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Intent Pattern Recognition of Lower-limb Motion
Based on Mechanical Sensors

Zuojun Liu, Wei Lin, Yanli Geng, and Peng Yang

Abstract—Based on the regularity nature of lower-limb motion,
an intent pattern recognition approach for above-knee prosthesis
is proposed in this paper. To remedy the defects of recognizer
based on electromyogram (EMG), we develop a pure mechanical
sensor architecture for intent pattern recognition of lower-limb
motion. The sensor system is composed of an accelerometer, a
gyroscope mounted on the prosthetic socket, and two pressure
sensors mounted under the sole. To compensate the delay in the
control of prosthesis, the signals in the stance phase are used to
predict the terrain and speed in the swing phase. Specifically, the
intent pattern recognizer utilizes intraclass correlation coefficient
(ICC) according to the Cartesian product of walking speed
and terrain. Moreover, the sensor data are fused via Dempster-
Shafer’s theory. And hidden Markov model (HMM) is used to
recognize the realtime motion state with the reference of the prior
step. The proposed method can infer the prosthesis user’s intent
of walking on different terrain, which includes level ground,
stair ascent, stair descent, up and down ramp. The experiments
demonstrate that the intent pattern recognizer is capable of
identifying five typical terrain-modes with the rate of 95.8%. The
outcome of this investigation is expected to substantially improve
the control performance of powered above-knee prosthesis.

Index Terms—Above-knee prosthesis, hidden Markov model
(HMM), intra-class correlation coefficient (ICC), intent pattern
recognition, sensor fusion.

I. INTRODUCTION

THE major function of prosthetic legs is to restore the
locomotion of amputees. The focus of the above-knee

prostheses research is on the motion intent recognition and the
control of the artificial knee joint [1], [2]. Some recent designs
of above-knee prostheses have offered amputee patients im-
proved safety, stability and the coordination with contralateral
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healthy limb, as well as the decrease in energy consumption. In
addition, new developments in powered prosthesis design have
further improved the function of prosthesis. These prosthetic
legs can assist amputees with versatile activities beyond level
ground walking. However, without knowing the amputees
movement intent, which includes the terrain, speed and gait
phase, the prostheses cannot select the correct control mode
to adjust the joint impedance, or to drive powered joint motion
in a proper manner [3].

Motion intent recognition based on electromyogram (EMG)
has been widely reported in the literature. The authors of [1]
introduced a phase-dependent surface EMG analysis method
for the identification of locomotion modes. In [4], support
vector machine (SVM) and linear-discriminant-analysis (LDA)
were employed to analyze the EMG signals of residual thigh
muscles. In addition, there are also other EMG signals analyz-
ing approaches for motion intent recognition, such as artificial
neural network, K-nearest neighbor (KNN) and multiple-
binary classifier (MBC), to just name a few. Reference [5]
proposed neural-machine interface (NMI) control structure for
the above-knee prosthesis based on EMG. Furthermore, [6]
developed a brain-machine interface (BMI) prosthesis based
on electroencephalogram (EEG).

There are also other sensor signals that are involved and
fused with EMG signals for intent pattern recognition. The
EMG signals and ground reaction forces/moments (GRF)
measured from the prosthetic pylon were utilized in [7] and [8]
for locomotion-mode identification. The study of [9] illustrated
that a combination of EMG and non-contact capacitive sensor
(C-Sens) can improve the motion classification accuracy, in
which the C-Sens detects changes in physical distance between
the residual limb and the prosthesis.

Pattern recognition based on EMG or myoelectric control
of above-knee prostheses has shown a great potential in re-
search. However, myoelectric control systems for above-knee
prosthesis perform poorly in clinical trials, due to the presence
of electrode shift including the effects of socket loading, limb
orientation, variations in muscle contraction effort, changes
in electrode position during donning/doffing and daily use
[10]. Moreover, it also faces other challenging issues such as
different residual muscles conditions of amputees, the sweat,
the vibrating interference caused by walking, the muscles and
nerve atrophy, etc. The most serious drawback of myoelectric
control is the lack of generality. To be more specific, a
myoelectric control system for above-knee prostheses does not
work well for different amputees [11]. The rehabilitation tech-
nicians have to regulate it laboriously and the amputees have
to suffer a tedious training process. As a result, myoelectric
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control causes unacceptable cost and inconvenience, especially
for the amputees in developing countries [12].

Pure mechanical sensor systems have also been proposed
for limb intent recognition.

The paper [2] presented an activity-mode intent recognition
framework based on a sensor package for measuring the socket
interface moment, ground reaction force, and joint positions
and torques, respectively. Separate Gaussian mixture models
(GMM) were used for classifying the state of standing, sitting,
and walking, but the activities associated with stairs were not
involved.

In [13], a sensor system composed of accelerometer
MMA7361L and gyroscopes ENC-03 is mounted on prosthetic
socket. The KNN algorithm was used to identify amputees
walking speed. Based on a portable laser distance sensor
and an inertial measurement unit (IMU), a wearable terrain
detection unit was employed to detect the terrain change in
front of the prosthesis user [14]. In [15], thigh angle, shank
angle, knee joint angle and plantar pressure signals were used
for motion feature extraction via a BP neural network. In [16],
the ground ramp was estimated via a three-axis accelerometer
ADXL330 integrated into the prosthetic foot, wherein one of
the measurement axes is aligned with the vertical when the
foot is on level ground.

Wang et al. [17] proposed a method to identify different
terrains based on the GRF sensors, but the motion infor-
mation during swing phase could not be used. Chen et al.
[18] identified different locomotion modes using wearable
capacitive sensors. The inconvenience of this method was that
the capacitive sensors had to be attached to the skin directly,
which might aggravate the acceptance by amputees. Yuan et al.
[19] presented a fuzzy-logic-based method, in which two force
sensitive resistors (FSR), two gyroscopes, two accelerometers
and a timer are utilized to identify different terrains and
transitions. Young et al. [20] introduced a 13 IMU and motor
current sensors system, including positions and velocities for
both the knee and ankle’s, axial loads. A linear discriminant
analysis (LDA) classifier was used to classify locomotion
mode. The shortcomings of methods in [19] and [18] were
that too many sensors and heavy computations were needed. In
addition, Li et al. [21] used the IMU to identify level ground,
stair and ramp ascent/descent with a threshold method. The
disadvantage of this method was that the identification had
a delay of one step. In addition, there are also other motion
intent recognition approaches based on mechanical sensors for
below-knee amputee, old people, Parkinson patients, which are
also beneficial for this research.

As summarized in [19], a good terrain identification method
should meet the following requirements, which are high accu-
racy, minimal sensors, short delay, and low computation load.
This is exactly what we propose in this paper. A mechanical
sensor system includes an accelerometer, a gyroscope mounted
on the prosthetic socket, and two pressure sensors mounted
under the sole. To compensate the inherent delay in the control
joint mechanism, only the signals in stance are used to predict
the terrain and speed in the swing phase. The sensor signals are
extracted by intraclass correlation coefficient (ICC) approach,
sensor fusion and a hidden Markov model (HMM) algorithm.

Such a method can infer the terrain mode, which includes level
ground, stair ascent, stair descent, up ramp or down ramp, as
well as the speed and gait phase. Experiments are carried out
with three able-bodied and two amputee subjects to verify the
effectiveness of the proposed method. The contribution of this
paper is to provide a different and effective mechanical sensor
system with its algorithm for the intent pattern recognition.
The authors hope it might provide beneficial reference for the
researchers in the same field.

The rest of this paper is organized as follows. Section II
introduces the mechanical sensor system. Section III describes
the intent pattern recognition method in detail, including the
experimental protocol and algorithm process. Results and
discussion are presented in Section IV. The conclusions are
drawn in Section V.

II. MECHANICAL SENSOR SYSTEM AND EXPERIMENT

When an amputee walks in different terrains, the accelera-
tion and angle of residue limb are apparently different, so are
the pressure of sole. Conversely, the signals of acceleration, an-
gle of residue limb and the pressure of sole can reflect various
motion intents. we propose in this section a mechanical sensor
system for intent pattern recognition of lower-limb motion.
Our sensor system contains an accelerometer, a gyroscope
mounted on the prosthetic socket, and two pressure sensors
mounted under the sole.

As shown in Fig. 1, the 4 sensors are attached on the same
position on the prosthesis side of amputees or on the leg of
abled-bodied men in this design, and no sensors are attached
to the body or the healthy-side leg, in case of interfering with
the amputee’s motions. Additionally, the sensors are easily
embedded into the prosthesis to improve convenience.

Fig. 1. Sensor system for intent pattern recognition.

A. Accelerometer
A MMA7361L type accelerometer is mounted at the side

of the prosthetic socket, as shown in Fig. 1 and Fig. 2(a). To
eliminate the spikes or glitches in the signals, a wavelet thresh-
old denoising approach is used. As Sym6 wavelet has good
symmetry and quadrature property, it shows good denoisng
effect [22]. According to the character of prosthesis motion,
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Fig. 2. Accelerometer. Fig. 3. Gyroscope.

the accelerating signals of prosthesis are decomposed by 7-
level wavelet and then processed via a low pass filter. The
signals below 5 Hz are kept for signal reconstruction. As
shown in Fig. 2(b), the top one is the original signal waveform.
The middle one is the signal under wavelet threshold denois-
ing. The bottom one is the signal after the digital zeroing and
calibration. Such a pre-processing of the signals makes the
analysis of prosthesis motion in Section III easier and more
accurate.

B. Gyroscope

A NEC-03 type gyroscope is mounted at the front of the
prosthetic socket, as shown in Fig. 1 and Fig. 3(a). A similar
preprocessing of angular signals from gyroscope is also carried
out. As illustrated in Fig. 3(b), the top one is the original
signal waveform. The middle one is the signal under wavelet
threshold denoising. The bottom one is the signal after the
digital zeroing and calibration.

C. Pressure Sensors

Two pressure switches are mounted under the sole of the
prosthetic foot, one under the ball flat and another under the
heel, as shown in Fig. 1 and Fig. 4(a). The time sequence of
square waveform signals from the pressure sensors divides a
gait cycle into four phases. Firstly, the gait phase is defined

as the early stance phase with the detection of heel strike.
Secondly, the gait phase switches to the middle stance phase
with the detection of ball flat contact. Thirdly, the gait phase
switches to the late stance phase when heel is off the ground.
Finally, the gait phase is in the swing phase when foot is off
the ground. A similar idea could also be found in [19]. Take
Fig. 4(b) as an example, the top one is the heel pressure signal.
The middle one is the ball flat pressure signal. The bottom one
is the four phases of a gait cycle. As pointed out in [14], [15],
the pressure switches could also provide trigger for the cycle
control of prosthesis.

D. Experiment Protocol

Three average height (1.68−1.75 m) and weight (65−76 kg)
able-bodied men, aged 23−35, and two transfemoral (TF)
amputees, aged 34 and 37, respectively, are recruited in our
study. The TF amputees wore their own prosthesis (one is Otto
Bock, and the other is Jingbo made in China. The sensor was
reinforced on the prosthesis socket by elastic suspension belts.
All the subjects received instructions and practised the tasks
several times prior to measurement. Five terrain modes were
investigated: level ground, stair ascent, stair descent, up and
down ramp. Subjects were instructed to walk at slow, medium
and fast speeds respectively. A 6-stair staircase was used for
stair ascent/descent tests. The staircase was 15 cm high, 90 cm
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Fig. 4. Pressure sensors.

wide, and 30 cm deep. A 3.5 m long 15◦ ramp was used
for up/down ramp test. The experiment platform is shown in
Fig. 5(a). Figs. 5(b) and (c) to exhibit the experiment process.

In each trial, subjects performed one type of task. Each
terrain mode was repeated for 4 turns, and each turn includes
6−8 steps. Except those abnormal ones, at least 20 complete
stride of each terrain were recorded. Rest periods were ar-
ranged between trials to avoid fatigue.

III. INTENT PATTERN RECOGNITION

The pre-recognition of terrain and the gait speed is the key
for intent pattern recognition of lower-limb motion. In this
section, we address this important issue by using the signals
in stance phase to predict the terrain and speed in the swing
phase, which turns out to be very effective in remedying the
delay in the control of prosthesis. A detailed procedure is
described and discussed in the next three subsections.

A. Intraclass Correlation Coefficient of Motion Signals

1) Cartesian Product: Walking on different terrains with
different speeds, the accelerometer and gyroscope exhibit dif-
ferent features in the waveforms. By comparing the real-time
waveforms with the standard waveform samples, the intent
pattern might be recognized. The standard waveform samples
are organized via the so-called Cartesian product. First, the
terrains are divided into five typical categories including the
level ground, stair ascent, stair descent, up ramp and down
ramp, denoted by N. Then, a fuzzy speed set M is defined

Fig. 5. Experiments.

by taking into account of different amputee’s walking speeds,
which include fast speed of 3 km/h or higher, medium speed
ranging from 2 km/h to 3 km/h, and slow speed of 2 km/h or
lower. Last, a Cartesian product is defined as N × M [22].
As a such, all the typical motion patterns can be characterized
by the set {(level ground, fast), . . ., (stair ascent, medium
speed), . . ., (down ramp, slow)}, fifteen samples in all. The
level of similarity can be measured by the intraclass correlation
coefficient (ICC) method which will be introduced in the
next paragraph. Take the samples at the medium speed as
an example, the waveforms from the top to the bottom in
Fig. 5 are the real time signals, and the standard signals of stair
ascent, stair descent, up ramp, down ramp, and level ground,
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respectively.
2) Intraclass Correlation Coefficient: The intraclass corre-

lation coefficient (ICC) is a widely adopted method that has
been used to measure the level of similarity between two sig-
nals.It is defined as the quotient of the covariance over standard
deviation of two variables. The ICC approach has been used
to diagnose movement symmetry in early Parkinsons disease
[24]. Reference [25] used the ICC to evaluate a hip orthosis for
paraplegia patients. In this paper, we choose the ICC approach
to provide information about the terrain pattern similarity
between outcomes from the accelerometer and gyroscope for
the following consideration. When an amputee walks on the
same terrain, the sensor signals exhibit a similar waveform.
The ICC of the waveforms is high. Setting a signal template
of walking patterns, one can calculate the ICC between the
samples in the template and the real time walking signal.
Furthermore, the signal templates are only effective for the
similar height. If the height or walking style is different, the
signal template is different too. So do the templates of able-
body and amputees.

Specifically, the ICC is computed as follows. First, the
sensor data are recorded from the beginning of stance phase.
According to the statistics, the stance phase of amputees is
usually from 0.8 to 1.0 second. As the sampling frequency
is 500 Hz, so the sampling points are from 400 to 500. For
the convenience in the programming, the length of data is
uniformly chosen as 400 points in our study.

In other words, there are 400 sets of real-time signals, each
set consists of a signal recorded from accelerometer, denoted
as Xa(t), and a signal recorded from gyroscope, denoted as
Xg(t), which will be used in the calculation of ICC.

Next, the speed in stance phase is calculated according to
duration from the beginning of early stance phase to the end of
late stance phase. In our experiments, it was found that the fast
speed defined in Section III-A-1 (i.e., the speed is 3 km/h or
higher) corresponds to the duration of stance phase, which is
0.86 s or lower, the medium speed defined there corresponds to
the duration of stance phase from 0.86 s to 0.92 s, and the slow
speed is corresponding to the duration of stance phase, which
is 0.92 s or higher. Therefore,the walking speed can be inferred
from the duration time of stance phase. It has two functions.
On one hand, it is inputted to the prosthesis controller to adjust
the controller parameters for different speed. On the other
hand, it is used to choose the terrain samples according to
the corresponding speeds defined in Section A-1 Five terrain
samples of the corresponding speed (e.g., fast speed or slow
speed) are set as Yai(t) and Ygi(t), which will also be used
in the calculation of ICC. Finally, the ICC of real-time signals
and 5 samples data with similar speed are calculated one by
one as below:

Cacc(i)=
E(Xa(t)Yai(t))−E(Xa(t))E(Yai(t))√

E(Xa(t)2)−E(Xa(t))2
√

E(Yai(t)2)−E(Yai(t))2
(1)

Cgyr(i)=
E(Xg(t)Ygi(t))−E(Xg(t))E(Ygi(t))√

E(Xg(t)2)−E(Xg(t))2
√

E(Ygi(t)2)−E(Ygi(t))2
(2)

where i = 1, . . . , 5.

In ideal conditions, the ICC coefficients of the correspond-
ing terrain are the highest number in the same group. However,
there are inevitable errors caused by interference, randomness
in human motion, and the insufficient data. For example, there
are five groups of the terrain test in our experiments, each
including 100 steps. The data are sampled and processed via
the ICC. The accurate ratio of recognition via accelerometer
is 379 out of 500 while the accurate ratio of gyroscope is 353
out of 500, as shown in Table I and Table II. This test suggests
that the ICC coefficients should be further treated in a more
sophisticated manner.

TABLE I
ACCURACY RATE VIA ACCELEROMETER ICC

Terrain SA SD UR DR LG Accuracy

Stair ascent (SA) 83 1 10 2 4 83 %

Stair descent (SD) 1 80 3 11 5 80 %

Up ramp (UR) 14 2 69 5 10 69 %

Down ramp (DR) 2 16 2 70 10 70 %

Level ground (LG) 4 3 11 5 77 77 %

Total - - - - - 75.8 %

TABLE II
ACCURACY RATE VIA GYROSCOPE ICC

Terrain SA SD UR DR LG Accuracy

Stair ascent (SA) 71 4 12 3 10 71 %

Stair descent (SD) 3 69 2 14 12 69 %

Up ramp (UR) 11 1 73 6 9 73 %

Down ramp (DR) 3 15 3 66 13 66 %

Level ground (LG) 4 5 8 9 74 74 %

Total - - - - - 70.6 %

B. Sensor Fusion
Sensor fusion is the combination of data from separate

sources, such that the resulted information is better than the
one obtained by individual sensor.Sensor fusion has been
widely used in prosthetic control field. For instance, [26]
fused the implantable sensors and wearable inertial sensors to
estimate the knee joint angle, via the technique of maximum
entropy ordered weighted averaging (MEOWA). Reference
[27] fused the data from surface EMG signals and gyroscope
signals to estimate the intended knee joint angle, by using
the Levenberg-Marquardt neural network. Among the available
sensor fusion algorithms, Dempster-Shafer’s (D-S) theory is
the mature one with good feasibility and reliability [28]−[30].

To implement sensor fusion via D-S theory, one needs to
define a hypothesis space Θ = {SA, SD, UR,DR,LG, ∅} :=
{1, 2, 3, 4, 5, 0}, where SA = 1 stands for stair ascent, SD
= 2 for stair descent, UR = 3 for up ramp, DR = 4 for
down ramp, and LG = 5 for level ground, respectively. In this
way, an identification framework for the terrain recognition is
established, which includes five focal elements.

The mass function of basic probability assignment should
satisfy the following conditions:

∑

i∈Θ

m(i) =
5∑

i=0

m(i) = 1, m(i) ≥ 0 (3)
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where m(i) is the probability of the event i ∈ Θ. For instance,
in Table III, macc(SD) = macc(2) = 0.098. Similarly,
Cgyr(LG) = Cgyr(5) = 0.811.

Following the Dempster’s combinational rules, we first build
an evidence combination table, as shown in Table III. The
effectiveness of the sensor fusion algorithm based on the D-
S theory can be demonstrated by the following simple case.
Take a set of sensor data of walking on the level ground
(LG = 5) as an example, in which the ICC of gyroscope is
Cgyr(5) = Cgyr(LG) = 0.254 that is smaller than Cgyr(1) =
Cgyr(SA) = 0.257 (the SA terrain); the ICC of accelerator is
Cacc(5) = Cacc(LG) = 0.240 that is smaller than Cacc(3) =
Cacc(UR) = 0.258 (the UR terrain); and hence indicating
inconsistence with the real LG terrain. However, with the aid
of D-S theory, in particular, by computing the combined proba-
bility based on (5), we obtain mcom(5) = mcom(LG) = 0.311
which is strictly bigger than mcom(1) = mcom(SA) = 0.261
and mcom(3) = mcom(UR) = 0.248, and thus concluding that
the real terrain is LG, not SA or UR. Therefore, the uncertainty
and incorrectness in the original sensor data can be remedied
by the sensor fusion method based on the D-S theory.

TABLE III
EVIDENCE COMBINATION TABLE

Cgyr mgyr(·) Cacc macc(·) mcom(·)
SA = 1 0.852 0.257 0.637 0.192 0.261

SD = 2 0.315 0.095 0.324 0.098 0.049

UR = 3 0.604 0.182 0.856 0.258 0.248

DR = 4 0.437 0.132 0.462 0.139 0.097

LG = 5 0.811 0.254 0.795 0.240 0.311

∅ = 0 0.294 0.089 0.242 0.073 0.034

The ICC is calculated by (1) and (2). The C(∅) in Table III
represents the inaccuracy rates obtained from lab experiments,
as shown in Table I and Table II. Specifically, the inaccuracy
rate of the gyroscope ICC from Table II is 1−70.6 %, which
forms Cgyr(∅) = Cgyr(0) = 0.294 in Table III. Likewise, the
inaccuracy rate of the accelerometer ICC from Table I is equal
to 1− 75.8%, which leads to Cacc(φ) = Cacc(0) = 0.242 in
Table III.

On the other hand, the mass functions, i = 0, . . . , 5, are
calculated by

macc(i) =
Cacc(i)

5

Σ
n=0

Cacc(n)
, mgyr(i) =

Cgyr(i)
5

Σ
n=0

Cgyr(n)
(4)

while the combined probability mcom(i) is computed by

mcom(i) = macc(i)⊕mgyr(i)

=
1
K

macc(i) ·mgyr(i), i = 0, . . . , 5
(5)

where K is the normalized constant defined as

K = 1−
5∑

i=0

5∑

j=0,j 6=i

macc(i) ·mgyr(j). (6)

The calculated values based on (1), (2), (4), and (5) are
listed in Table III. Table IV collects the overall accuracy rates
in 500 sets of fused sensor data. It indicates that the sensor

fusion method based on the D-S theory increases the accuracy
rate to 87.4 % from 75.8 % of accelerometer ICC (see Table I)
and the 70.6 % of gyroscope ICC (see Table II), respectively.

TABLE IV
ACCURACY RATE VIA SENSOR FUSION

Terrain SA SD UR DR LG Accuracy

Stair ascent (SA) 94 1 4 0 3 94 %

Stair descent (SD) 1 90 1 6 2 90 %

Up ramp (UR) 10 2 81 3 4 81 %

Down ramp (DR) 2 11 2 79 6 79 %

Level ground (LG) 1 0 4 2 93 93 %

Total - - - - - 87.4 %

C. Hidden Markov Model

Hidden Markov model describes a double stochastic pro-
cess. In HMM, the state transition is related with the prior
state.The HMM is widely used in human motion and posture
recognition.HMM was used for classifying six classes of upper
extremity limb movement in [31], and it was illustrated that
HMM has a higher classification accuracy. Reference [32]
proposed a HMM-based silhouette reconstruction strategy for
gait recognition, while [33] used HMM to detect the phases
of human images and extract the human gaits in a walking
cycle against the noisy background images, by using strong
prior knowledge.

For human walking, the gait transition from one terrain to
another is a hidden process that cannot be directly observed
by the controller of prosthesis limb. The terrain recognition
can only be deduced from the outer sensors. This type of
process can naturally be described by HMM. Because there is
an obvious regularity in the terrains where human are, some
prior knowledge can be used in intent recognition for lower-
limb motion. For example, if the first step is stair ascent,
the next step would be either level ground or stair ascent.
It is almost impossible to be stair descent or ramp in normal
human environment. Besides, the two ends of ramp are usually
level ground, not stair. Conversely, the two ends of stairs are
usually level ground, not ramp. These rules are drawn from
the regularity of road or building construction. Therefore, it is
expected that a pattern recognition method combined with the
general regularity would have a higher accuracy rate of terrain
identification. Since the upcoming step is always based on the
last step, the walking process can be described as a typical
hidden Markov model with strong prior knowledge.

In this work, HMM is used for terrain recognition through a
state transition manner. To describe the HMM-based approach,
we introduce a five-state HMM λ defined by

λ = (N, M, π,A, B) (7)

where N is the hidden state containing five possible terrains,
namely, stair ascent (SA), stair descent (SD), up ramp (UR),
down ramp (DR), and level ground (LG). M is the fused
information from sensor data. π is the initial state probability
vector defined as

π = [π1, π2, π3, π4, π5]
= [0.2, 0.2, 0.2, 0.2, 0.2]

(8)



LIU et al.: INTENT PATTERN RECOGNITION OF LOWER-LIMB MOTION BASED ON MECHANICAL SENSORS 657

where πi is the initial probability of the ith terrain, set
equally as 0.2. Note that according to Table III, each ith
terrain corresponds to a unique walking pattern, for instance,
3 = UR = up ramp.

Now, introduce a 5×5-dimensional matrix A which rep-
resents the state transition probability matrix. Clearly, the
element ai,j in A is the probability of transition from last
terrain state i to the upcoming state j. That is,

ai,j = P (j|i), 1 ≤ i; j ≤ 5. (9)

The state transition probability matrix in ideal condition,
i.e., a normal environment, is given by

A =




0.5 0 0 0 0.5
0 0.5 0 0 0.5
0 0 0.5 0 0.5
0 0 0 0.5 0.5

0.2 0.2 0.2 0.2 0.2




. (10)

To see why it is so, let us take the third row as an example.
If the prior motion is up ramp, the possibility of upcoming
step for up ramp or level ground is 50 %. Consequently, a3,3

and a3,5 are both 0.5, while a3,1 = a3,2 = a3,4 = 0.
Finally, we introduce the state observation probability ma-

trix B denoted as

B=[bi,j(Ot)]1≤i,j≤5 =




0.94 0.01 0.04 0.00 0.01
0.01 0.90 0.01 0.06 0.02
0.10 0.02 0.81 0.03 0.04
0.02 0.11 0.02 0.79 0.06
0.01 0.00 0.04 0.02 0.93


 (11)

which is obtained straightforwardly from Table IV, by simply
dividing each element by 100 in Table IV.

Note that bi,j(Ot) in (11) is the observation probability of
the state on the ith row and the j(Ot)th column of the matrix
B, e.g., for i = 4 and j(Ot) = 2, b4,2 = 0.06. However, it
should be noted that the determination of the column of B,
namely, the number j depends on the so-called observation
convector as shown in (12).

Ot = [o1(t), o2(t), o3(t), o4(t), o5(t)] ∈ R1×5 (12)

where t = 1, 2, 3, . . . , are the step numbers, ol(t), l =
1, . . . , 5, are either equal to 0 or 1, and there is only one ol(t)
whose value is 1, which is determined according to the highest
value in the sensor fusion result. For example, if o3(t) = 1
then Ot = [0, 0, 1, 0, 0]. Consequently,

j(Ot) = 3.

In other words, the one with ol(t) = 1 reflects exactly the
lth column of the matrix B. This selection rule is crucial for
the recurring process of HMM below.

The element of Ot can be determined in the following
manner. Using the data mcom(i) from Table III, one can
compute the quantity

maxi=1,...,5 mcom(i).

Based on the quantity thus obtained, we can then determine
exactly which ol(t) is equal to one. For instance, it is clear
from Table III that at the step t,

maxi=1,...,5 mcom(i) = 0.311.

Hence, o5(t) = 1 and thus ol(t) = 0, for l = 1, 2, 3, 4. That
is, at the step t,

Ot = [0, 0, 0, 0, 1].

With the help of the observation vector Ot and the prior
state probabilities, the HMM can determine which state has
the highest probability for the current state. The intended limb
motion associated with the state of the highest probability is
the classification decision for the current time index t.

The recurring process of HMM can be described by the
following equations.

Initial step (t = 1):

δi(t = 1) = πibi,5, 1 ≤ i ≤ 5. (13)

Fig. 6. Intraclass correlation coefficient of real time signal and standard
samples.

Inductive step (t = 2, 3, . . . , 500):

δi(t + 1) = bi,j(Ot+1) max
k=1,...,5

(δk(t)ak,i) (14)

φt+1 = arg max
i=1,...,5

(δi(t + 1)) (15)



658 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 4, OCTOBER 2017

where δi denotes the probability of the ith terrain, and φ
denotes the current terrain. That is, φt+1 is equal to one of the
numbers 1, 2, 3, 4, 5, or is one of the terrains of SA, SD, UR,
DR and LG. φt+1 is then inputted to the prosthesis controller
to adjust the controller parameters for different terrains in the
upcoming swing phase.

As one can see in (14), the current state of HMM depends on
the prior terrain state. In our experiments, the prior terrain state
is retrospected to update the predicted state before starting
a new cycle of prediction. This is important in improving
the accuracy of the terrain recognition, simply because the
terrain retrospect is based on the data of both stance phase
and swing phase, while the terrain prediction is only based
on the data of stance phase. As a result, the accuracy of
retrospected result is always higher than that of predicted, as
shown in Table V. The procedure of the prior terrain state
updating is described as follows. Firstly, retrospect the prior
terrain state via the method of ICC and sensor fusion, in which
the data of stance phase and swing phase are used. Next, use
the retrospected state to replace the predicted δk(t) in (14).
Finally, the recursion of (14) is carried out step by step. Our
experiments have demonstrated that the corrected prior state
significantly improves the accuracy of the terrain recognition
in the upcoming terrain recognition cycle.

TABLE V
TERRAIN RETROSPECTING

Terrain SA SD UR DR LG Accuracy

Stair ascent (SA) 99 0 1 0 0 99 %

Stair descent (SD) 0 99 0 1 0 99 %

Up ramp (UR) 1 0 99 0 0 99 %

Down ramp (DR) 0 1 0 97 2 97 %

Level ground (LG) 0 0 1 1 98 98 %

Total - - - - - 98.4 %

IV. RESULTS AND DISCUSSION

Three healthy persons and two amputees participated in the
experiment. In Fig. 7, a group of signals of healthy person and
amputee are contrasted. Although the amplitudes are different,
which are caused by the amputees’ motion abilities, the signal
trends are basically same. Therefore, the method in this paper
works for both amputee and healthy person.

As some incorrect recognition of terrain is removed by
HMM, the final accuracy rate rises from 87.4 % to 95.8 %,
as shown in the Table VI. And the accuracy rates of each
terrain are shown in Fig. 8.

As the transition probabilities between level ground to other
terrains are all equal to 0.2, so the terrain recognition based
on HMM for level ground seems not as effective as the other
terrains.As far as the defect of HMM in level ground is
concerned, [33] proposed a wearable laser distance sensor to
detect the terrain change in front of the prosthesis user. It might
be an effective way, and this method would be integrated in
the future. The results of this study suggest that the proposed

approach is practically feasible and effective for the design
of general mechanical sensor-based above-knee prosthesis.
However, continuing efforts will be required to include other
activities of daily life such as standing up, sitting, bicycle
riding, etc. These issues will be investigated in our future work.

Fig. 7. Signal contrast.

TABLE VI
ACCURACY RATE VIA HMM

Terrain SA SD UR DR LG Accuracy

Stair ascent (SA) 99 0 0 0 1 99 %

Stair descent (SD) 0 98 0 0 2 98 %

Up ramp (UR) 1 0 95 0 4 95 %

Down ramp (DR) 0 0 0 94 6 94 %

Level ground (LG) 1 0 4 2 93 93 %

Total - - - - - 95.8 %
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Fig. 8. Increasing correct rate of terrain recognition.

It should be pointed out that the method proposed in this
paper has some limitations. For instance, when the amputee
walks in complex terrains such as the lawn or uneven road,
it appears that our method cannot work as effectively as in
the normal terrains. To address such an issue, the EMG-based
prosthesis may be an alternative if bottlenecks of EMG signals
processing such as interference, electrode shifting, sweat and
so on can be solved. This is because the EMG-based prosthesis
is controlled directly by the amputee’s residual muscles, and
therefore reflecting the amputee’s movement intention more
accurately [34].

V. CONCLUSION

This paper has proposed an intent pattern recognition ap-
proach based on mechanical sensors for above-knee prosthesis.
By comparison, the proposed method has certain advantages
over the EMG-based prosthesis, such as convenient in use,
lower cost and better reliability. In addition, because of using
the data of stance phase, the method proposed in this paper
can predict the terrain patterns in the upcoming swing with the
accuracy rate of 95.8 %. It has, in lab experiments, substan-
tially improved the control performance of powered above-
knee prothesis.
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