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Abstract—Most target grabbing problems have been dealt with
by computer vision system, however, computer vision method
is not always enough when it comes to the precision contact
grabbing problems during the teleoperation process, and need to
be combined with the stiffness display to provide more effective
information to the operator on the remote side. Therefore, in
this paper a more portable stiffness display device with a small
volume and extended function is developed based on our previous
work. A new static load calibration of the improved stiffness
display device is performed to detect its accuracy, and the
relationship between the stiffness and the position is given. An
effective target grabbing strategy is presented to help operator on
the remote side to judge and control and the target is classified by
multi-class SVM (supporter vector machine). The teleoperation
system is established to test and verify the feasibility. A special
experiment is designed and the results demonstrate that the
improved stiffness display device could greatly help operator on
the remote side control the telerobot to grab target and the target
grabbing strategy is effective.

Index Terms—Multi-class SVM (supporter vector machine),
teleoperation, target grabbing, stiffness display.

I. INTRODUCTION

AS we all know, human-robot interaction plays a quite
important role in the area of telerobot [1]−[7]. Haptic

interaction between the human operator and telerobot is being
widely researched since effective haptic display could help and
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make the operator more convenient and easier to fulfill remote
control tasks, especially some precision contact tasks [8], [9],
such as grabbing an unknown target.

Haptic display is classified into two classes [10], one is
haptic display in the tangent direction of the touched point,
such as texture and friction display, which could be derived
or estimated by computer vision system or human vision
system [11]−[14]; another is haptic display in the normal
direction, such as compliance display and softness display,
which definitely cannot be reached by vision system, but is
very important to be used to distinguish how hard the object
to be grabbed is during the precision contact tasks and how
much force the operator should apply. So far, most previous
work about target grabbing by a telerobot was focused on
the computer vision method and vision system [15]−[17], but
vision method is not always competent to provide enough
effective information to the operator, and the shortages could
be concluded as follows:

1) Even the most advanced computer-vision skill may be
affected and limited by the environment light and the nature
of object;

2) In some situations, the panorama of the whole object is
always hard to get only by computer-vision method;

3) It is contact and force that are the most important points
during the grabbing process, and they can’t be judged changing
and controlled by the computer-vision method.

Especially during the teleoperation with a precision contact
grabbing task, stiffness display could be much helpful to the
operator on the remote side to increase the safety and stability
during the grabbing process. While little research focused on
the stiffness display device itself because of the lack of an
effective stiffness display interface device with a wide stiffness
range from very soft to very hard. An experimental system for
measuring planar tissue phantom deformation during needle
insertions has been developed and a method for quantifying
the needle forces and soft tissue deformations that occur during
general needle trajectories in multiple dimensions is proposed
in [18]. Those existing PHANToM arm, like some other force
feedback data-gloves, are inherently force display interface
devices, which are unable to produce large stiffness display
of hard object owing to the limitation of output force of the
driven motors [19], [20].

In order to solve the precision contact problem, this paper
presents a novel target grabbing strategy for telerobot, which is
based on improved stiffness display device we designed before
[10]. The improved stiffness display interface device, with a
small volume and extended function, is made up of a thin
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elastic beam and an actuator to adjust the length of the
beam. Under a constant force, the deformation of the beam is
proportional to the third power of the beam length. Therefore,
we could control the beam length to get the desirable stiffness,
which measures the stiffness of a remote object with wide
range from very soft to hard, to display on fingertip of human
operator. Based on the stiffness display device, a novel target
grabbing strategy is presented to provide supportive data and
help operator to judge what the object is and to decide
how to control to grab the object. The rest of this paper
is organized as follows: In Section II, a more flexible and
practical stiffness display device is improved and introduced
in detail. In Section III, static load calibration of the stiffness
display device is extracted and analyzed, and the relationship
between the stiffness and the position is given. In Section IV,
an effective target grabbing strategy based on the improved
stiffness display device is presented and in Section V, multi-
class SVM is used to classify the substance of the target and
help to verify whether the target is stably handled. Section VI
presents our experiment results and Section VII concludes the
paper and describes the future work.

II. IMPROVED STIFFNESS DISPLAY DEVICE

We already made a softness haptic display device for
human-computer interaction before [10]. However, its size is
too large to be carried and it is hard to move on the plane and
not convenient to integrate with other equipment for portable
use.

Fig. 1. Improved stiffness display device with vibration motor. 1.
vibration motor, 2. USB interface, 3. motor and encoder, 4. touch
cap, 5. two protrusive guide poles, 6. position sensor, 7. thin elastic
beam, 8. carriage with nut, 9. feed screw, 10. mouse.

Therefore, a small stiffness display device is improved and
extended functionally based on the existing device:

1) On the basis of the guaranteed performance, the volume
of the device is designed much smaller.

2) A vibration motor is added to display force feedback for
operator on the remote side.

3) Two protrusive guide poles which extend to the left and
right mouse buttons respectively could be used to input control

commands. Therefore, the whole device could take place of
the mouse.

4) USB interface is exploited as the mere data interface, it
is convenient for plug and play.

As shown in Fig. 1, it is the picture of the improved stiffness
display device. In the bottom of the device, a computer mouse
is placed, and we could control the left mouse button and right
mouse button via the two protrusive guide poles on the top of
device, which could be used to control the opening and closing
of the gripper. A vibration motor glued on the operator’s arm
could give the force feedback from the telerobot. The size of
the whole device is quite small and convenient for use, about
100 mm long 70 mm wide and 150 mm high. The thin elastic
beam was made by spring steel, with the height of 90 mm, the
width of 10 mm and the thickness of only 0.3 mm.

According to the principle of the softness display described
in [10], the stiffness of the device could be calculated by the
formula:

k = ρ
1
l3

(1)

where ρ = Ebh3/4 is the gain of the stiffness, l is the
effective length of the thin elastic beam. Here, E is the
Young’s modulus E = 200× 109 N/m2, and b is the width of
the thin elastic beam b = 10 mm, and h is the thickness h =
0.3 mm. So it is easy to calculate with the variable to get the
device constant ρ = 0.0135N/m2.

To simplify the calculation, we let z = 1/l3, and substitute
it into (1), which could be transformed into a linear function
as:

k = ρ · z. (2)

The relationship between k and l or z is shown in Fig. 2,
respectively.

Fig. 2. Transformation of the power function into linear function.

Elastic beam and stiffness display mechanism in the struc-
ture inherently determines that the elastic beam has its own
shortest effective length and longest effective length to ensure
accuracy. With the effective length of the longest lmax and the
effective length of the shortest lmin

{
lmax = 81.5mm
lmin = 20.5mm (3)
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substituted to (1), we could get{
kmax = 1500.18N/mm
kmin = 24.85N/mm.

(4)

It means that the stiffness display device could reflect stiff-
ness range from 24.85 N/mm to 1500.18 N/mm with compara-
ble accuracy, which is almost enough to display the stiffness
of the object in our daily life.

III. STATIC LOAD CALIBRATION

After the improved stiffness display device is made, static
load calibration is performed as a certain procedure as follows:

1) We pick up a series of feature points, whose coordinates
correspond to the current effective length l within the effective
range.

2) We successively upload and download weights on the
feature points we have selected, and test values of the corre-
sponding strain under different load.

3) The relationship between the output value and the strain
could be got and the final characteristic fitting curve of the
system could be derived.

Fig. 3. Results of stiffness calibration.

Fig. 4. Fitting curve of characteristic of stiffness.

In the static load calibration experiment, 16 feature points
corresponding to the different effective length of the elastic
beam are measured, the result is shown in Fig. 3. Then the
least square method is used to fit the curve of characteristic

of stiffness, which is shown in Fig. 4. The results demonstrate
that the improved stiffness display device is able to realize the
stiffness display from a virtual environment or telerobot.

IV. TARGET GRABBING STRATEGY

Take the tracked mobile robot (TMR) which we have
designed in [21] for example, a target grabbing strategy based
on the improved stiffness display device is presented.

Fig. 5. Teleoperation system for target grabbing. 1. gripper camera
display, 2. main camera display, 3. hardware circuit, 4. vibration
motor, 5. touch cap, 6. two protrusive guide poles, 7. stiffness display
device, 8. main camera, 9. gripper camera, 10. gripper, 11. samples.

Fig. 6. Pressure sensors distribution on the gripper.

In our previous task, when TMR is well prepared to grab a
certain object, it does completely according to the multiple
characteristics derived from computer vision, or based on
the remote video surveillance. However, there is still some
important characteristic which cannot be ascertained only by
computer vision, even human vision, such as stiffness of the
object and grasping force and so on. So it is quite significant
to bring in the small stiffness display device.

Therefore, as shown in Figs. 5 and 6 we establish the tele-
operation system for target grabbing. During the teleoperation
process, the operator on the operational side controls the
command output device on the control box, as shown in Fig. 5,
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Fig. 7. Target grabbing strategy for telerobot.

and the robot on the remote side will responds with a decided
action. After the robot contacts with the object, the sensors
placed on the robot detect the useful information from the
object, and return the feedback to the control box and provide
it to the operator on the operational side.

To succeed to grab a certain object accurately, the extent
of the gripper’s opening is very important and should be
controlled precisely, and the gripper’s opening and closing
depends completely on the gripper motor. Therefore, it is quite
significant to find the appropriate gripper motor displacement.

As shown in Fig. 7, when it is about to control the robot on
the remote side to grab a certain object, the gripper loaded on
the manipulator with an initial open displacement x0, is moved
to proper position along with the motion of manipulator, an
angle r0 of the gripper motor, which leads the just contact
critical position between gripper and object, could be estimated
by vision system — it includes computer vision and human
vision. Based on the vision system, the operator gives an initial
modification value r, and makes the gripper motor work as
vector r̄ = r − rd. At this moment, gripper starts to extrude
the object and the object will produce a tiny deformation
x, simultaneously, the pressure sensors on the gripper could
detect how much force it is applying.

The formula shows how to choose the best force value as
follows:

f =
{

F0, F0 6= 0
max {F1, F2, F3, F4} , F0 = 0 (5)

where F0 comes from the sensor on the front plane jaw, and it
always gets the force firstly and directly during the grabbing
task, and it works in most cases; while F1, F2, F3, F4 is the
force obtained from the four sensors placed on the arc jaw, as
shown in Fig. 6, and they work only in the situation that the
object needs an encompassed mechanism and a closed force
to grab. When the encompassed grabbing process happens, the
sensor F0 does not contact with the object, while anyone of
the four sensors F1, F2, F3, F4 may touch the object, and they
will not offset each other, and the sensor with most contact
will better reflect the object.

The stiffness of the object k could be calculated as follows:

k =
f

x̄′
(6)

where x̄ is the total deformation under the force f , it could
be calculated by r and f .

Then, the operator on the remote side could get the stiffness
of the object by touching the touch cap of the improved

stiffness display device, as well as the magnitude of force
by vibration frequency of vibration motor.

At last, the operator gives a new modification value r, and
makes the gripper motor work as the updated vector r̄ = r−rd,
and turn around and around, until it gets the appropriate
gripper motor displacement by the latest r.

V. GRABBING EFFECT DETECTION BY
MULTI-CLASS SVM

Detection of the grabbing effect to check whether the target
is stably handled by the gripper is very important to the
operator on the remote side.

Multi-class SVM (MSVM) [22], [23] is qualified and has a
broad use in the classification with several effective vectors,
and it could be used to judge what kind of substance the target
is, then the operator will decide how to control the gripper
next.

A. The Selection of Feature Vectors

The magnitude of force value f is changing all the time
during the grabbing process, and the regularity of changing
could reflect the difference. Therefore the support vectors are
selected based on the magnitude of force value:

1) Sum of gradient squares: P =
∑N

i=2 (fi − fi−1)2.
This vector shows the changing information of force value,

N is the total sampling number of the series.
2) Mean: A = (1/N)

∑N
i=1 fi.

This variable shows the expectation of the force value series.
3) Variance: S = (1/(N − 1))

∑N
i=1 (fi − f̄)2.

This variable describes the degree of dispersion of the force
value.

4) Maximum: M = maxi(fi).
This vector shows the biggest force imposed during the

grabbing process.
The feature vector [P, A, S,M ] constitutes the support

vector xi, and is the input of the multi-class SVM. Then
a training set T = (x1, y1), . . . , (xN , yN ) is built, where
xi ∈ R4, yi = (1, 2, . . . , n), N is the total number of training
samples, and n is the number of the classification categories.

B. Multi-Class SVM

The main idea of SVM [24]−[27], as shown in Fig. 8,
is to find a decision function f(x) : X = R4 → Y and
a classification hyperplane H to make the classification margin
big enough and divide the samples clearly from the training
set T .
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Fig. 8. Classification hyperplane H .

The 1-a-1 method [28], [29] is one of the most popular
method of multi-class SVM, which builds a classifier towards
every two classes. It leads to n(n − 1)/2 classifiers if there
are n classes and every classifier will train the samples from
the two classes.

In order to get the classification hyperplane between class
i and class j, the following optimization problem needs to be
solved:

min
ωij ,bij ,ξij

1
2
(ωij)T ωij + C

∑
t

ξij
t (ωij)T (7)

(ωij)T Φ(xt) + bij ≥ 1− ξij
t , if yt = i (8)

(ωij)T Φ(xt) + bij ≥ ξij
t − 1, if yt = j (9)

ξij
t − 1 ≥ 0, i, j = 1, 2, . . . , n (10)

where ωij is the optimal hyperplane vector between class i
and class j, xt is the tth sample in the sample set X . Φ(xt)
is higher space, and C is penalty parameter, and the minimum
of (wi)T wi/2 is the classification margin 2/‖wi‖

Radial basis function is applied to calculate inner product
in the higher space:

K(xi, x) = exp

{
−‖x− xi‖2

σ2

}
, σ > 0. (11)

The decision function f(x) = sgn [(ωij)T Φ(x) + bij ] is
sign function, and if the result shows x belongs to class i,
the statistical variable of class i will add one, otherwise, the
statistical variable of class j will add one.

After all of n(n − 1)/2 classifiers have been applied, the
class with the maximum of the statistical value is which x
belongs.

VI. EXPERIMENT

To make the experiment more effective, we designed
three columned samples specially for grabbing experiment, as
shown in Fig. 5.

300 samples were made by iron (class 1), rubber (class 2)
and sponge (class 3), respectively. The most important thing

is that all the samples are painted black and made like a
black thin cylinder, and in this case, the experiment candidates
couldn’t distinguish the samples rely on vision.

180 random samples were picked evenly to conduct the
training using multi-class SVM. By grid traverse of the penalty
parameter and width parameter of RBF, the best group of the
parameter was obtained: C = 68, σ = 1.3. The remaining 120
samples were checked by the multi-class SVM. The result in
Fig. 9 shows that only one sample was classified incorrectly
and the accuracy rate is 99.17 %.

Fig. 9. Classification result by MSVM.

Different grabbing methods were applied in different classes
to make sure the object was handled stably. The iron object
needs to be clamped by the gripper as well as continuous
strong force imposed by the gripper; the rubber object needs to
be clamped by the gripper with a bit deformation; the sponge
just needs to be caught by the gripper to avoid the case that
too much deformation leads to its destruction.

Then, 50 candidates were invited to use our operating
platform to perform two groups of experiments. They conduct
the first group to snatch up the samples from the 3 classes
and move them to another place without the improved stiffness
display device, and then the same was continued with the other
group after loading the improved stiffness display device.

The result of the experiments is shown in Figs. 10 and 11.
In Fig. 10, it is obvious that experiment candidates in Group 2
own a much higher success ratio than the candidates in Group
1.

Fig. 10 shows that failure ratio for the three samples in the
series of two group experiments. The sample made by iron
was made up of 62 % because experiment candidates always
apply a bit less force to grab it in the case of not understanding
what they are grabbing, and the force cannot offset the gravity
of the iron sample, so it failed and dropped in the middle
of movement. Oppositely, sample made by sponge was made
up of 35 % because experiment candidates always apply a bit
more force to grab it and break the black thin film which packs
the sample.

The result of the series of experiments demonstrates that the
improved stiffness display device could greatly help operator
on the remote side to control the telerobot to grab target with
an adequate acquaintance about the stiffness of the target,
especially when combined with computer vision system, and
the target grabbing strategy is effective in the situation and
could be extended.
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Fig. 10. Success ratio during the experiment candidates.

Fig. 11. Failure ratio during different samples.

VII. CONCLUSION AND FUTURE DIRECTION

Based on the previously improved stiffness display device, a
more portable stiffness display device with a small volume and
extended function is proposed. A new static load calibration of
the improved stiffness display device is performed to detect
its accuracy, and the relationship between the stiffness and
the position is given. An effective target grabbing strategy is
presented and the teleoperation system is established to test
and verify the feasibility. To make stiffness more evident, the
experiment is designed specially and the results demonstrate
that the improved stiffness display device could greatly help
operator on the remote side control the telerobot to grab
target with an adequate acquaintance about the stiffness of the
target, and the target grabbing strategy is effective. The future
work will focus on the control method of grabbing, especially
in the precision contact grabbing problem. Multiple targets
recognition under complex environment is also a research
point which needs to be figured out.
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