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Applications of Fractional Lower Order
Time-frequency Representation to Machine

Bearing Fault Diagnosis
Junbo Long, Haibin Wang, Peng Li, and Hongshe Fan

Abstract—The machinery fault signal is a typical non-Gaussian
and non-stationary process. The fault signal can be described by
SαS distribution model because of the presence of impulses.
Time-frequency distribution is a useful tool to extract helpful
information of the machinery fault signal. Various fractional
lower order (FLO) time-frequency distribution methods have
been proposed based on fractional lower order statistics, which
include fractional lower order short time Fourier transform
(FLO-STFT), fractional lower order Wigner-Ville distributions
(FLO-WVDs), fractional lower order Cohen class time-frequency
distributions (FLO-CDs), fractional lower order adaptive kernel
time-frequency distributions (FLO-AKDs) and adaptive frac-
tional lower order time-frequency auto-regressive moving average
(FLO-TFARMA) model time-frequency representation method.
The methods and the exiting methods based on second order
statistics in SαS distribution environments are compared, simula-
tion results show that the new methods have better performances
than the existing methods. The advantages and disadvantages of
the improved time-frequency methods have been summarized.
Last, the new methods are applied to analyze the outer race
fault signals, the results illustrate their good performances.

Index Terms—adaptive function, Alpha stable distribution,
auto-regressive (AR) model, non-stationary signal, parameter
estimation, time frequency representation.

I. INTRODUCTION

THE machinery vibration signal is a non-stationary sig-
nal, its spectrum characteristic changes with the time.

The time-frequency analysis is a powerful tool to provide
the frequency spectrum information for the non-stationary
signals. The traditional short time Fourier transform (STFT)
time-frequency distributions [1], Wigner-Ville distributions
(WVDs) [2], wavelet transform (WT) time-frequency [3],
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Hilbert-Huang transform (HHT) time-frequency [4]−[6], the
time-frequency analysis methods have been widely used in
mechanical fault diagnosis. Recently, some improved methods
based on traditional time-frequency distribution are also used
in fault diagnosis, such as the evolutionary spectrum based on
STFT [6] and the improved cyclic WVD spectrum analysis
based on WVD [7]. The time-frequency distribution cannot
change according to the signal’s characteristic, hence, the
adaptive time-frequency analysis method has been focused and
applied to the mechanical fault diagnosis because of its high
performance. The time-frequency analysis method based on
adaptive kernel function is proposed in [8], and the adaptive
optimization criterion can adaptively adjust the kernel function
according to the characteristics of the signals.

Recently, the adaptive time-frequency analysis method is
developed rapidly, such as adaptive time-frequency distribution
based on radial Gaussian kernel function, cone-shaped kernel
function [9], [10] and butterworth kernel function [11]. The
new adaptive parabola kernel function time-frequency distri-
bution method has been proposed in [12]. The improved basis
function chirplet adaptive time-frequency method is introduced
in [13], and it is applied to the bearings and gear box fault
analysis. An improved radial parabolic kernel time-frequency
method has been used to the bearing fault diagnosis, which
can effectively improve the bearing fault diagnosis time-
frequency resolution and suppress the cross-term interference
[14]. Shi et al. proposed a kind of adaptive time-frequency
decomposition algorithm based on Gaussian linear frequency-
modulation [15], the method has good performance in the ma-
chinery critical vibration analysis. Recently, the adaptive time-
frequency method is proposed based on AR parameter model
by Jachan et al. [16], [17], whereafter, the improved vector
time-frequency AR (VTFAR) and TFARMA adaptive time-
frequency algorithm are put forward [18], [19]. The model
time-frequency methods have been applied in mechanical
engineering [20], [21], the TFAR model method has illustrated
fine time-frequency resolution when it is used to analyze the
vibration signals of a faulty gearbox [20], more application
examples with parametric models method could be found in
[21]. However, the TFARMA model method has not been
applied for the machinery fault signals analysis.

Gaussian model and second order statistics are used to
analyze the fault signals in the above methods, but some actual
mechanical fault signals have obvious pulsing characteristics,
and they are non-Gaussian, hence there will be a certain
deviation. Therefore, Nikias first proposed a new statistical
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model for the typical signal Alpha (α) stable distribution
process [22]−[25]. When 0 < α < 2, the performance of
the time-frequency analysis method based on Gaussian model
degenerates, therefore, the new methods based on α stable
distribution model are put forward, and they are applied to the
mechanical fault diagnosis. Li et al. proved that the bearing
fault signals belong to α stable distribution [26]. A new
support vector machine fault diagnosis algorithm based on the
stable distribution model is proposed in [27], it can effectively
improve small sample learning and convergence speed. A
rolling bearing fault diagnosis method is put forward with frac-
tional lower order statistics instead of second order statistics
based on α stable model and kurtogram [28], which effec-
tively improve the performance. However, few research works
are studied on applications of time-frequency distribution in
machine fault diagnosis with α stable distribution model. The
adaptive time-frequency analysis method based on α stable
distribution is worth investigating. More realistic statistical
model will bring new machine fault detection and diagnosis
methods for rotating machines. In addition, the fractional-order
differential calculus methods have been applied in many fields
[29]−[31].

In this paper, several new time-frequency representation
methods based on α stable distribution statistical modeling are
proposed for machine fault diagnosis. The paper is structured
in the following manner. α stable distribution and its statistical
moment are introduced in Section II. The bearing fault signals

are introduced in Section III. The improved fractional lower or-
der time-frequency representation methods are demonstrated,
and the simulations comparisons with the conventional meth-
ods are performed to demonstrate justifiability of the proposed
methods in Section IV. The simulations of the outer race
fault signals diagnosis are presented in Section V. Finally, the
conclusions and future research are given in Section VI.

II. α STABLE DISTRIBUTION AND ITS STATISTICS

A. α Stable Distribution

α stable distribution is a kind of generalized Gaussian
distribution, the process is not limited in variance and its
probability density function has a serious tail, its characteristic
function can be described as [22]−[25]

φ(t) = exp {jµt− γ|t|α[1 + jβsign(t)ω(τ, α)]} (1)

where α is the characteristic index, when 0 < α < 2 it (type 1)
is lower order α stable distribution, when α = 2 it is Gaussian
distribution. β is the symmetry coefficient, γ is the dispersion
coefficient, µ is the location parameter. When β = 0, µ = 0,
γ = 1, When α = 0.5, 1.0, 1.5, and 2.0, the time-domain
waveforms of SαS distribution are shown in Fig. 1, and their
probability density function (PDF) are shown in Fig. 2.

Waveforms of SαS stable dαvariance are shown in Fig. 3
when sample numbers successively increase with α = 0.5,
1.0, 1.5, and 2.0. When 0 < α < 2, the results show that vari-

Fig. 1. Waveform of SαS distribution under α = 0.5, 1.0, 1.5, and 2.0 in time domain.
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Fig. 2. PDF of SαS distribution with different alpha (α).

Fig. 3. Variance of SαS distribution with successively increase of sample numbers with different alpha (α).

ances are not limited, the variance is convergent when α = 2
(Gaussian distribution), γ = 2σ2 = 2 (σ = 1).

B. Fractional Lower Order Statistics

1) Fractional Lower Order Covariation Coefficient: The
covariance of SαS distribution is not existing because of its
limited variance. Hence, the covariation concept is put forward
by Miller in 1978, it is similar to the covariance of Gaussian
random process. Covariation of two SαS distribution random
variables X and Y is defined as

[X, Y ]α =
∫

s

xy〈α−1〉µds, 1 < α ≤ 2 (2)

where S denotes the unit circle, 〈·〉 denotes the operation
z〈α〉 = |z|αsign(z), the covariation coefficient of Xand Y
is defined as

λXY =
[X, Y ]α
[Y, Y ]α

. (3)

If the dispersion coefficient of Y is γy , the covariation and
covariation coefficient can be written as
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[X, Y ]α =
E(XY 〈p−1〉)

E(|Y |p) γy, 1 ≤ p < α ≤ 2 (4)

λXY =
E(XY 〈p−1〉)

E(|Y |p) , 1 ≤ p < α ≤ 2. (5)

According to the definition of covariation coefficient, the
covariation coefficient of a real observation sequence X(n)
(n = 0, 1, . . . , N) can be defined as [21]:

λ(m) =
E(X(n)X(n + m)〈p−1〉)

E(|X(n + m)|p) , 1 ≤ p < α ≤ 2 (6)

λ̂(m) =

N∑
m=1

X(n)|X(n + m)|p−1sign[X(n + m)]

N∑
m=1

|X(n + m)|p
,

1 ≤ p < α ≤ 2 (7)

where λ̂(m) is the approximate estimation of λ(m). The
simplified fractional lower order moment is used in array
signal processing, and it is expressed as [23], [24]:

λFLOM(m) = E(X(n)X(n + m)〈p−1〉), 1 ≤ p < α ≤ 2
(8)

when X(n) is real

λ̂FLOM(m) =

1
L2 − L1

L2∑

n=L1+1

X(n)|X(n + m)|p−1sign[X(n + m)]

(9)

when X(n) is complex

λ̂FLOM(m) =

1
L2 − L1

L2∑

n=L1+1

X(n)|X(n + m)|p−2
X∗(n + m)

(10)

where 1 ≤ p < α ≤ 2, L1 = max(0,−m), L2 = min(N −
m, N).

2) Fractional Lower Order Covariance: Because the frac-
tional lower order covariation and fractional lower order
moment define α as 1 < α ≤ 2 and the range from 0 to 1 is not
defined, hence, fractional lower order covariance (FLOC) is
given in [25], in which 0 < α ≤ 2 is defined. Fractional lower
order auto-covariance (FLOAC) of N pairs of the observations
X(n) (n = 0, 1, . . . , N) based on the definition of FLOC [25]
can be defined as:

Rd(m) = E
{

X(n)〈a〉X(n + m)〈b〉
}

,

0 ≤ a <
α

2
, 0 ≤ b <

α

2
(11)

where 0 < α ≤ 2, if X(n) is real, the FLOAC can be
estimated with the sample FLOAC R̂d(m).

R̂d(m) =
1

L2 − L1

×
L2∑

n=L1+1

|X(n)|a|X(n + m)|bsign[X(n)X(n + m)]

(12)

and if X(n) is complex, the FLOAC is estimated with the
sample FLOAC R̂d(m)

R̂d(m) =
1

L2 − L1

×
L2∑

n=L1+1

|X(n)|a−1|X(n + m)|b−1
X∗(n)X∗(n + m)

(13)

where L1 = max(0,−m), L2 = min(N−m,N), “∗” denotes
the conjugate operation.

III. BEARING FAULT SIGNALS

The data of real bearing fault signals are got from the Case
Western Reserve University (CWRU) bearing data center [32].
As shown in Fig. 4, the diameter of the bearing fault in the
test motor is 0.007 inches, and the fault points include inner
race fault, ball fault and outer race fault. The experiments
are conducted with a 2 hp reliance electric motor, and the
acceleration data are measured at proximal and distal points of
motor bearings, the points include the drive end accelerometer
(DE), fan end accelerometer (FE) and base accelerometer
(BA). The motor speed is 1797 RPM (revolutions per minute),
and the digital data are collected with a speed of 12 000
samples per second.

Fig. 4. The apparatus of bearing fault test data.

When the single fault point appears in inner race, outer race
or ball, we collect the fault signals. Waveforms are shown
in Figs. 5 (a)−5 (d), where it is shown that fault points cause
different impulse intensities. The ball fault has very small
impulse intensity, while the impulse intensity of outer race
is higher.

Statistical characteristics of these bearing fault signals
should be analyzed to obtain the condition information. Hence,
the stable distribution statistical model is used to estimate
parameters of the inner race fault signals, ball fault signals
and outer race fault signals, the estimated four parameters are
shown in Table I. As it can be seen, bearing signals in normal
condition are Gaussian distribution for α = 2, and they are
non-Gaussian α stable distribution for α < 2. Probability
density function (PDF) of the inner race fault signals, the ball
fault signals and the outer race fault signals are shown in
Fig. 6. By comparing PDF of normal signals and fault signals,
we know that PDF of fault signals have serious trailing. Table
I shows that the β value around zero, and Fig. 6 shows that
bearing fault signals generally have symmetric PDF, hence,
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Fig. 5. Bearing fault waveforms. (a) The waveform of normal signals in DE and FE. (b) The waveform of the inner race fault signals in DE, FE and BA.
(c) The waveform of the ball fault signals in DE, FE and BA. (d) The waveform of the outer race fault signals in DE, FE and BA.

SαS distribution statistical model is concise and accurate for
bearing fault signals.

TABLE I
α STABLE DISTRIBUTION MODEL PARAMETER ESTIMATES OF

BEARING FAULT SIGNALS

Parameters α β γ µ

Normal
DE 2.000 –0.283 0.1304 0.1317
FE 2.000 1.000 0.0583 0.0236

BA 1.7682 0.0872 0.0590 0.0062
Inner race DE 1.4195 0.0155 0.2407 0.0175

FE 1.8350 0.0322 0.1495 0.0291

BA 1.9790 0.0592 0.0293 0.0055
Ball DE 1.8697 0.1215 0.0772 0.0193

FE 1.998 –0.0371 0.0674 0.0321

BA 1.6077 –0.1731 0.0530 0.0012
Outer race DE 1.1096 0.0433 0.1341 0.0367

FE 1.5435 –0.0169 0.0968 0.0296

IV. FRACTIONAL LOWER ORDER TIME-FREQUENCY
DISTRIBUTIONS

A. Fractional Lower Order Short-time Fourier Transform

1) Principle: Short time Fourier transform (STFT) time-
frequency distribution is free from cross-term interference, but
the time-frequency resolution is low and it is governed by the
Heisenberg uncertainty principle. The conventional STFT of
an analytic signal x(t) is defined as

STFTx(t, ω) =
∫ +∞

−∞
x(τ)h(τ − t)e−jωτdτ. (14)

The discrete equation is defined as

STFTx(n,$) =
∑
m

x(m)h(m− n)e−jn$. (15)

STFT is one of Fourier transform, which is added with time
window h(t) at each specific time of x(t), in α stable distribu-
tion environment, fractional low order short time Fourier trans-
form (FLO-STFT) based on P order moment can be defined as
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Fig. 6. PDF of the bearing fault signals. (a) PDF of inner race fault signals
in DE, FE and BA. (b) PDF of the ball fault signals in DE, FE and BA. (c)
PDF of the outer race fault signals in DE, FE and BA.

FLOSTFTx(t, ω) =
∫ +∞

−∞
x〈P 〉(τ)h(τ − t)e−jωτdτ. (16)

FLO-STFT discrete equation is defined as

FLOSTFTx(n,$) =
∑
m

x〈P 〉(m)h(m− n)e−jn$. (17)

In (16) and (17), the moving window function can satisfy

Fig. 7. Time-frequency representations of the signal x in SαS noise envi-
ronment. (a) Waveform of x and y. (b) STFT time-frequency representation
of the signal x. (c) FLO-STFT time-frequency representation of the signal x.

that P moment of non-stationary signal is stationary and
integrable within the time window, however, the traditional
STFT method is no longer stationary and integrable because
E[|s|] = ∞ when α < 1.

2) Application Review: We apply FLO-STFT time-
frequency distribution to estimate the time-varying spectral,
the signal x added with SαS distribution noise is defined as
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x = e−a(n−80)2+jω1(n−80) + e−a(n−190)2+jω2(n−190) + SαS

= y + SαS (18)

where a = 0.002, ω1 = 1.85, ω2 = 1.2, n = 1, 2, . . . , 256, α
= 1.5, MSNR = 15 dB (mixed signal to noise ratio), MNSR
= 10 log(E{|s(t)|2}/γα). The traditional STFT method and
FLO-STFT method are used to estimate time-frequency rep-
resentations of the signal x, simulation results are shown in
Fig. 7.

3) Remarks: Fig. 7 (b) shows that the traditional STFT time-
frequency method fails in noise environment, the improved
FLOC-STFT method shows good robustness in Fig. 7 (c).
However, the time-frequency resolution of the FLO-STFT
method is controlled by the length of the window function
like STFT method. In real application, the shorter time window
should be used when we want to get the information of higher
frequency components, and if we wish to closely localize the
frequency location of lower frequency components, a longer
time window is preferred. As a result, STFT time-frequency
method is only suitable to analyze signals in Gaussian en-
vironment, but FLO-STFT can work in Gaussian and noise
environment, which is robust.

B. Fractional Lower Order Wigner-Ville Distributions
1) Principle: Wigner-Ville distribution (WVD) of the signal

x(t) is defined as

WV Dx(t, ω) =
∫ +∞

−∞
x

(
t +

τ

2

)
x

(
t− τ

2

)
e−jωτdτ. (19)

WVD time-frequency is a quadratic transformation, it has
serious cross-terms, hence, the smoothing window function
h(τ) is used to reduce the cross-term interference, Pseudo
WVD (PWVD) is expressed as

PWV Dx(t, ω) =
∫ +∞

−∞
h(τ)x

(
t +

τ

2

)
x

(
t− τ

2

)
e−jωτdτ.

(20)
In α stable distribution environment, fractional low order

Wigner-Ville distribution (FLO-WVD) based on P order mo-
ment can be expressed as

FLOWV Dx(t, ω)

=
∫ +∞

−∞
x〈P 〉

(
t +

τ

2

)
x−〈P 〉

(
t− τ

2

)
e−jωτdτ. (21)

The FLO-WVD discrete equation of the signal x(t) is
expressed as

FLOWV Dx(n,$)

= 2
∑
m

x〈P 〉(n + m)x−〈P 〉(n−m)e−jm$. (22)

FLO-PWVD of the signal x(t) can be defined as

FLOPWV Dx(t, ω) =∫ +∞

−∞
h(τ)x〈P 〉

(
t +

τ

2

)
x−〈P 〉

(
t− τ

2

)
e−jωτdτ. (23)

The instantaneous auto-covariance of the signal x(t) is
defined as

RC
x (t, τ) = x〈P 〉

(
t +

τ

2

)
x−〈P 〉

(
t− τ

2

)
. (24)

According to (24), FLO-WVD changes as

FLOWV Dx(t, ω) =
∫ +∞

−∞
RC

x (t, τ)e−jωτdτ. (25)

According to (24), we can know that FLO-WVD of the
signal x(t) is the Fourier transform of instantaneous auto-
covariance in time delay τ .

2) Application Review: The traditional WVD method,
PWVD method, the improved FLO-WVD method and FLO-
PWVD method are used to estimate time-frequency distribu-
tions of the signal x(t), and their simulation results are shown
in Fig. 8.

3) Remarks: Fig. 8 (a) and Fig. 8 (c) respectively are WVD
and PWVD time-frequency representations of the synthetic
signal x, Fig. 8 (b) and Fig. 8 (d) respectively are FLO-WVD
and FLO-PWVD of the synthetic signal x. Simulation results
show WVD and PWVD time-frequency methods cannot work,
but FLO-WVD and FLO-PWVD time-frequency methods have
good performance in SαS environment. FLO-WVD method
is an improved WVD time-frequency method, FLO-WVD has
high time-frequency resolution, but it has serious cross-term
interference. Hence, its application is inevitably hindered by
the cross-term interference. FLO-PWVD is FLO-WVD added
the window function, it can better suppress the cross term
interference.

C. Fractional Lower Order Cohen Class Time-frequency Dis-
tributions

1) Principle: The Cohen-class time-frequency distribution
is intended to obtain the expected properties like higher
resolution, non-negativeness and removal of cross-terms with
a kernel function, Cohen class time-frequency distribution
(CTFD) of the analytic signal x(t) is defined as

Cx(t, ω) =
1
2π

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
x

(
t +

τ

2

)
x

(
t− τ

2

)

× Φ(θ, τ)ejθt−jωτ−jθudθdτdu. (26)

Ambiguity function (AF) of the signal x(t) is expressed as

AFx(θ, τ) =
∫ +∞

−∞
x

(
t +

τ

2

)
x

(
t− τ

2

)
e−jθtdt

=
∫ +∞

−∞
RC

x (t, τ)e−jθtdt. (27)

Fractional low order ambiguity function (FLOAF) of the
analytic signal x(t) based on P order moment is defined as

FLOAFx(θ, τ) =
∫ +∞

−∞
RC

x (t, τ)e−jθtdt

=
∫ +∞

−∞
x〈P 〉

(
t +

τ

2

)
x−〈P 〉

(
t− τ

2

)
e−jθtdt. (28)

When the inverse Fourier transform of (28) is computed,
we can get:

RC
x (t, τ) =

1
2π

∫ +∞

−∞
FLOAFx(θ, τ)ejθtdθ. (29)
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Fig. 8. Time-frequency representations of the signal x in SαS noise environment. (a) WVD time-frequency representation of the signal x. (b) FLO-WVD
time-frequency representation of the signal x. (c) PWVD time-frequency representation of the signal x. (d) FLO-PWVD time-frequency representation of the
signal x.

If (29) is substituted to (25), we get the following form:

FLOWV Dx(t, ω)

=
1
2π

∫ +∞

−∞

∫ +∞

−∞
FLOAFx(θ, τ)ejθt−jωτdθdτ . (30)

From (30), we know that FLOWVD of the signal x(t) is
two-dimensional Fourier transform of FLOC-AF, FLOWVD
is three-dimensional (3-D) indication of the signal x(t) in
time, frequency and energy, and FLOC-AF is 3-D indication
in time-delay, frequency deviation and the correlation. The
images of FLOWVD and FLOC-AF have the components and
cross-terms, the components of FLOWVD method are on both
sides, and the cross terms are in the middle. However, the
components of FLOC-AF are in the middle, and the cross
terms are in both sides. When FLOC-AF of the signal x(t) is
computed, and a low-pass filter is used to filter cross-terms in
AF plane, finally, the time-frequency distribution is calculated.
FLO-Cohen distribution of the signal x(t) is defined as

FLO − Cx(t, ω) =
1
2π

∫ +∞

−∞

∫ +∞

−∞
Φ(θ, τ)

× FLOAFx(θ, τ)ejθt−jωτdθdτ. (31)

Φ(θ, τ) is the kernel function, a different distribution is got
when a different kernel function is used. If Φ(θ, τ) = 1,
FLO-Cohen time-frequency representation degenerates into
FLOWVD method, when Φ(θ, τ) is a moving window func-
tion, FLO-Cohen method is called pseudo FLOWVD time-
frequency representation, if Φ(θ, τ) = cos(θτ/2), FLO-
Cohen method is called FLO- Rihaczek time-frequency rep-
resentation, when Φ(θ, τ) = ejθτ/2, FLO-Cohen method is
called FLO-Page time-frequency representation, if Φ(θ, τ) =
e−θ2τ2/σ , FLO-Cohen method is called FLO-Choi-Williams
time-frequency representation, σis a constant between 0.2−8,
if Φ(θ, τ) = g(τ) |τ | sin(βθτ)/βθτ , it is called as FLO-
conical kernel distribution.

2) Application Review: Choi-Williams and FLO-Choi-
Williams time-frequency methods are used to estimate time-
frequency distributions of the synthetic signal x (18), simula-
tion results are shown in Fig. 9.

3) Remarks: Fig. 9 (a) shows the Choi-Williams time-
frequency representation of the synthetic signal x, and
Fig. 9 (b) is the FLO-Choi-Williams time-frequency represen-
tation of the synthetic signal x. In view of the SαS stable dis-
tribution noise environment, the Choi-Williams method fails,
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Fig. 9. Time-frequency representations of the signal x in SαS noise envi-
ronment. (a) Choi-Williams time-frequency representation of the signal x. (b)
FLO-Choi-Williams time-frequency representation of the signal x.

and FLO-Choi-Williams method can better represent time-
frequency distribution. FLO-Choi-Williams time-frequency
method smoothing by the kernel function get rid of most of
the cross-terms, but the time-frequency resolution is reduced.

D. FLO Adaptive Kernel Time-frequency Representation
Method

1) Principle: The kernel functions of traditional Cohen-class
time-frequency method and fractional lower order Cohen-class
time-frequency method are fixed, a class kernel function is
only suitable for one type of signal, which can not meet all
the signals. However, the adaptive kernel time-frequency dis-
tribution can change optimal kernel function Φ(θ, τ) according
to the feature of the different signals. Hence, adaptive optimal
kernel time-frequency method is focused, and adaptive opti-
mal kernel time-frequency representation in stable distribution
environment will be a new direction.

According to the definition of FLOC-Cohen method, we
use the optimal kernel function Φopt(θ, τ) instead of the fixed
kernel function Φ(θ, τ), then we can get a new fractional low-
order adaptive kernel time-frequency distribution. the polar
coordinates expression of optimal kernel can be defined as

max
Φ

∫ 2π

0

∫ +∞

0

|AFx(r, φ)Φ(r, φ)|2rdrdφ. (32)

When the kernel function is a radial Gaussian kernel func-
tion, the optimal kernel function is defined as

Φ(r, φ) = e
− r2

2σ2(φ) (33)

where φ is radial angle, φ = arctan(τ/θ), σ(φ) is radial
extension functionit controls the radial shape of Φ(θ, τ),
constraint condition in polar coordinates is defined as

1
4π2

∫ 2π

0

∫ +∞

0

|Φ(r, φ)|2rdrdφ

=
1

4π2

∫ 2π

0

∫ +∞

0

∣∣∣∣e
− r2

2σ2(φ)

∣∣∣∣
2

rdrdφ

=
1

4π2

∫ 2π

0

σ2(φ)dφ ≤ β. (34)

When Φopt(θ, τ) is a radial optimal parabolic kernel func-
tion, its function is defined as

Φ(θ, τ) = 1− w(θ2 + τ2)
2σ2(φ)

, 0 ≤ w(θ2 + τ2)
2σ2(φ)

≤ 1. (35)

The constraint condition in polar coordinates is expressed
as

1
6wπ

∫ π

0

σ2(φ)dφ ≤ β. (36)

If we use (32)−(34) to choose kernel function, the method
can be called fractional lower order adaptive Gaussian-kernel
time-frequency distribution (FLO-AGK-TFD). When we use
(32), (35) and (36) to choose kernel function, it is called frac-
tional lower order adaptive parabolic kernel time-frequency
distribution (FLO-APK-TFD).

2) Application Review: The adaptive kernel function time-
frequency distribution and FLO-adaptive kernel function time-
frequency distribution are used to estimate time-frequency
distributions of the synthetic signal x (18), the optimal radial
Gaussian kernel function is used in the methods. Simulation
results are shown in Fig. 10.

3) Remarks: The adaptive kernel time-frequency distribu-
tions of synthetic signal x are illustrated in Fig. 10 (a), and
Fig. 10 (b) illustrate the FLO-adaptive optimal kernel time-
frequency distributions of synthetic signal x. As shown in
the figures, two components of the FLO-adaptive optimal
kernel time-frequency method can be clearly resolved in
fine resolution, but adaptive optimal kernel time-frequency
method cannot represent time-frequency distributions. From
Fig. 10 (b), we know that the FLO-adaptive kernel function
method can effectively suppress the cross-terms, and it has
a better time-frequency resolution. The FLO-adaptive kernel
method requires that the auto-terms of the signals concentrate
around the origin on the ambiguity plane, the cross-terms
distribute in an area is far from the origin, and it will not
be effective to separate the auto-terms and cross-terms when
they overlap regardless of what volume of parameter is used.
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Fig. 10. Time-frequency representations of the signal x in SαS noise
environment. (a) Adaptive kernel time-frequency representation of the signal
x. (b) FLO-adaptive kernel time-frequency representation of the signal.

E. Adaptive FLO-TFARMA Time-frequency Representation
Method

TFARMA model of a non-stationary random process is
defined as [19]

x[n] =−
M∑

i=1

ai[n]x[n− i]

+
L∑

i=0

bi[n]e[n− i], n = 0, 1, 2, . . . , N − 1 (37)

where ai[n] and bi[n] are the time-varying parameters of
the TFAR and TFMA part, M and L are orders, e(n) is
stationary white noise. When the noise e(n) is a stationary
SαS distribution process u(n), according to the definition
method of (37) TFARMA, we can also define a non-stationary
time-frequency auto-regressive moving average SαS process
TFARMA(M , L, A, B) as

x[n] =−
M∑

i=1

ai[n]x[n− i]

+
L∑

i=0

bi[n]u[n− i], n = 0, 1, 2, . . . , N − 1 (38)

where

ai[n] =
A∑

l=−A

ai,lfl[n]

=
A∑

l=−A

ai,le
j 2π

N nl, n = 0, 1, 2, . . . , N − 1

bi[n] =
B∑

l=−B

bi,lfl[n]

=
B∑

l=−B

bi,le
j 2π

N nl, n = 0, 1, 2, . . . , N − 1

fl[n] = ej 2π
N nl, l = 0, 1, 2, . . . ,max {A,B} . (39)

We call it as fractional lower order time-frequency auto-
regressive moving average (FLO-TFARMA) process, where
M , L, A and B are the orders of the model, and M and
L are the order in time domain, A and B are the order in
frequency domain (the bandwidth of the model are [−A,A]
and [−B,B]), ai[n] and bi[n] are the parameters of the FLO-
TFAR model, the numbers are as high as N(M +L+1), ai,l

and bi,l are basis expansion of the parameter functions, the
number of ai,l is M(2A+1), the number of bi,l is (L+1)(2B
+ 1). When L = 0, B = 0, FLO-TFARMA model will
degrade into FLO-TFAR(M , A) model, and if A = 0, B = 0,
it will degrade into FLO-TFMA(M , L) model. fl[n] is the
basis functions, u(n) is a stationary white noise SαS process,
γ is its dispersion coefficient (γ = 1).

1) FLO-TFMA Time-frequency Representations: The α
spectrum of the α stable distribution process is defined as
[33]

Sα(z) =


X[n],

q∑

i=−q

X(n− i)zi




= γ

[(
1
z

)〈α−1〉]
[H(z)]〈α−1〉

. (40)

When inserting z = ejω into (40), α spectrum on the unit
circle is calculated as

Sα(ejω) = γH(ejω)[H(ejω)]
〈α−1〉

= γ
∣∣H(ejω)

∣∣α. (41)

When Z transformation with respect to both sides of (38)
is computed, we obtain

H[Z] =
1 +

L∑
i=1

bi[n]Z−i

1 +
M∑
i=1

ai[n]Z−i

=
B(Z)
A(Z)

. (42)

By inserting (42) into (40), FLO-TFARMA model spectrum
estimation of a SαS process X[n] can be defined as

Sα(n, k) = γ

∣∣∣∣∣∣∣∣

1 +
L∑

i=1

bi[n]e−j 2π
N ik

1 +
M∑
i=1

ai[n]e−j 2π
N ik

∣∣∣∣∣∣∣∣

α
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= γ

∣∣∣∣∣∣∣∣∣

1 +
L∑

i=1

B∑
l=−B

bi,le
−j 2π

N (ik−nl)

1 +
M∑
i=1

A∑
l=−A

ai,le−j 2π
N (ik−nl)

∣∣∣∣∣∣∣∣∣

α

. (43)

For getting ai,l and bi,l of FLO-TFARMA model parame-
ters, we solve the parameters ai,l of FLO-TFAR model, and
then solve the parameters bi,l of FLO-TFMA model.

2) FLO-TFAR Parameters Estimation: If both sides of (38)
are multiplied by x〈P−1〉[n− i′] and taken expectation, it can
be written as

M∑

i′=0

ai[n]E
{

x[n− i′]x〈P−1〉[n− i′]
}

=
L∑

i′=0

bi[n]E
{

U [n− i′]x〈P−1〉[n− i′]
}

. (44)

A simplified fractional lower order covariance is defined in
[21], it simplifies to (44), and then we can get

M∑

i′=0

A∑

l′=−A

ai′,l′Cx[n− i′, i− i′]ej 2π
N nl′

=
L∑

i′=0

B∑

l′=−B

bi′,l′CU,x[n− i′, i− i′]ej 2π
N nl′ (45)

where

Cx[n− i′, i− i′] = E
{

x[n− i′]x〈P−1〉[n− i′]
}

= E
{

x[n− i′]|x[n− i′]|P−2
X∗[n− i′]

}

is auto-covariance function of x[n], and

CU,x[n− i′, i− i′] = E
{

U [n− i′]x〈P−1〉[n− i′]
}

= E
{

U [n− i′]|x[n− i′]|P−2 · x∗[n− i′]
}

is cross-covariance of x[n] and U [n], N points of discrete
Fourier transform (DFT) with respect to both sides of (45)
can be expressed as

M∑

i′=0

A∑

l′=−A

ai′,l′λx[i− i′, l − l′]e−j 2π
N i′(l−l′)

=
L∑

i′=0

B∑

l′=−B

bi′,l′λU,x[i− i′, l − l′]e−j 2π
N i′(l−l′) (46)

λx[i− i′, l − l′] =
N−1∑
n=0

Cx[n− i′, i− i′]e−j 2π
N nl′

λU,x[i− i′, l − l′] =
N−1∑
n=0

CU,x[n− i′, i− i′]e−j 2π
N nl′ (47)

where λx[i−i′, l−l′] and λU,x[i−i′, l−l′] are similar to Cohen-
class time-frequency distribution expected ambiguity function
(EAF) based on the second-order correlation function Ax[i, l]
=

∑N−1
n=0 RX [n, i]e−j 2π

N nl, its auto-correlation is replaced by
auto-covariance, it can be named as fractional order discrete
expect ambiguity function (FLO-EAF), it represents statistical

covariance of the time shift and frequency shift in time-
frequency domain. When i ≥ A, x[n], U [n] are statistically
independent from each other and CU,x[n− i′, i− i′] = 0, (46)
can be written as

M∑

i′=0

A∑

l′=−A

ai′,l′λx[i− i′, l − l′]e−j 2π
N i′(l−l′) = 0

M∑

i′=1

A∑

l′=−A

ai′,l′λx[i− i′, l − l′]e−j 2π
N i′(l−l′) = −λx[i, l],

A + 1 ≤ i ≤ A + M − L ≤ l ≤ L
(48)

Equation (48) can be written as

Γa = −θ or a = −Γ−1θ (49)

where Γ is (2L + 1)M × (2L + 1)M Toeplitz-block matrix,
a = [aT

1 , aT
2 , . . . , aT

M ]T , am = [ai,−L, ai,−L+1, . . . , ai,L]T , θ
= [θT

A+1, θ
T
A+2, . . . , θ

T
A+M ]T .

Equation (49) has (2L + 1)M independent equations, and
the required parameters ai′,l′ are (2L + 1)M . The lengths of
θ and a are (2L + 1)M , and through the solution of Toeplitz
matrices using (49), we can obtain the vector a and FLO-TFAR
model parameters ai,l.

3) FLO-TFMA Parameters Estimation: A SαS distribution
signal y[n] can be produced by SαS noise distribution U [n]
through causal linear time-varying (LTV) system (TFMA), we
can also obtain it when U [n] is passed through a TFARMA
system and then through a TFAR model system. Then, we
can take advantage of the observation sequence x[n] that is
discussed in Section V-B with the help of TFAR model filter
to obtain TFMA process y[n], this whole process can be
expressed as

y[n] =
L∑

i=0

bi[n]U [n− i] =
L∑

i=0

B∑

l=−B

bi,l[n]ej 2π
N nlU [n− i].

(50)

The both sides of (50) are multiplied by x〈P−1〉[n− i′] and
taken expectation, then, N points of discrete Fourier transform
(DFT) with respect to both sides of (50) can be written as

L∑

i′=0

B∑

l′=−B

bi′,l′ [n]λU,y[i− i′, l − l′]e−j 2π
N i′(l−l′) = λy[i, l],

0 ≤ i ≤ L, −B ≤ i ≤ B.
(51)

When LB ¿ N , phase factor e−j 2π
N i′(l−l′) ≈ 1, it can be

expressed as
L∑

i′=0

B∑

l′=−B

bi′,l′ [n]λU,y[i− i′, l − l′] = λy[i, l],

0 ≤ i ≤ L, −B ≤ i ≤ B. (52)

According to the method in Section V-B, (49) is written as
Toeplitz matrix form Γb = θ, and then the model parameters
bi,l are solved.

However, U [n] and λU,y[i − i′, l − l′] are unknown from
the observations of a random signal x[n], in that way, we
cannot evaluate bi,l through the above method. We can use
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improved fractional lower order complex time-frequency spec-
trum (FLO-CTFC) algorithm to calculate FLO-TFMA coeffi-
cient bi,l [34], where, the second order correlation is replaced
by fractional low-order covariance.

4) Application Review: We will study the performances of
the TFAR, TFMA and TFARMA, the proposed FLO-TFAR,
FLO-TFMA and FLO-TFARMA, they are applied to estimate
the time frequency representations of the synthetic signal x
(18) in SαS stable distribution noise environment. The length
of the signal N = 256, its time frequency representations are
shown in Figs. 11−13.

Fig. 11. The model time-frequency representations of the signal x in SαS

noise environment. (a) TFAR(5, 1) model time-frequency representation of
the signal x. (b) FLO-TFAR(5, 1) model time-frequency representation of the
signal.

5) Remarks: The results show that TFAR(5, 1) model time-
frequency spectrum is a failure in Fig. 11 (a), the overall
resolution of FLO-TFAR(5, 1) is poorer than that of the
nonparametric FLO-PWVD in Fig. 11 (b). but it can better
suppress the cross term interference. TFMA(2, 2) method
failed in Fig. 12 (a), and FLO-TFMA(2, 2) spectrum is very
poor in Fig. 12 (b). Finally, TFARMA(2, 2, 1, 2) model method
cannot work in SαS noise environment in Fig. 13 (a), but

FLO-TFARMA(2, 2, 1, 2) model time-frequency spectrum ex-
hibits better resolution than FLO-TFAR and FLO-TFMA in
Fig. 13 (b), and it does not contain any cross terms as does
FLO-PWVD.

Fig. 12. The model time-frequency representations of the signal x in SαS

noise environment. (a) TFMA(2, 2) model time-frequency representation of
the signal x. (b) FLO-TFMA(2, 2) model time-frequency representation of
the signal.

The improved FLO-TFAR, FLO-TFMA and FLO-
TFARMA methods are effective for slowly time-varying
signals, and they are free from cross-term interference. The
time-frequency resolution of the FLO-TFAR and FLO-TFMA
methods are relatively low, and FLO-TFARMA method
illustrates better resolution. In addition, the complicated
algorithm for estimating model parameters makes FLO-
TFARMA method computationally demanding. Therefore,
some works will be made to improve the time-frequency
resolution and model parameter estimation process for
practical fault signal analysis.

V. APPLICATION SIMULATIONS

The impulse of the outer race fault signals in the vibration
position of the drive end accelerometer, the fan end accelerom-
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Fig. 13. The model time-frequency representations of the signal x in SαS noise environment. (a) TFARMA(2, 2, 1, 2) model time-frequency representation
of the signal x. (b) FLO-TFARMA(2, 2, 1, 2) model time-frequency representation of the signal.

Fig. 14. The conventional time-frequency representations of the outer race fault signal in α stable distribution environment. (a) The conventional STFT
time-frequency representation. (b) The conventional PWVD time-frequency representation. (c) The conventional CWD time-frequency representation. (d) The
conventional adaptive kernel time-frequency representation. (e) The TFAR model time-frequency representation. (f) The TFARMA model time-frequency
representation.
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Fig. 15. The new time-frequency representations of the outer race fault signal in α stable distribution environment. (a) The FLO-STFT time-frequency
representation. (b) The FLO-PWVD time-frequency representation. (c) The FLO-CWD time-frequency representation. (d) The FLO-adaptive kernel time-
frequency representation. (e) The FLO-TFAR model time-frequency representation. (f) The FLO-TFARMA model time-frequency representation.

eter and the base accelerometer is generated because of the
local defects of rolling element bearings, as shown Fig. 5 (d)
and Table I. The fault signals are non-Gaussian and non-
stationary α stable distribution because of the presence of
impulses. α stable distribution noises are added to the fault
signals in the experiment, setting α = 0.8, MSNR = 20 dB,
and letting N = 2400. The conventional time-frequency
distribution methods including STFT, PWVD, CWD, the
adaptive kernel time-frequency method, TFMA, TFARMA
model time-frequency method, and the improved lower or-
der time-frequency distribution methods including FLO-STFT,
FLO-PWVD, FLO-CWD, the FLO-adaptive kernel time-

frequency method, FLO-TFMA and FLO-TFARMA model
time-frequency method are applied to analyze the vibration
signal of a bearing with an artificially seeded defect on outer
race in the position of DE in α stable distribution environment.
FLO-TFMA(2, 2) and FLO-TFARMA(2, 2, 1, 2) model time-
frequency spectrum methods are used to analyze the signals
in the experiment. The results are shown in Figs. 14 and 15.

VI. CONCLUSIONS

STFT time-frequency representation of the outer race fault
signal is shown in Fig. 14 (a). Fig. 14 (b) is the PWVD time-
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TABLE II
THE COMPARISON OF VARIOUS FLO-TIME-FREQUENCY DISTRIBUTION METHODS

Methods Advantages Disadvantages Application to fault diagnosis

FLO-STFT time-frequency Free from cross-terms, Low time-frequency resolution Revealing the time-frequency

distribution Low computational complexity, structure of the fault signals as

Definite physical meaning a preprocessing tool

FLO-WVD time-frequency High time-frequency resolution Serious cross-terms interference Analyzing the fault signals after

distribution getting the signals structure

FLO-Cohen class time-frequency Suppressed cross-terms Reduced time-frequency resolution, Analyzing the fault signals after

distribution compared with FLO-WVD method certain cross-term interference getting the signals structure

FLO-adaptive kernel time-frequency Suppressed cross-terms, improved High computationally complex Suitable to the computational

distribution timeCfrequency resolution complexity fault signals

FLO-ARMA time-frequency Free from cross-terms High computational complexity, Suitable to analyzing the slowly

distribution low time-frequency resolution time-varying fault signals

frequency distribution, CWD method time-frequency repre-
sentation is shown in Fig. 14 (c), the adaptive kernel time-
frequency representation is in Figs. 15 (d)−15 (f), respectively,
are TFAR model time-frequency representation and TFARMA
model time-frequency distribution. The results show that the
conventional time-frequency methods fail in α stable distribu-
tion environment. FLO-STFT time-frequency representations
of the outer race fault signal in Fig. 15 (a) show the shock
pulse is mainly distributed in low-frequency band from 0 Hz
to 4000 Hz, and the transient harmonic vibration components
of about 600 Hz, 2800 Hz and 3500 Hz dominate frequency-
domain. Its vertical resolution is bad, the fault characteristic
frequency cannot be seen. FLO-PWVD time-frequency repre-
sentations in Fig. 15 (b) have a good vertical resolution, but
there are serious cross terms, which render it not conducive
to observe. FLO-CWD method preferably restrains the cross-
term interference in Fig. 15 (c), it can be seen clearly that
the gap regularly changes between the impact, the interval
between the impulses A, B, C, D, E and F is approximately
30 ms, the interval corresponds to the characteristic frequency
of outer race as 33.333 Hz. We can also know the interval
between A, B, C, D, E and F is about 30 ms from FLO-
adaptive kernel time-frequency representation in Fig. 15 (d),
the impact frequency band expanded into 0−6000 Hz because
of its poor lateral resolution. The results show that the tran-
sient harmonic vibration components are 600 Hz, 2800 Hz and
3500 Hz from the FLO-TFAR model time-frequency represen-
tation in Fig. 15 (e), but its vertical resolution is bad, so we
cannot see the effect of the time interval. However, FLO-
TFARMA model time-frequency distributions in Fig. 15 (f)
show the interval between the impulses A, B, C, D, E and F
is approximately 30 ms, as well as that the dominant frequency
of 600 Hz, 2800 Hz and 3500 Hz, FLO-TFARMA has certain
ability in the horizontal and vertical, but the overall resolution
is low.

The simulations show that the improved methods have their
respective advantages and disadvantages as shown in this
paper. The fractional lower order short time Fourier transform
time-frequency representation has low computational com-
plexity and definite physical meaning, but the time-frequency

resolution is low, hence it is suitable to analyze the non-
stationary machinery fault signals whose local stationary is
larger. The fractional lower Wigner-Ville time-frequency rep-
resentation has high time-frequency resolution, however, there
are serious cross-terms interference. The fractional lower order
pseudo Wigner-Ville time-frequency representation added win-
dow function and the different kernel function fractional low-
order Cohen class time-frequency distribution can suppress
certain cross-term interference, but it leads to reduced the
time-frequency resolution. The fractional lower order adap-
tive kernel time-frequency representation can suppress cross-
term interference, and effectively improve the time-frequency
resolution, but the computational complexity is higher. The
fractional lower order ARMA model time-frequency repre-
sentation has no interference of cross-terms, but the time-
frequency resolution is low, hence it is suitable for analyzing
the changing slowly non-stationary machinery fault signals.
The methods are summarized in Table II. In real applications,
several methods can be selected to analyze the fault signals
according to their specific characteristics.

The paper has presented an accurate statistical parameter
model SαS distribution for bearing fault signals diagnosis.
The time-frequency analysis methods are key tools for ma-
chinery fault diagnosis, they can be used to identify the
constituent components and time variation of the signals. We
have presented FLO-STFT, FLO-WVD, FLO-PWVD, FLO-
CWD, FLO-AKTFD and FLO-ARMA time-frequency analy-
sis methods based on SαS stable distribution statistical model.
The methods have better performances than the conventional
methods including STFT, WVD, PWVD, CWD, AKTFD and
ARMATFD. The traditional methods fail in SαS stable distri-
bution environment, but the proposed methods can regularly
work in the noise environment, which shows robustness. The
proposed time-frequency analysis methods are used to analyze
the bearing fault signals, they have respective advantages and
disadvantages, the FLO-STFT method has low computational
complexity and low resolution. FLO-WVD has better reso-
lution, but there are serious cross terms. The FLO-PWVD
and FLO-CWD methods suppress the cross-term interference
through adding the window function, but they still suffer from
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cross-term interference. The FLO-AKTFD methods could be
effective to improve time-frequency resolution and suppress
cross-terms. The FLO-TFARMA model method is free from
cross-term interference, however, the time-frequency resolu-
tion is not as high as expected. The improved time-frequency
analysis method is applied to the bearing fault diagnosis, which
can better get fault features of the signals. In the actual bearing
fault diagnosis analysis, we can use the above several kinds
of comprehensive methods to analyze together, and take their
respective advantages to comprehensive judgment, and hence
better results can be obtained.
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