588

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 4, OCTOBER 2017
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Abstract—Recently, generative adversarial networks (GANs)
have become a research focus of artificial intelligence. Inspired
by two-player zero-sum game, GANs comprise a generator and a
discriminator, both trained under the adversarial learning idea.
The goal of GANSs is to estimate the potential distribution of real
data samples and generate new samples from that distribution.
Since their initiation, GANs have been widely studied due to their
enormous prospect for applications, including image and vision
computing, speech and language processing, etc. In this review
paper, we summarize the state of the art of GANs and look
into the future. Firstly, we survey GANs’ proposal background,
theoretic and implementation models, and application fields.
Then, we discuss GANs’ advantages and disadvantages, and their
development trends. In particular, we investigate the relation
between GANs and parallel intelligence, with the conclusion that
GANs have a great potential in parallel systems research in terms
of virtual-real interaction and integration. Clearly, GANs can
provide substantial algorithmic support for parallel intelligence.

Index Terms—ACP approach, adversarial learning, generative
adversarial networks (GANs), generative models, parallel intel-
ligence, zero-sum game.

I. INTRODUCTION

ENERATIVE adversarial networks (GANs) are a pow-
Gerful class of generative models introduced in 2014
by Goodfellow et al. [1]. The basic principle of GANs is
inspired by two-player zero-sum game, in which the total
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gains of two players are zero, and each player’s gain or
loss of utility is exactly balanced by the loss or gain of the
utility of another player. GANs often comprise a generator
and a discriminator that learn simultaneously. The generator
tries to capture the potential distribution of real samples, and
generates new data samples. The discriminator is often a bi-
nary classifier, discriminating real samples from the generated
samples as accurately as possible. Both the generator and
the discriminator can adopt the structure of currently popular
deep neural networks [2], [3]. The optimization process of
GANs is a minimax game process, and the optimization
goal is to reach Nash equilibrium [4], where the genera-
tor is considered to have captured the distribution of real
samples.

Under the boom of artificial intelligence, the proposal of
GANSs satisfies the research and application requirements of
many fields, and injects fresh impetus to the development of
the related fields. GANs have become a hot research topic
in artificial intelligence. Yann LeCun, in a recent lecture
on unsupervised learning, calls adversarial networks “the
coolest idea in machine learning in the last twenty years”.
Nowadays, the image and vision field receives the most
attention of GANSs researchers. It is now possible using GANs
to generate photorealistic object images such as birds and
faces, generate indoor or outdoor scenes, translate images
from a source domain to the target domain, generate high-
definition images from low-definition images, and so on [5].
Besides, GANs have been introduced into the study of other
artificial intelligence subfields, including speech and language
processing [6], [7], malware detection [8], and chess game
program [9].

This paper surveys the state of the art of GANs and
looks into their future. Section II introduces GANSs’ proposal
background. Section III describes GANs’ theoretic and imple-
mentation models, including GANS’ basic principle, learning
method, and GAN variants. Section IV presents some typical
applications of GANSs in artificial intelligence. Section V
discusses GANs’ advantages and disadvantages, and their
development trends. In particular, the relation between GANs
and parallel intelligence is investigated in Section V. Finally,
the concluding remarks are made in Section VI.

II. PROPOSAL BACKGROUND

We introduce the proposal background of GANSs in this
section, in order to make readers have a better understanding
of GANs’ research progress and application fields.
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A. Boom of Artificial Intelligence

In recent years, with the increase in computing power and
the emergence of big data in various industries, artificial
intelligence (AI) has gained rapid development and wide
application. Both the researchers’ attention to Al and the
public’s desire for Al utility are improving unprecedentedly
[2], [10]. It is generally believed that Al can be divided into
two stages: perception and cognition. In the perception stage,
Al systems receive physical signals (such as video and audio
signals) from the real world and make discriminations about
the signals. Related research areas include image recognition,
speech recognition, and so on. In the cognition stage, Al
systems should have a certain understanding of the nature of
the world rather than make only discriminations mechanically.
Based on our research experience, we think that Al has four
levels including discrimination, generation, understanding, and
creation and application, as shown in Fig.1. On one hand,
these levels are interrelated and reinforce each other. On
the other hand, there are big gaps between different levels,
awaiting new research breakthroughs.
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Fig. 1.

Both the widely believed two stages of Al and our summa-
rized four levels of Al involve a common topic: understanding.
Nevertheless, understanding cannot be measured directly be-
cause it is an internal characteristic both for humans and for
Al Understanding can only be inferred indirectly from other
aspects. Although how to measure the understanding level of
Al remains unresolved, a famous scholar Richard Feynman
has a saying “What I cannot create, I do not understand”,
indicating that to some extent the ability of machines to make
things reflects the level of machines to understand things. GAN
as a typical generative model can generate data samples with
its generator. This ability reflects its understanding of things
up to a certain degree. Thus, it is expected that GANs can
deepen the Al research.

B. Accumulation of Generative Models

Generative models play an essential role in the Al field,
even the generation methods alone have great research signif-
icance. Generative methods and discriminative methods are
two branches of supervised learning in machine learning.
The generative models are the models obtained by learning
with the generative methods. The generative methods involve
distribution hypothesis and parameter estimation, and can
sample new data from the estimated models. We argue that

generative models have two research perspectives: humans
understand data and machines understand data.

From the perspective of “humans understand data”, a typical
approach involves assuming the distribution of explicit or
latent variables, and then using real data to fit the distribution
parameters or train the model containing the distribution. After
that, a new sample is generated using the learned distribution
or model. The methods belonging to this class of generative
models include maximum likelihood estimation, approximate
inference [11], [12], and Markov chain method [13]—[15].
The model learned from this perspective has a distribution
that humans can understand, but has limitations for learning
machines. For example, the maximum likelihood estimation
is conducted on real data samples, and the parameters are
updated directly according to the data samples, leading to
an overly smooth generative model. The generative model
obtained by approximate inference can only approach the
lower bound of the objective function instead of directly
approaching the objective function, due to the difficulty in
solving the objective function. The Markov chain method can
be used for training generative models and generating new
samples, but its computational complexity is extremely high.

From the perspective of “machines understand data”, the
generative model does not directly estimate or fit the data
distribution. Instead, it generates data samples from the distri-
bution without explicit hypothesis [16], and use the generated
samples to modify the model. The resulting generative model
is less interpretable to humans, but the newly generated
samples are understandable to humans. It is conjectured that
machines understand data in a way that human cannot un-
derstand explicitly, but generate new data that human can
understand. Prior to GANs, the generative models built from
the perspective of “machines understand data” generally need
to be trained using Markov chain, which has low efficiency
and limits their systematic applications.

Before the proposal of GANs, the generative models already
have certain research accumulations. However, the limitations
existing in model training and data generation are really
barriers of generative models. To realize the four levels of
Al, it is necessary to design a new paradigm of generative
models to break through the existing barriers.

C. Deepening of Neural Networks

In the past decade, with the great success of deep learning
[17], [18] in various fields, the research on neural networks
revives again. Due to the increase in computing power and data
scale, neural networks have been overcoming the difficulty
in parameter training, and are widely used to solve complex
nonlinear problems. For example, deep learning has achieved
a breakthrough effect in image classification [19], [20], and
significantly improved the accuracy of speech recognition [21].
It has also been successfully applied in natural language
processing and understanding [22]. The success of neural
networks is closely related to the model characteristics. In
terms of model training, neural networks can use the general
backpropagation algorithm, and the training process is easy to
realize. In terms of model structure, the structural design of
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Fig.2. Computation procedure and structure of GAN.

neural networks is free and flexible with few restrictions. In
terms of model capacity, neural networks can approximate any
function theoretically, and have a wide range of applications.
With the rapid development of computing devices, neural
networks with more parameters can be trained with higher
speed, further promoting the popularity of neural networks.

D. Success of Adversarial Idea

From machine learning to Al, the adversarial idea has been
successfully introduced. Both game and competition contain
the adversarial idea. Game-theoretic machine learning [23]
combines game theory with machine learning, models humans’
dynamic strategy by game theory and optimizes advertise-
ment auction mechanism, then proves the effectiveness of the
approach through experiments. The more recent event that
AlphaGo [24] defeats human masters triggers public interest
in AL The intermediate version of AlphaGo uses two networks
fighting with each other in the process of training policy
network, obtains the game state, policy and the corresponding
return, and takes the expectation function containing the game
return as the maximizing objective. In the study of neural net-
work, researchers have used two neural networks to compete
with each other in the training process [25], encouraging the
hidden nodes in the network to be statistically independent,
which is used as a regularization factor in the training process.
There are researchers [26], [27] using the adversarial idea
to train neural network with domain adaptation: the feature
generator transforms the source-domain data and the target-
domain data into high-level abstract features, making the
domains of features difficult to discriminate as far as possible;
and the domain discriminator reads the features and tries to
discriminate their domains as accurately as possible.

Adversarial samples [28], [29] also contain the adversarial
idea. Adversarial samples refer to those samples that have
little difference from the real samples, but are classified into
a wrong category, or those that have big difference from the
real samples, but are classified into a real category with high
confidence. In order to learn an object detector that is robust
to occlusion and deformation, Wang et al. [30] utilize the
adversarial learning idea to generate positive examples which
are hard for the object detector to recognize.

Adpversarial learning, adversarial networks, and adversarial
samples all contain adversarial idea, but have different objec-
tives. The already achieved results by applying adversarial idea
in Al inspire more researchers to explore GANSs.

III. THEORY AND IMPLEMENTATION MODELS OF GANS
A. Basic Theory

The main idea of GAN comes from the Nash equilibrium
in game theory [1]. It assumes two game participants: one

generator and one discriminator. The generator aims to learn
the distribution of real data, while the discriminator aims to
correctly determine whether the input data is from the real
data or from the generator. In order to win the game, the
two participants need to continuously optimize themselves to
improve the generation ability and the discrimination ability,
respectively. The purpose of the optimization process is to find
a Nash equilibrium between the two participants.

The computation procedure and structure of GAN is shown
in Fig.2. Any differentiable function can be used as the
generator and the discriminator. Here, we use differentiable
functions D and G to represent the discriminator and the
generator, and their inputs are real data z and random variables
z, respectively. G(z) represents the sample generated by G
and obeying the distribution pqa, of real data. If the input of
discriminator D is from the real data x, D should classify it to
be true and label it as 1. If the input is from G(z), D should
classify it to be false and label it as 0. The purpose of D is
to achieve correct classification of the data source, while the
purpose of G is to make performance of the generated data
G(z) on D (i.e., D(G(z)) consistent with the performance of
real data z on D (i.e., D(x)). The adversarial optimization
process improves the performance of D and G gradually.
Eventually, when the discrimination ability of D has been
improved to a high level but cannot discriminate the data
source correctly, it is thought that the generator G has captured
the distribution of real data.

B. Learning Method

In this subsection, we discuss the learning and training
mechanism of GAN.

First, we describe the optimization of discriminator D given
generator (G. Similar to the training of Sigmoid function-based
classifiers, training the discriminator involves minimizing the
cross entropy. The loss function is formulated as below:

1
ObiP(0p,0g) = — §Emwpm(m) [log D(x)]
1
- 5Ez~pz<z>[log(1 = D(g(2)))] @)

where x is sampled from real data distribution pgata(x), 2 is
sampled from the prior distribution p,(z) such as uniform or
Gaussian distribution, and E(-) represents the expectation. It
should be noted that the training data consists of two parts:
one part from the real data distribution pgat.(z) and another
part from the generated data distribution p, (z). This is slightly
different from conventional methods for binary classification.
Given the generator, we need to minimize (1) to obtain the
optimal solution. In continuous space, (1) can be reformulated
as below:
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achieves its minimum value at y = m/(m + n). Hence, given
generator (7, the objective function (2) achieves its minimum
value at ()

* PdatalT
DG ($) pdata(x) + Dy (Z‘) .

This is the optimal solution of discriminator D. From (4),
the discriminator of GAN estimates the ratio of two probability
densities, which is the key difference from Markov chain or
lower bound based methods.

On the other hand, D(z) denotes the probability of x
sampled from the real data rather than the generated data. If the
input data is from real data z, the discriminator strives to make
D(z) approach 1. If the input data is from the generated data
G(z), the discriminator strives to make D(G(z)) approach 0
while the generator G tries to make it approach 1. Since this
is a zero-sum game between G and D, the loss function of G
is Obj%(0g) = —ObjP(0p,0c). Therefore, the optimization
of GAN can be formulated as a minimax problem:

mén mgx{f(D7 G) = nEgzp,...(x)[log D(z)]
+ Eenp. (o) llog(1 = D(G(2)))]}. (5)

In summary, for learning the parameters of GAN, we need
to train the discriminator D to maximize the accuracy of
discriminating the input data from the real data x or the
generated data G(z). In addition, we need to train the generator
G to minimize log(l — D(G(z))). Here we can use an
alternative training method. First, we fix G and optimize D
to maximize the discrimination accuracy of D. Then, we fix
D and optimize G to minimize the discrimination accuracy of
D. This process alternates and we could achieve the global
optimal solution if and only if pgata = Pg. In the training
process, we empirically update the parameters of D for k times
and then update the parameters of G once.

“4)

C. GAN Variants

Since Goodfellow’s proposal of GAN [1], a number of
GAN variants have been created. The major innovative points
include model structure improvement, theoretical extension,
novel applications, etc. The computation procedures and struc-
tures of some GAN variants are shown in Fig. 3.

Since the real data and generated data can have very little
overlap, the Jensen-Shannon divergence of objective function
can be a constant, which causes the vanishing gradient problem
while using the gradient descent method to train GANSs.
To tackle the vanishing gradient problem, Arjovsky et al.
[31] propose Wasserstein GAN (WGAN) by using the Earth-
Mover distance to replace the Jensen-Shannon divergence for

evaluating the distribution distance between real data and the
generated data. They use a critic function f that builds on
Lipschitz constraint to represent the discriminator. WGAN
makes significant progress towards stable training of GANSs,
but can still generate low-quality samples or fail to converge
in some settings. In light of that, Gulrajani et al. [39] find
that the training failures are often due to the use of weight
clipping in WGAN to enforce a Lipschitz constraint on the
critic, which can lead to pathological behavior. They propose
an alternative method for enforcing the Lipschitz constraint:
instead of clipping weights, penalize the norm of the gradient
of the critic with respect to its input. Their method converges
faster and generates higher-quality samples than WGAN with
weight clipping.

Another issue about GAN is that the discriminator has
an infinite modeling ability and can distinguish between real
samples and generated samples regardless of their complexity,
which easily causes over-fitting. To limit the modeling ability
of the discriminator, Qi [32] propose Loss-Sensitive GAN (LS-
GAN), which demands the objective function to satisfy the
Lipschitz constraint. In addition, they give some quantitative
results when the gradients vanish. It should be pointed out that
WGAN and LS-GAN do not change the GAN structure, but
improve the parameter learning and optimization method.

In general, only the label about data source is required for
training GANs. Odena [33] proposes Semi-GAN by adding
labels of real data to the training of discriminator D. Further-
more, Mirza et al. [34] propose to add auxiliary information
y to G, D, and real data x for GAN modeling. Here y
can be labels or other auxiliary information. Conventional
GANSs aim to learn a generative model to map the latent vari-
able distribution to complex real data distribution. Donahue
et al. [35] propose Bidirectional GANs (BiGANs) to map
the real data to the latent variable space, thereby achieving
feature learning. On top of the basic structure of GAN,
BiGANs add an extra decoder () to map the real data x to
latent space, so that the optimization problem is converted to
ming gmaxp f(D, Q,G).

Conventional GANs can learn some semantic features, but
cannot capture the relationship between the dimension of
random variables z and specific semantics. Chen et al. [36]
propose InfoGAN to capture the mutual information between
a small subset of latent variables and the observation. In partic-
ular, the input noise vector of G is decomposed into two parts:
z and c. z is treated as source of incompressible noise and c is
called the latent code to represent the structured semantic data
distribution. Conventional GANs set pg(z) = pg(x|c), but in
fact ¢ and the output of generator GG are strongly correlated. Let
G(z,c) denote the output of generator G. InfoGAN uses the
mutual information I(c; G(z,c¢)) to represent the correlation
level of two samples. Their objective function is formulated
as below:

mci:nmgx{fI(D,G) = f(D,G) — A\ (¢;G(z,¢))}.  (6)

Since the posterior probability p(c|x) cannot be computed
explicitly, its lower bound can be estimated via variational
information maximization.
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Fig.3. Computation procedures and structures of some GAN variants: (a) GAN [1], WGAN [31], LS-GAN [32], (b) Semi-GAN [33], (c) C-GAN [34], (d)

BiGAN [35], (e) InfoGAN [36], (f) AC-GAN [37], (g) SeqGAN [7], and (h) BEGAN [38].

Odena et al. [37] propose auxiliary classifier GAN (AC-
GAN) for semi-supervised synthesis. Their objective function
consists of two parts: the log-likelihood of the correct data
source and that of the correct class. The key of AC-GAN is
that it can incorporate label information into the generator
and adjust the objective function for the discriminator. In

consequence, the generation and discrimination abilities of
GAN are improved.

Yu et al. [7] propose SeqGAN to generate data sequences. It
is the first work that extends GANs for generating sequences
of discrete tokens. SeqGAN models G as a stochastic policy
in reinforcement learning to overcome the generator differ-
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entiation problem. It uses the policy gradient reinforcement
learning to backpropagate the error from D. Experiments show
that SeqGAN can achieve preferable results on speech, poem,
and music generation.

Berthelot et al. [38] propose BEGAN, which is a new equi-
librium enforcing method paired with a loss derived from the
Wasserstein distance for training auto-encoder based GANSs.
While typical GANs try to match data distributions directly,
BEGAN matches auto-encoder loss distributions. This method
balances the generator and discriminator during training, and
provides a new approximate convergence measure. The authors
also derive a way of controlling the trade-off between image
diversity and visual quality. On the image generation task, they
set a new milestone in visual quality.

IV. APPLICATIONS OF GANS

GANs can be used to generate samples with the same
distribution as real data, e.g., generating photorealistic images.
GANSs can also be used to tackle the problem of insufficient
training samples for supervised or semi-supervised learning.
In addition, GANs have been applied for speech and language
processing, such as generating dialogues. In this section, we
discuss the application range of GANS.

A. Applications to Image and Vision Computing

GANSs can generate image samples with the same distribu-
tion of real images. One typical application is from [40], where
Ledig et al. present SRGAN for image super-resolution. They
use VGG network as the discriminator and residual network as
the generator. Experimental results show that SRGAN can get
rich texture details for the estimation of photorealistic super-
resolution images.

BEGAN [38] is able to generate high-quality face samples
at resolutions of 128 x 128. Varied poses, expressions, genders,
skin colors, light exposure, and facial hair are observed from
the generated samples, as shown in Fig. 4.

Fig.4. Face samples generated by BEGAN [38].

GANSs can be used to generate driving scenarios. Santana
et al. [41] propose to generate images with the same distribu-
tion as real driving scenarios. Their driving simulator model
is an autoencoder trained with generative adversarial network
based costs coupled with a recurrent neural network transition
model. Results show that GANs can generate realistic looking
images of the road, and thus can be applied in autonomous
driving for unsupervised or semi-supervised learning.

Gou et al. [42], [43] propose to learn from both real images
and synthetic images for accurate eye detection. But both the
synthetic and real images they use have limitations, because
the synthetic images do not contain eyes with glasses while the
real images do not cover diverse illuminations and appearance
variations. Shrivastava et al. [44] propose SinGAN to learn
from simulated and unsupervised images (S + U learning) for
bridging the gap between synthetic and real image datasets.
The framework of SimGAN is shown in Fig.5. They learn
the generator to refine synthetic data so that it follows the
distribution of real data while maintaining the annotations of
synthetic data.

Synthetic /

' \ Refined
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Iy
| -
Discriminator
D
e

Unlabeled real

. Refiner
Simulator R

Real vs refined «——

Fig.5. Framework of SimGAN [44].

Image-to-image translation is a class of vision applications
in which the goal is to learn the mapping between an input
image and an output image. Huang et al. [45] propose Two-
Pathway GAN (TP-GAN) for photorealistic frontal view syn-
thesis from a single face image, by simultaneously perceiving
global structures and local details. The synthesized identity
preserving image can be used for downstream tasks like face
recognition. The training phase of TP-GAN requires paired
examples of identity preserving frontal view image and face
image under a different pose. Nevertheless, paired training data
are not available for many tasks. In light of that, Zhu et al.
[46] propose CycleGAN for learning to translate an image
from a source domain to a target domain in the absence of
paired examples. Their method is a general-purpose one and
can be applied to a wide range of image-to-image translation
tasks, including style transfer, object transfiguration, attribute
transfer, and photo enhancement, as shown in Fig. 6.

B. Applications to Speech and Language Processing

Recently, there are some GANs based applications for
speech and language processing. Li er al. [6] use GANs to
capture the relevance of dialogue and generate corresponding
text. Zhang et al. [47] propose to generate realistic sentence
with GANSs, by using long short-term memory and convo-
lutional neural networks for adversarial training. SeqGAN
[7] employs reinforcement learning to generate speech and
language, poem, and music. Pascual et al. [48] propose the
use of GANs for speech enhancement, called SEGAN. They
operate at the waveform level, train the model end-to-end, and
incorporate 28 speakers and 40 different noise conditions into
the same model, such that model parameters are shared. They
evaluate the proposed model using an independent, unseen test
set with two speakers and 20 alternative noise conditions. The
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Fig.6. Example results of CycleGAN for unpaired image-to-image translation [46].

enhanced samples confirm the viability of SEGAN.

Some researchers propose to synthesize images from text
descriptions. Reed et al. [49] present a GANs-based method
for generating images from the text. Text encoding is used
by both the generator and the discriminator. Experimental
results show that it can get preferable images from text
descriptions. However, their generated samples fail to contain
necessary details and vivid object parts. Zhang et al. [50]
propose StackGAN for text to photorealistic image synthesis.
Given text descriptions, Stage-I of StackGAN sketches rough
shapes and basic colors of objects, yielding low resolution
images. Stage-II of StackGAN takes Stage-I results and text
descriptions as inputs, and generates high resolution images
with photorealistic details. StackGAN can generate realistic
256 x 256 images conditioned on only text descriptions. Fig.7
shows some example images generated by StackGAN from
unseen text descriptions.

C. Other Applications

GANs can connect with reinforcement learning, such as
in the aforementioned SeqGAN [7]. Some researchers also
connect GANs with imitation learning [51], [52] or Actor-
critic based methods [53]. Next we take three examples to
indicate the usefulness of GANs in a range of applications.

Hu et al. [8] propose a GAN-based algorithm named
MalGAN to generate adversarial malware examples, which
are able to bypass black-box machine learning based detec-
tion models. MalGAN uses a substitute detector to fit the
black-box malware detection system. A generative network
is trained to minimize the generated adversarial examples’
malicious probabilities predicted by the substitute detector.
MalGAN is able to decrease the malware detection rate to
nearly zero and make the retraining based defensive method
against adversarial examples hard to work. This is an important
conclusion because malware detection algorithms cannot be
used in real-world applications if they are easy to be bypassed
by adversarial examples.

Chidambaram et al. [9] present a general framework for
style transfer, which they term style transfer generative ad-
versarial networks (STGANS) as an extension of GANs. They
use a discriminator to regularize a generator with an otherwise
separate loss function. Their approach is applied to the task
of learning to play chess in the style of a specific player, and
produce empirical evidence for the viability of STGANS.

Choi et al. [54] propose medical generative adversarial
network (medGAN) to generate realistic synthetic electronic
health records (EHRs). Based on an input EHR dataset,
medGAN can generate high-dimensional discrete variables
(e.g., binary and count features) via a combination of an au-
toencoder and GANs. To demonstrate feasibility, they showed
that medGAN generates synthetic EHR datasets that achieve
comparable performance to real data on many experiments
including distribution statistics, predictive modeling tasks and
medical expert review.

V. IMPACT AND PROSPECT
A. Significance and Advantages

GANSs have great significance to the development of genera-
tive models. As a powerful class of generative methods, GANs
solve the problem of generating data that can be naturally
interpreted. Especially for the generation of high-dimensional
data, the adopted neural network structure does not limit the
generation dimension, which greatly broadens the scope of the
generated data samples. Besides, the neural network structure
can integrate various loss functions, thereby increasing the
degree of freedom of the model design. In general, the training
process of GANs uses two adversarial neural networks as
training criterion and can be trained by backpropagation. The
training does not rely on the inefficient Markov chain method,
nor approximate inference. There is no complex variational
lower bound, which greatly reduces the training difficulty and
improves the training efficiency. The generation process of
GANs does not require tedious sampling sequence, but can
directly sample and predict new samples, which improve the
efficiency of generating new samples. The adversarial training
discards direct replication or average of real data, thereby
increasing the diversity of the generated samples. In practice,
the samples generated by GANs are easy to understand for
humans. For example, GANs can generate very sharp and
realistic images. In brief, GANs provide a promising solution
for creatively generating data that are meaningful to humans.

Not only have GANs made great contributions to the de-
velopment of generative models, but they are also meaningful
and instructive for semi-supervised learning. As we know, the
learning process of GANs does not require data labels except
the data source. Although the objective of GANS is not semi-
supervised learning, the training process of GANs can be used
to achieve pre-training using unlabeled data. For example, we
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This bird has a yellow
belly and tarsus, grey
back, wings, and
brown throat, nape
with a black face

(a) Stage-I images

{(b) Stage-1T images

Fig.7.

can first use a large amount of unlabeled data to train GANS;
based on the understanding of the trained GANs over the
unlabeled data, we can then use a small amount of labeled
data to train the discriminative model for classification and
regression tasks.

B. Limitations and Development Trends

GANSs have solved a lot of problems for generative models
and brought inspiration to other AI methods, but they still
have limitations. GANs adopt the adversarial learning idea,
but convergence of the model and existence of equilibrium
point have not been proved yet. The training process needs
to ensure balance and synchronization of two adversarial
networks, otherwise it is difficult to obtain good training
results. However, it is difficult to control the synchroniza-
tion of the two adversarial networks, so the training process
may be unstable. In addition, as generative models based on
neural networks, GANs have the common defect (i.e., poor
interpretability) of neural networks. Furthermore, although
the samples generated by GANs are diverse, there exists the
collapse mode problem [5]. Mode collapse refers to scenarios
in which the generator makes multiple images that contain the
same color or texture themes, thereby having little difference
for human understanding.

Although GANs have some limitations, it is undeniable
that the research progress of GANs has revealed their broad
prospects. New techniques dedicated to reducing the limita-
tions are continually emerging. For example, Wasserstein GAN
[31], [39] greatly overcomes the training instability problem,
and partially solves the collapse mode problem at the same
time. How to completely avoid collapse mode and further
optimize the training process remains a research direction of
GANSs. Furthermore, the theory about model convergence and
the existence of equilibrium point remain important research
subjects in the near future.

The above research directions focus on better solving the
drawbacks of GANs. From the perspective of developing
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This bird is white
with some black on

This flower has
overlapping pink
pointed petals

its head and wings,
and has a long
orange beak

surrounding a ring of
short yellow filaments

Photorealistic images generated by StackGAN from text descriptions [50].

and applying GANs, how to generate a variety of data that
can interact with humans from simple random inputs is an
important research direction in the near future. From the
perspective of combining GANs and other methods, how to
integrate GANs with feature learning, imitation learning, and
reinforcement learning to develop new Al applications and
promote the development of these methods is very meaningful.
In the long run, how to use GANSs to promote the development
and application of Al, enhance the ability of Al to understand
the world, and even stimulate the creativity of Al are important
problems that should be considered by researchers.

C. Relation Between GANs and FParallel Intelligence

In 2004, Fei-Yue Wang [55], [56] proposed the parallel
systems theory and ACP (artificial societies, computational
experiments, and parallel execution) approach for modeling
and control of complex systems. Parallel systems emphasize
virtual-real interaction. Artificial systems are constructed to
represent the actual system, computational experiments are
utilized to learn and evaluate various computational models,
and parallel execution is implemented to improve the perfor-
mance of the actual system. In parallel systems, the artificial
systems and the actual system work together in a virtual-real
interactive manner [57], [58]. The parallel systems theory and
ACP approach have now evolved into a more generalized
parallel intelligence theory [59]. In the training process of
GANS, the real data samples and the generated data samples
interact with each other via the adversarial networks, and the
trained generator can generate more virtual samples than the
real samples. GANs can deepen the philosophy of parallel
systems’ virtual-real interaction and integration. As a powerful
class of effective generative models, GANs can merge into the
systematic research of parallel intelligence. In this subsection,
we discuss the relation between GANs and parallel intelligence
from three aspects.

1) GANs and Parallel Vision: Parallel vision [60] is an ex-
tension of ACP approach into the vision computing field. Fig. 8
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shows the basic framework and architecture of parallel vision.
Integrating multiple technologies (such as computer graphics,
virtual reality, machine learning, and knowledge automation)
and utilizing a new ACP (artificial scenes, computational
experiments, and parallel execution) approach, parallel vision
aims to establish systematic theories and methods for visual
perception and understanding of complex scenes. Parallel
vision first constructs artificial scenes to simulate and represent
complex real scenes, making it possible to collect and annotate
large-scale diversified image datasets. Computational experi-
ments are then utilized to design and evaluate a variety of
vision algorithms. Finally, parallel execution is used to online
optimize the vision system. In parallel vision, the generation
of artificial-scene images can be realized by GANSs, as shown
in Fig. 4 and Fig. 6. GANs can generate large-scale diversified
image datasets, which can be combined with real datasets to
train the vision models. This helps improve the generalization
ability of vision models.

Real scene Artificial scenes
- | Perception and Observation | &
2 understanding Computing and and evaluation E
= observation
Perception and Experiment and Learning and
understanding evaluation training
Fig.8. Basic framework and architecture for parallel vision.

2) GANs and Parallel Control: Parallel control [61]—[63]
is a specific application of ACP approach in the field of
complex system control. Fig. 9 shows the structure of parallel
control systems. In parallel control, artificial systems are used
for modeling and representation, computational experiments
are utilized for analysis and evaluation, and parallel execution
is conducted for control and management of complex systems.
Parallel control can be considered as the extension of feedback
control, especially adaptive control, for dealing with problems
involved with both engineering and social complexities. In
addition to the generation of artificial systems and the analysis
of computational experiments, the parallel execution between
artificial systems and the actual system can also be simulated
using GANs. On one hand, GANs can be used to conduct
predictive learning of the artificial systems and feedback
learning of the actual system. On the other hand, GANs can be
used to realize imitation learning and reinforcement learning
of the control unit.

3) GANs and Parallel Learning: Parallel learning [64] is
the extension of ACP theory in the learning field. Fig. 10 shows
the theoretical framework of parallel learning. The emphases
of parallel learning include: using predictive learning to solve
the problem of exploring time-varying data, using ensemble
learning to solve the problem of exploring spatial-distributed
data, and using prescriptive learning to solve the problem of
exploring the direction of data generation. Parallel learning
can be considered as a new theoretical framework for machine
learning, and is closely related to parallel vision and parallel
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control. GANs can be combined with parallel learning in
terms of big data generation, computational experiments based
predictive learning, and so on.

Operating unit Parallel execution

—————— Distwrbance =~ ——
Control and Attificial
management systems

g gt

Input | Output
pu £ | Experimentation £

o0 . e

.S | and evaluation

=

: 4

o

o
Learning and Actual

training systems
N —
{ Feedback |
Fig.9. Structure of parallel control systems.

Add new raw data
generated by

parallel control

Data collection

Raw data [ Select small data »  Software-defined
artificial systems
] Mix artiticially
Data Big data generated data and
raw data
Action Computational
Small - experiments and
knowledge bi’;ﬁa&;ﬁ:ﬁ; reinforcement learning

for parallel
control

Parallel control and
collaborative learning

Fig. 10. Theoretical framework of parallel learning.

VI. CONCLUDING REMARKS

In this paper, we survey the state of the art of GANs.
Since the proposal of GAN in 2014 by Goodfellow, this
model has been receiving increasing attention from the Al
community. The core idea of GANs originates from two-player
zero-sum game in game theory. A GAN usually comprises a
generator and a discriminator, which are trained iteratively in
an adversarial learning manner, approaching Nash equilibrium.
As a powerful class of generative models, GANs do not
estimate the distribution of data samples explicitly, but learn
to generate new samples that conform to the same distribution
as the real samples. The ability to generate “infinite” new
samples from potential distribution has great application value
in many fields such as image and vision computing, speech
and language processing, and information security.

We also investigate the development trends of GANSs, and
discuss the relation between GANs and parallel intelligence in
particular. In our opinion, GANs can deepen the philosophy of
parallel systems’ virtual-real interaction and integration, and
provide specific and substantial algorithmic support for the
ACP approach. In parallel vision, parallel control, and parallel
learning systems, GANs can learn to generate data samples
that have the same distribution as the real samples, thereby
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supporting the research and application of parallel systems.
In summary, GANs as powerful generative models can merge
into the systematic study of parallel intelligence.
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