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High-speed Nonsingular Terminal Switched Sliding
Mode Control of Robot Manipulators

Fengning Zhang

Abstract—This paper proposes a high-speed nonsingular ter-
minal switched sliding mode control (HNT-SSMC) strategy for
robot manipulators. The proposed approach enhances the control
system performance by switching among appropriate sliding
mode controllers according to different control demands in
different regions of the state space. It is shown that the high-
speed nonsingular terminal switched sliding mode (HNT-SSM)
which is the representation of different control demands and
enforced by the HNT-SSMC has the property of global high-
speed convergence compared with the nonsingular fast terminal
sliding mode (NFTSM), and provides the global non-singularity.
The simulation study of an application example is carried out to
validate the effectiveness of the proposed strategy.

Index Terms—Finite-time stability, nonlinear systems, robot
control, sliding mode control (SMC), switched control.

I. INTRODUCTION

MANY control strategies which are capable of being
applied in the control of robot manipulators can be

found in the literature; which include adaptive control [1], [2],
optimal control [3], backstepping [4], sliding mode control [5],
and switched control [6]. Switched control, which has attracted
extensive attention in both theoretical studies and applications
[7]−[9], is one of the effective approaches to enhancing
performance [10], [11]. In practice it is very common to meet
different control demands in different regions of the state
space. For this reason, a novel high-speed nonsingular terminal
switched sliding mode control (HNT-SSMC) strategy, which
allows enhancing the control performance by switching among
appropriate sliding mode controllers according to each region
of the state space, is proposed in this paper for the control of
robot manipulators.

Sliding mode control (SMC) also has attracted a great
amount of interest due to its advantages, such as strong
robustness, rapid response, better transient performance, order
reduction, and easiness to design and implement [12], [13].
In literatures, various SMC applications can be seen, for
example, uncertain nonlinear systems [14]−[16], induction
motors [17], hypersonic vehicles [18]−[20], and observers
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[21]−[23]. SMC is designed to drive and constrain the system
state to the sliding mode surface that is defined based on the
convergence requirements, in which the closed-loop response
becomes totally insensitive to any uncertainty. A characteristic
of conventional SMC is that the system state converges to the
equilibrium point in infinite time due to the linear sliding mode
manifold that is asymptotically stable.

Terminal sliding mode control is one of the effective finite-
time control methods which are frequently employed. Terminal
sliding mode (TSM) control [24] has been developed to
offer some superior properties compared with the conventional
linear sliding-mode control, such as fast and finite-time con-
vergence and higher control precision. However, TSM control
has singularity and has slow convergence speed when the
system state is at a distance from the equilibrium. Aiming
at avoiding the singularity problem in TSM control systems,
a non-singular terminal sliding mode (NTSM) control [5] was
proposed. To solve the problem of slow convergence speed
when the system state is at a distance from the equilibrium
in TSM, there appeared fast terminal sliding mode (FTSM)
control [25]. Recently, a nonsingular fast terminal sliding
mode (NFTSM) control [26], which does not have both the
problems of TSM control, was proposed to offer the singularity
avoidance and fast convergence speed when being at a distance
from the equilibrium.

In this paper, it is shown that the high-speed nonsingular
terminal switched sliding mode (HNT-SSM) which is the
representation of different control demands in the different
regions of the state space and also enforced by the HNT-
SSMC, possesses the property of global high-speed conver-
gence compared with the NFTSM, and provides the global
non-singularity. The simulation investigation of an application
example is conducted to verify the theoretical analysis and the
effectiveness of the proposed approach.

The rest of this paper is organized as follows. The proposed
approach for robot manipulators is introduced in Section II.
The stability and convergence analysis are presented in Section
III. In Section IV the performance analysis is given. The
simulation study is conducted in Section V, and Section VI
concludes this paper.

II. HIGH-SPEED NONSINGULAR TERMINAL SWITCHED
SLIDING MODE CONTROL

In this section, a high-speed nonsingular terminal switched
sliding mode control is developed for the n-link robot manip-
ulator

M (q) q̈ + C (q, q̇) + G (q) = τ + τd (1)
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where q = (q1, . . . , qm)T ∈ Rm is the vector of joint angular
position, M(q) = M0(q) + δM(q) ∈ Rm×m is the positive
definite inertia matrix, C(q, q̇) = C0(q, q̇)+ δC(q, q̇) ∈ Rm is
the vector of centripetal and coriolis forces, G(q) = G0(q) +
δG(q) ∈ Rm is the vector of gravitational torques, τ ∈ Rm

is the vector of applied joint torque and τd ∈ Rm is the
vector of bounded external disturbance with ‖τd‖ ≤ τ̄d. Here
M0(q), C0(q, q̇), and G0(q) are the nominal parts, whereas
δM(q), δC(q, q̇), and δG(q) are uncertain parts. F (q, q̇, q̈)
= −δM(q)q̈ − δC(q, q̇) − δG(q) ∈ Rm is the lumped
system uncertainty, and the assumption in [5] is adopted here,
‖F (q, q̇, q̈)‖ ≤ b0 + b1‖q‖+ b2‖q̇‖2 = F̄ .

Let qr = (q1r, . . . , qmr)T ∈ Rm be a twice differentiable
trajectory, and define e1 = qr − q = (e(1)

1 , e
(1)
2 , . . . , e

(1)
m )T ∈

Rm, e2 = q̇r− q̇ = (e(2)
1 , e

(2)
2 , . . . , e

(2)
m )T ∈ Rm, then the error

equation of the robot manipulator can be obtained as follows:

ė1 = e2

ė2 = q̈r + M−1
0 (q) (C0 (q, q̇) + G0 (q))−M−1

0 (q) τ

−M−1
0 (q) (F + τd) (2)

in which d(e1, e2, t) = −M−1
0 (q)(F + τd), ‖d(e1, e2, t)‖ ≤

d̄(e1, e2, t) = ‖M−1
0 (q)‖(F̄ + τ̄d).

The phase planes Ek (k = 1, 2, . . . , m) of system (2) are
partitioned into regions Ωk

î
(̂i = 0, 1, 2, 3), where

Ek :=
{

(e(1)
k , ė

(1)
k ) : (e(1)

k , ė
(1)
k ) ∈ R2

}

Ωk
1 :=

{
(e(1)

k , ė
(1)
k ) ∈ Ek : |e(1)

k | ∈ [c(k)
1 , c

(k)
2 )

}

Ωk
2 :=

{
(e(1)

k , ė
(1)
k ) ∈ Ek : |e(1)

k | ∈ [c(k)
1 , c

(k)
3 )

}

Ωk
3 :=

{
(e(1)

k , ė
(1)
k ) ∈ Ek

}
, Ωk

0 := Ø

with c
(k)
1 = 0, c

(k)
2 = δk ∈ (0, 1), c

(k)
3 = 1, and c

(k)
4 > 1.

Further, the regions Ek
i are introduced via Ek

i := Ωk
i \Ωk

i−1,
where i = 1, 2, 3, k = 1, 2, . . . , m (see Fig. 1).

Fig. 1. Examples of the phase plane partitioning and the HNT-SS manifold.

The HNT-SSMC designed for the robot manipulator is

τH : τσ(E(t)) (3)

where

τσ(E(t)) :=M0(q)(q̈r+M−1
0 (q)(C0(q, q̇)+G0(q))+vσ(E(t)))

νσ(E(t)) := (ν(1)
σ1(E1(t))

, ν
(2)
σ2(E2(t))

, . . . , v
(m)
σm(Em(t)))

T is the

switching part of the HNT-SSMC, Ek(t) := (e(1)
k (t), ė(1)

k (t))
denotes the projection of the system state onto the plane Ek,

σk(Ek(t)) : [0,+∞) → I := {1, 2, 3}

serves as the switching signal,

v
(k)
i∗ := β

1

γ
(k)
i∗

k (α(k)
i∗ )

1

γ
(k)
i∗ γ

(k)
i∗ |ė(1)

k |
2− 1

γ
(k)
i∗ sgn(ė(1)

k )

+ h
(k)
i∗ s

(k)
i∗ + η

(k)
i∗ sgn(s(k)

i∗ ) + d̄sgn(s(k)
i∗ )

and

v
(k)
i∗ := βkė

(1)
k + h

(k)
i∗ s

(k)
i∗ + η

(k)
i∗ sgn(s(k)

i∗ ) + d̄sgn(s(k)
i∗ )

are the components of the switching part νσ(E(t)),

s
(k)
i∗ := e

(1)
k +

1

β

1

γ
(k)
i∗

k (α(k)
i∗ )

1

γ
(k)
i∗

|ė(1)
k |

1

γ
(k)
i∗ sgn(ė(1)

k )

and

s
(k)
i∗ := ė

(1)
k + βke

(1)
k

are the components of the HNT-SS variable which will be de-

fined later, γ
(k)
1 ∈ (0.5, 1), α

(k)
1 = δ

γ
(k)
2 −γ

(k)
1

k , γ
(k)
2 ∈ [0, 0.5],

α
(k)
2 = 1, i∗ = 1, 2, i∗ = 3, βk, η

(k)
i , and h

(k)
i belong to R+,

i = 1, 2, 3, k = 1, 2, . . . , m.
The HNT-SS variable is defined as

sH : sσ(E(t)) (4)

where sσ(E(t)) := (s(1)
σ1(E1(t))

, s
(2)
σ2(E2(t))

, . . . , s
(m)
σm(Em(t)))

T

and sH := (s(1)
H , s

(2)
H , . . . , s

(m)
H )T .

The HNT-SSM is defined as

SH : sσ((E(t)) = 0. (5)

The corresponding HNT-SS manifold is

ΣH : {(eT
1 , eT

2 ) ∈ R2m : sσ(E(t)) = 0} (6)

where k = 1, 2, . . . , m.
The scheduling strategy of the HNT-SSMC and the HNT-

SSM is

if Ek(t) ∈ Ek
i then σk(Ek(t)) = i

where i = 1, 2, 3, k = 1, 2, . . . , m.
Remark 1: Each of the phase planes is partitioned into

three sub-regions, and in every sub-region, there is a sub-
manifold (see Fig. 1). The integrated HNT-SS manifold, which
is continuous and piecewise smooth, possesses the property of
global high-speed convergence and provides the global non-
singularity, which is illustrated in Section IV.

Remark 2: The chattering phenomenon is caused by the sgn
functions in (3). In order to eliminate chattering, the boundary
layer method [13] can be used in the controller.
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III. STABILITY AND CONVERGENCE ANALYSIS

This section will present the stability and the convergence
of the HNT-SSMC. The partitioning of the phase planes of
system (2) is introduced as follows (see Fig. 2).

kEi
j :=

{(
e
(1)
k , ė

(1)
k

)
∈ Ek

i : (−1)j+1
e
(1)
k ≥ 0

}
(7)

kΣi
j :=

{(
e
(1)
k , ė

(1)
k

)
∈ kEi

j : s
(k)
i = 0

}
(8)

kEi
1j :=

{(
e
(1)
k , ė

(1)
k

)
∈ kEi

j : (−1)j+1
ė
(1)
k ≥ 0

}
(9)

kΛi
j :=

{(
e
(1)
k , ė

(1)
k

)
∈ Ek : e

(1)
k = (−1)j+1c

(k)
i+1

}
(10)

kĒi
j := kEi

j

⋃
kΛi

j (11)

kEi
2j :=





(
e
(1)
k , ė

(1)
k

)
∈ kĒi

j : (−1)j+1ė
(1)
k ≤ 0,

e
(1)
k 6= (−1)j+1c

(k)
i , (−1)j+1s

(k)
i > 0



 (12)

kEi
3j :=

{(
e
(1)
k , ė

(1)
k

)
∈ kĒi

j : e
(1)
k 6= (−1)j+1c

(k)
i ,

(−1)j+1s
(k)
i < 0

}
(13)

kÊi
2j :=

{(
e
(1)
k , ė

(1)
k

)
∈ kEi

2j : ė
(1)
k = 0

}
(14)

kẼi
2j := kEi

2j \ kÊi
2j (15)

where i = 1, 2, 3, j = 1, 2, and k = 1, 2, . . . , m.

Fig. 2. Examples of the partitioning of the phase planes and the vector fields
Ėk(t).

There are

ë
(1)
k =− β

1

γ
(k)
i∗

k (α(k)
i∗ )

1

γ
(k)
i∗ γ

(k)
i∗ |ė(1)

k |
2− 1

γ
(k)
i∗ sgn(ė(1)

k )

− h
(k)
i∗ s

(k)
i∗ − η

(k)
i∗ sgn(s(k)

i∗ )− d̄sgn(s(k)
i∗ ) + [d]k (16)

ë
(1)
k =− βkė

(1)
k − h

(k)
i∗ s

(k)
i∗ − η

(k)
i∗ sgn(s(k)

i∗ )

− d̄sgn(s(k)
i∗ ) + [d]k. (17)

For Ek(t) ∈ Ek
i , consider the Lyapunov functions

V
(k)
i =

1
2
s
(k)2

i (18)

where i = 1, 2, 3, and k = 1, 2, . . . , m. According to (16) and
(18), there are

V̇
(k)
i∗ = s

(k)
i∗ ṡ

(k)
i∗

= s
(k)
i∗


ė

(1)
k +

1

β

1

γ
(k)
i∗

k α
(k)

1

γ
(k)
i∗

i∗ γ
(k)
i∗

|ė(1)
k |

1

γ
(k)
i∗

−1

ë
(1)
k




= − 1

β

1

γ
(k)
i∗

k (α(k)
i∗ )

1

γ
(k)
i∗ γ

(k)
i∗

|ė(1)
k |

1

γ
(k)
i∗

−1

×
(

h
(k)
i∗ (s(k)

i∗ )2 + η
(k)
i∗ |s(k)

i∗ |+ d̄|s(k)
i∗ | − [d]ks

(k)
i∗

)

≤ − 1

β

1

γ
(k)
i∗

k (α(k)
i∗ )

1

γ
(k)
i∗ γ

(k)
i∗

|ė(1)
k |

1

γ
(k)
i∗

−1

×
(
h

(k)
i∗ s

(k)2

i∗ + η
(k)
i∗ |s(k)

i∗ |
)
≤ 0 (19)

where k = 1, 2, . . . , m. According to (17) and (18), there are

V̇
(k)
i∗ = s

(k)
i∗ ṡ

(k)
i∗

= s
(k)
i∗ (ë(1)

k + βkė
(1)
k )

= −h
(k)
i∗ (s(k)

i∗ )2 − η
(k)
i∗ |s

(k)
i∗ | − d̄|s(k)

i∗ |+ [d]ks
(k)
i∗

≤ −h
(k)
i∗ (s(k)

i∗ )2 − η
(k)
i∗ |s

(k)
i∗ | ≤ 0 (20)

where k = 1, 2, . . . , m.
The planes Ėk corresponding to Ek and the regions of Ėk

(k = 1, 2, . . . , m) are defined as follows

Ėk :=
{

(ė(1)
k , ë

(1)
k ) : (ė(1)

k , ë
(1)
k ) ∈ R2

}
(21)

Ėk
II :=

{
(ė(1)

k , ë
(1)
k ) ∈ Ėk : ė

(1)
k > 0, ë

(1)
k < 0

}
(22)

Ėk
IV :=

{
(ė(1)

k , ë
(1)
k ) ∈ Ėk : ė

(1)
k < 0, ë

(1)
k > 0

}
(23)

Ėk
VA− :=

{
(ė(1)

k , ë
(1)
k ) ∈ Ėk : ė

(1)
k = 0, ë

(1)
k < 0

}
(24)

Ėk
VA+ :=

{
(ė(1)

k , ë
(1)
k ) ∈ Ėk : ė

(1)
k = 0, ë

(1)
k > 0

}
(25)

Ėk
HD− :=

{
(ė(1)

k , ë
(1)
k ) ∈ Ėk : ė

(1)
k < 0

}
(26)

Ėk
HD+ :=

{
(ė(1)

k , ë
(1)
k ) ∈ Ėk : ė

(1)
k > 0

}
. (27)

The vector fields Ėk(t), the derivatives of Ek(t) are defined
as

Ėk(t) :=
(
ė
(1)
k (t), ë(1)

k (t)
)

(28)

where k = 1, 2, . . . , m. Thus, according to (16) and (17), we
can have the following conclusions (see Fig. 2), where k = 1,
2, . . . , m:

1) Ėk(t) ∈ Ėk
II, if Ek(t) ∈ ⋃

i∈I(
kEi

11

⋃k
Ei

32);
2) Ėk(t) ∈ Ėk

IV, if Ek(t) ∈ ⋃
i∈I(

kEi
31

⋃k
Ei

12);
3) Ėk(t) ∈ Ėk

VA−
, if Ek(t) ∈ ⋃

i∈I
kÊi

21;
4) Ėk(t) ∈ Ėk

VA+ , if Ek(t) ∈ ⋃
i∈I

kÊi
22;
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5) Ėk(t) ∈ Ėk
HD−

, if Ek(t) ∈ ⋃
i∈I

kẼi
21;

6) Ėk(t) ∈ Ėk
HD+ , if Ek(t) ∈ ⋃

i∈I
kẼi

22.
These following cases are possible based on (18)−(20) and

the above conclusions 1)−6).
1) (k.3.j1.3) when Ek(t) ∈ kE3

3j1
, the trajectory of Ek(t)

will reach the sliding manifold kΣ3
j1

, or move from kE3
3j1

into
kE2

3j1
, then the case (k.2.j1.3) holds.

2) (k.2.j1.3) when Ek(t) ∈ kE2
3j1

, the trajectory of Ek(t)
will reach the sliding manifold kΣ2

j1
, or move from kE2

3j1
into

kE1
3j1

, then the case (k.1.j1.3) holds.
3) (k.1.j1.3) when Ek(t) ∈ kE1

3j1
, the trajectory of Ek(t)

will reach the sliding manifold kΣ1
j1

, or move from kE1
3j1

into
kE1

1j2
, then the case (k.1.j2.1) holds.

4) (k.1.j2.1) when Ek(t) ∈ kE1
1j2

, the trajectory of Ek(t)
will move from kE1

1j2
into kE1

2j2
, then the case (k.1.j2.2)

holds, or move from kE1
1j2

into kE2
1j2

, then the case (k.2.j2.1)
holds.

5) (k.2.j2.1) when Ek(t) ∈ kE2
1j2

, the trajectory of Ek(t)
will move from kE2

1j2
into kE2

2j2
, then the case (k.2.j2.2)

holds, or move from kE2
1j2

into kE3
1j2

, then the case (k.3.j2.1)
holds.

6) (k.3.j2.1) when Ek(t) ∈ kE3
1j2

, the trajectory of Ek(t)
will move from kE3

1j2
into kE3

2j2
, then the case (k.3.j2.2)

holds.
7) (k.3.j2.2) when Ek(t) ∈ kE3

2j2
, the trajectory of Ek(t)

will reach the sliding manifold kΣ3
j2

, or move from kE3
2j2

into
kE2

2j2
, then the case (k.2.j2.2) holds.

8) (k.2.j2.2) when Ek(t) ∈ kE2
2j2

, the trajectory of Ek(t)
will reach the sliding manifold kΣ2

j2
, or move from kE2

2j2
into

kE1
2j2

, then the case (k.1.j2.2) holds.
9) (k.1.j2.2) when Ek(t) ∈ kE1

2j2
, the trajectory of Ek(t)

will reach the sliding manifold kΣ1
j2

.
There are j1 = 1, 2, j2 = 1, 2, j1 6= j2, and k = 1, 2, . . . , m
in these above cases.

Therefore, by virtue of these above cases and the conclu-
sions 1)−6), as well as (16)−(20), it can be concluded that
the HNT-SS manifold sH = 0 is reached in finite time.

The reaching time t
(k)
R is assumed as the time that is taken

to travel from s
(k)
H (0) 6= 0 to s

(k)
H (t(k)

R ) = 0, and the attaining
time t

(k)
S is assumed as the time that is taken to travel from

e
(1)
k (t(k)

R ) 6= 0 to e
(1)
k (t(k)

R + t
(k)
S ) = 0. Once the HNT-SS

manifold s
(k)
H = 0 is reached, there is ė

(1)
k = −βkα

(k)
i∗ |e(1)

k |γ(k)
i∗

sgn(e(1)
k ) or ė

(1)
k = −βke

(1)
k . By integrating (5), there are

following cases below:
1) If |e(1)

k (t(k)
R )| ∈ [1,+∞),

t
(k)
S =

1
βk

ln |e(1)
k (t(k)

R )|+ 1

βk(1− γ
(k)
2 )

(1− δ
1−γ

(k)
2

k )

+
1

βk(1− γ
(k)
1 )

δ
1−γ

(k)
2

k . (29)

2) If |e(1)
k (t(k)

R )| ∈ [δk, 1),

t
(k)
S =

1

βk(1− γ
(k)
2 )

(|e(1)
k (t(k)

R )|1−γ
(k)
2 − δ

1−γ
(k)
2

k )

+
1

βk(1− γ
(k)
1 )

δ
1−γ

(k)
2

k . (30)

3) If |e(1)
k (t(k)

R )| ∈ [0, δk),

t
(k)
S =

1

βkα
(k)
1 (1− γ

(k)
1 )

|e(1)
k (t(k)

R )|1−γ
(k)
1 . (31)

Therefore, it is concluded that the HNT-SS manifold can be
reached in finite time and furthermore the state will converge
to the equilibrium in finite time.

IV. PERFORMANCE ANALYSIS

The performance of the proposed approach is presented in
this section. The property of global high-speed convergence is
studied through comparing with the NFTSM.

The NFTSM is described as follows:
{

σ1 = e1

σ2 = σ1 + β̂
2−γ̂ |σ̇1 + ĉσ1|2−γ̂ sgn (σ̇1 + ĉσ1)

(32)

where β̂ > 0, ĉ > 0, γ̂ = ẑ1/ẑ2 and 0 < ẑ1 < ẑ2. The
equivalent form of (32) is given by

ė1 = −α
NF

e1 − β
NF
|e1|γNF sgn (e1) (33)

where α
NF

= ĉ, β
NF

= ( 2−γ̂

β̂
)

1
2−γ̂ and γ

NF
= 1

2−γ̂ ∈ (0.5, 1).
When sliding manifolds are reached, for the HNT-SSM,

there is ė
(1)
k = −βkα

(k)
i∗ |e(1)

k |γ(k)
i∗ sgn(e(1)

k ) or ė
(1)
k = −βke

(1)
k ;

for the NFTSM, there is (33). If βk = α
NF

+ β
NF

, then, for
e
(1)
k = e1 and |e(1)

k | = |e1| ∈ (1,+∞), there is

| − βke
(1)
k | = | − α

NF
e
(1)
k − β

NF
e
(1)
k |

> | − α
NF

e1 − β
NF
|e1|γNF sgn(e1)| (34)

for e
(1)
k = e1 and |e(1)

k | = |e1| ∈ [δk, 1), there is
∣∣∣∣∣−βkα

(k)
2

∣∣∣e(1)
k

∣∣∣
γ
(k)
2

sgn
(
e
(1)
k

)∣∣∣∣∣

=

∣∣∣∣∣− α
NF

∣∣∣e(1)
k

∣∣∣
γ
(k)
2

sgn
(
e
(1)
k

)

− β
NF

∣∣∣e(1)
k

∣∣∣
γ
(k)
2

sgn
(
e
(1)
k

) ∣∣∣∣∣
> |−α

NF
e1 − β

NF
|e1|γNF sgn (e1)| (35)

for e
(1)
k = e1 and |e(1)

k | = |e1| ∈ (0, δk) with γ
(k)
1 = γ

NF
,

there is ∣∣∣− βkα
(k)
1 |e(1)

k |γ(k)
1 sgn(e(1)

k )
∣∣∣

=
∣∣∣− α

NF
δ

γ
(k)
2 −γ

(k)
1

k |e(1)
k |γ(k)

1 sgn(e(1)
k )

− β
NF

δ
γ
(k)
2 −γ

(k)
1

k |e(1)
k |γ(k)

1 sgn(e(1)
k )

∣∣∣
>

∣∣∣− α
NF

e1 − β
NF
|e1|γNF sgn(e1)

∣∣∣. (36)

It is presented that the proposed approach possesses the
property of global high-speed convergence.

It is also noted that the proposed approach avoids the
singularity since e

(1)
k 6= 0 for Ek(t) ∈ Ek

2 , and γ
(k)
1 > 0.5

for Ek(t) ∈ Ek
1 .
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V. NUMERICAL EXAMPLE

To illustrate the theoretical analysis and the effectiveness of
the proposed approach, the HNT-SSMC is compared with the
NFTSMC which is designed according to [26].

Here, the elements in (1) are as follows [5]:

M11(q) = (m1 + m2)r2
1 + m2r

2
2 + 2m2r1r2 cos(q2) + J1

M12(q) = M21(q) = m2r
2
2 + m2r1r2 cos(q2)

M22(q) = m2r
2
2 + J2

C(q, q̇) =
[−m2r1r2 sin(q2)q̇2

1 − 2m2r1r2 sin(q2)q̇1q̇2

m2r1r2 sin(q2)q̇2
2

]

G(q) =
[

(m1 + m2)r1 cos(q2)g + m2r2 cos(q1 + q2)g
m2r2 cos(q1 + q2)g

]

τd =
[

2 sin(t) + 0.5 sin(200πt)
cos(2t) + 0.5 sin(200πt)

]

The parameter values are r1 = 1, r2 = 0.8, J1 = 5 kg·m,
J2 = 5 kg·m, m1 = 0.5 kg, m2 = 1.5 kg. The normal values
of m1 and m2 are assumed to be m10 = 0.4 kg, m20 = 1.2 kg.
The desired reference signals are given by q1r = 1.25 −
(7/5)e−t + (7/20)e−4t, q2r = 0.25 + e−t − (1/4)e−4t. The
initial values of the system are selected as q1(0) = 2.8, q2(0)
= 3.0, q̇1(0) = 0.0, q̇2(0) = 0.0. b0 = 9.5, b1 = 2.2, and b2

= 2.8 is assumed.
The parameters of the HNT-SSMC (3) and the NFTSMC are

βk = 1, γ
(k)
1 = 0.69, γ

(k)
2 = 0.1, δk = 0.15, β̂k = 3.85, ĉk =

0.50, γ̂k = 0.57, k = 1, 2. Thus there is βk = αNFk + βNFk

(k = 1, 2). The boundary layer method is adopted to eliminate
chattering.

It can be found that the proposed approach can offer higher
convergence speed (see Fig. 3−5), realize different control
targets in the different regions of state space (see Figs. 6 and 7),
and both of the requirements are fulfilled by switching among
appropriate sliding mode controllers (see Figs. 8 and 9). It can
also be noticed that neither singularity nor chattering occurs in
the two control inputs of HNT-SSMC during the whole control
process (see Fig. 8).

Fig. 3. Tracking error of joint 1.

Fig. 4. Tracking error of joint 2.

Fig. 5. Output tracking of joints. (a) joint 1: q1 with HNT-SSMC (blue), q1

with NFTSMC (red), q1r (black). (b) joint 2: q2 with HNT-SSMC (blue), q2

with NFTSMC (red), q2r (black).
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Fig. 6. Phase plots of tracking errors of joints. (a) joint 1: with HNT-SSMC (blue), with NFTSMC (red). (b) joint 2: with HNT-SSMC (blue), with NFTSMC
(red).

Fig. 7. Sliding variables of joints. (a) joint 1: with HNT-SSMC (blue), with NFTSMC (red). (b) joint 2: with HNT-SSMC (blue), with NFTSMC (red).

Fig. 8. Control inputs of joints. (a) joint 1: with HNT-SSMC (blue), with NFTSMC (red). (b) joint 2: with HNT-SSMC (blue), with NFTSMC (red).

Fig. 9 Switching signals with HNT-SSMC. (a) σ1. (b) σ2.
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VI. CONCLUSION

In this paper, the proposed approach for robot manipu-
lators, which schedules sliding mode controllers according
to different control demands in the different regions of the
state space, allows control performance enhancement. And the
HNT-SSM simultaneously has the property of global high-
speed convergence, and provides the global non-singularity.
Further, the effectiveness of the proposed approach and the
theoretical analysis is validated by simulation.
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