 = F̂ i + Biu

F̂ i = −κi
1`

1
ei+1

i |Γ̂i
1 − γi

ei
|

ei
ei+1 sign(Γ̂i

1 − γi
ei

) + Γ̂i
2

˙̂Γi
2 = −κi

2`
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ei
i |Γ̂i
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ei sign(Γ̂i
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`
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2
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2 sign(Γ̂i
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This HOSM based observer, when it is applied to SFF
dynamics, utilizes velocity measurements to obtain the dis-
turbance estimates. Γ̂i

2 directly gives the disturbance estimate.
We have combined this fixed gain disturbance observer with
the proposed NMPC scheme. When the initial estimates are
chosen in the neighborhood of the actual value, the results are
somewhat satisfactory. But, when those values are perturbed
as in the case of previous simulations, the results are not at
all satisfactory, and the corresponding trajectories are shown
in Fig. 18. Since we have retained the same constraint value
for the control input, the control requirement remains same.
But the speed of convergence is less.

Fig. 18. Disturbance estimates with the estimation scheme proposed in [29].

We have also simulated and compared the spacecraft for-
mation flying scheme, which is proposed in [29]. In this
paper, an HOSM based observer is used for the feedforward
compensation of a nonsingular terminal sliding mode con-
troller. The results are given in Figs. 19−21. For the ease
of design, we can reformulate the dynamics given by (63),
in the form, ρ̈ + f(ρ, ρ̇) = u + d. In this case, there
is a slight difference in the differentiator structure, when
compared to (72), where ˙̂Γi

1 = F̂ i − f i(ρ, ρ̇) − ρ̈i
d + Biu,

F̂ i = −κi
1`

1
ei+1

i |Γ̂i
1 − ėi|

ei
ei+1 sign(Γ̂i

1 − ėi) + Γ̂i
2. Instead of

velocity, it uses the tracking error to estimate the unknown
disturbances. Γ̂i

2 directly gives the disturbance estimate. The
nonsingular terminal sliding surface is chosen as S = e
+ κsigη(ė), where e = ρ − ρd; ė = ρ̇ − ρ̇d; sigη(ė) =
[|ė1|ηsign(ė1), |ė2|ηsign(ė2), . . . , |ėn|ηsign(ėn)]T ; 1 < η < 2,
κ = diag{κ1, κ2, . . . κn}; and κi > 0, ∀i. The control input
can be designed as u = [ρ̈d − (1/κη)sig2−η(ė) + f(ρ, ρ̇) −
Ktanh(S) − d̂], where d̂ is the disturbance estimate. The
observer structure is more or less model dependent. The
results show that the control requirement is very high, and
the trajectory convergence speed is not even comparable with
the proposed scheme. It is found to be more than 3500 s. The
magnified regions indicate that the disturbance estimation error
is also high.

Fig. 19. Disturbance estimation error with the estimation scheme proposed
in [29].

Fig. 20. Control inputs with the control scheme proposed in [29].

Fig. 21. Relative positions with the control scheme proposed in [29].

From the results, it is clear that, the robustness of the
NMPC has been enhanced considerably with the HOSM based
disturbance observer. The prescribed structure is found to
have good estimation accuracy. The adaptation of the observer
gains give enough flexibility in the choice of initial values of
estimates. Moreover, it is able to handle unexpected state jerks.
The constraint handling has been made easy, and thereby,
complexity of the optimization scheme has been reduced,
with the choice of nonquadratic cost function, in the NMPC
scheme. The adaptation in step size has further improved the
efficiency of the optimization algorithm.

VI. CONCLUSION

This paper has focused on the tracking control of spacecraft
formation flying system consisting of two LEO satellites, in
a leader-follower based framework. In this work, we have
applied the HOSM differentiator structure, containing the Lip-
schitz constant and Lebesgue measurable control input [19],
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[25], to a complex multi-input multi-output SFF system, to
estimate the unmeasurable disturbances and velocities from the
noisy position measurements. The observer gains are updated
using adaptive tuning algorithms, derived based on Lyapunov
stability theory. The prescribed differentiator structure has
good estimation accuracy [19]. The system is transformed
into canonical form using nonlinear coordinate transformation
[24]. SFF dynamics, having a total vector relative degree equal
to n, has been considered. The observer design is repeated
with an alternate HOSM differentiator structure as well for
comparative study.

A robust NMPC technique with a nonquadratic cost func-
tion [27] has been considered for incorporating the control
constraints, which has reduced the additional burden of con-
straint handling in real time optimization algorithms. The
heuristic choice of step size in optimization algorithm is
not recommendable at all operating conditions. Hence, an
adaptive tuning algorithm has been derived for updating the
step size. The estimates from the HOSM disturbance observer
has been utilized by the output prediction model in NMPC. For
simulation studies, the nonlinear SFF model defined in leader
fixed Euler-Hill frame, has been considered, and the reference
trajectories are generated using Hill-Clohessy-Wiltshire equa-
tions of unperturbed motion. Simulation studies are conducted
for different levels of perturbations, along with added random
measurement noise. The feasibility of the algorithm based
on NMPC, combined with the adaptive gain HOSM based
disturbance observer and a state estimator, has been evaluated
in sufficient detail, and the following conclusions are drawn:

1) The prescribed adaptive gain HOSM differentiator is
found to have good estimation accuracy. It fits well as state as
well as disturbance estimator for such complex systems like
SFF system.

2) The performance of the adaptive gain HOSM is less
affected by the extremely high level of initial perturbations
applied.

3) The adaptation in observer gain has added more flexibility
to the choice of initial estimates. Moreover, the observer is
found to be robust to unexpected state jerks.

4) The results indicate that the proposed scheme will
work satisfactorily for locally Lipschitz systems with bounded
Lipschitz nonlinearity as well.

5) NMPC technique, with the real time open loop finite
horizon optimization algorithm is found to be computationally
efficient and is best suited for satellite formation control
applications.

6) The non-quadratic performance functional has consider-
ably reduced the burden of input constraint handling.

7) The adaptation in step size, is found to be an attractive
alternative to the heuristic choice of it, well suited for systems
with diverse operating conditions, which may also improve the
convergence speed.

8) The inclusion of disturbance estimate in the model
prediction is found to add more robustness to the scheme,
therefore, eliminates the necessity of exact modeling.

The inclusion of actuator dynamics, can be viewed as a
further extension of this work.
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