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Abstract—Since the efficiency of photovoltaic (PV) power is
closely related to the weather, many PV enterprises install
weather instruments to monitor the working state of the PV
power system. With the development of the soft measurement
technology, the instrumental method seems obsolete and involves
high cost. This paper proposes a novel method for predicting
the types of weather based on the PV power data and partial
meteorological data. By this method, the weather types are
deduced by data analysis, instead of weather instrument. A
better fault detection is obtained by using the support vector
machines (SVM) and comparing the predicted and the actual
weather. The model of the weather prediction is established by
a direct SVM for training multiclass predictors. Although SVM
is suitable for classification, the classified results depend on the
type of the kernel, the parameters of the kernel, and the soft
margin coefficient, which are difficult to choose. In this paper,
these parameters are optimized by particle swarm optimization
(PSO) algorithm in anticipation of good prediction results can
be achieved. Prediction results show that this method is feasible
and effective.

Index Terms—TFault detection, multiclass support vector ma-
chines, photovoltaic power system, particle swarm optimization
(PSO), weather prediction.

I. INTRODUCTION

S the non-renewable energy brought about a series of

problems such as air pollution, acid rain, greenhouse
effect and etc., the importance of utilizing the clean and
renewable energy is realized by more and more people. The
photovoltaic (PV) power is a focus of wide attention by
its distinct advantages such as safe, no noise, no pollution
emission, short construction period, not constrained by the
territory and so on [1]—[4]. Although PV power has many
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advantages, its power output is closely related to the weather
condition. Usually, there are some differences between the
local region weather forecast and the overall. In order to
monitor the working state of the PV power system, a lot of PV
enterprises install weather instruments to forecast the weather
condition. According to a lots of meteorological data and the
PV power data, the working state of the PV power system
is judged by the experience of the power station staff. For
example, when the meteorological data shows that the weather
is sunny meanwhile the output power is very low, it means
that the PV power system might have some faults, that is, the
solar panels might be damaged or might have some unknown
obstructions. This traditional method involves a lot of human
factors. In addition, the weather instrument is expensive and
its installation is inconvenient.

Since the PV power outputs are closely related to the
weather condition, we can utilize the PV output data and a
part of weather data to predict the condition of the weather.
With the development of the technology of big data, the
weather instrument can be replaced by the soft measurement
technology. In the data mining technologies, support vector
machines (SVM) and neural network (NN) are two main
intelligent methods. The optimization goal of NN is based
on empirical risk minimization while the goal of SVM is
based on structural risk minimization. Research results shown
that compared with NN, the generalization quality of SVM is
better and the algorithm of SVM has the global optimality
[5]—[8]. Some researchers predicted the power of the PV
power station using SVM [9]—[11]. Zhang et al. [12] utilized
the air temperature, seasonal and day pattern, relative humidity
and solar radiation as input in Least Square Support Vector
Machine (LS-SVM) for the prediction of the short-term PV
power output. Shi et al. [13] divided the weather conditions
into four types. A one-day-ahead PV power output forecasting
model for a single station is derived based on the weather
forecasting data, the actual historical power output data, and
the principle of SVM. R. De Leone [14] used historical data
of solar irradiance, environmental temperature and past energy
production to predict the PV energy production for the next
day with an interval of 15min. The technique used is based
on m-SVR.

From the above, it can be seen that many researchers use
historical PV power output data and the meteorological data
to predict the current PV power output by SVM, so it is
feasible to predict the current weather types by the historical
PV power output data and the historical meteorological data in
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different weather types. According to the references, no article
mentioned this direction up to now. Fig. 1 is a framework that
can predict the types of weather with SVM.

Current data
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power data and partial
weather data)
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SVM model

Historical data
(including PV power
data and partial
weather data)
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weather
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Fig. 1. Framework to predict the types of weather with SVM.

In this paper, the condition of weather is classified as
three types, that is, sunny, foggy, cloudy or rainy, and the
foggy means soft foggy or hazy, and the cloudy means heavy
foggy or heavy hazy. We established the prediction model
of each weather type at different times based on the data
in normal working state of the PV power station. When the
predicted weather type is different from the actual type, the PV
power system may have faults. Our highlights are as follows:
1) We propose a model of multiclass SVM to predict the
types of weather in the PV power system. It can replace
weather measurement and monitoring system and save a lot
of purchasing cost; 2) A better fault detection is obtained by
using this SVM and comparing the predicted and the actual
weather, instead of the traditional human experience; 3) The
multiclass SVM in this paper is based on a direct method
for training multiclass predictors and the parameters of the
SVM model are optimized by PSO algorithm with the aim of
achieving higher precision of classification.

This paper is organized as follows: the multiclass SVM
model based on a direct method for training multiclass pre-
dictors is presented in Section II. The output characteristics
of PV power system and the data preprocessing are expressed
in Section III. The intelligent optimization algorithm of PSO,
which is used to optimize the parameters in the SVM model,
is presented in Section IV. Forecasting results and discussions
are given in Section V.

II. MULTICLASS SUPPORT VECTOR MACHINES

The basic idea of SVM is applied to binary classification.
Most of the previous approaches are the method that decom-
pose a multiclass problem into multiple independent binary
classification tasks. In practice, these methods usually bring
about the inseparable cases which will reduce the accuracy of
classification. In order to obtain higher precision of classifica-
tion, we use a direct method for training multiclass predictors
[15]. Let S = {(Z1,y1) - - - (Tm, Ym)} be a set of m training
examples. We assume that each example z; is drawn from a
domain X C R" and that each label y; is an integer from
the set Y = {y1,...,yx}. A multiclass classifier is a function

F: X — Y that maps an instance Z to an element y of Y. A
framework that uses classifiers of the form is

Py (#) = mlax{ M, - 7}
where M is a matrix of size k& X n over R and M, is the
rth row of M. The predicted label is the index of the row
attaining the highest similarity score with Z.

The optimization problem is

1 S
min 5CHM||§+;&

S

S. t. \V/i,T,Myi'i‘i+6y,i7T—MT'i‘i21—§i

where || M [3= 3, M?;, ¢ > 0 is a regularization
constant, d,, » is equal to 1 if y; = r and O otherwise. The
Lagrangian of the optimization problem is

L(M,¢&,n) fcz | Mr |2 +Z§+Z¢;w
X [MT c Ty — My, T; — 6y7,,r +1- 52}
s.t. Vi, r,mi, > 0. (1)

Then, we obtain the following objective function of the dual
program

1 o o R

maxQ (1) = =5 > (7 3) (7 1) + ) 7 Iy,
i, i

V’L,’fzéfyl and Vi,fi

s. t. I=0. )

Let I; be the vector whose components are all zero except
for the ith component which is equal to one, and I be the
vector whose components are all one, and let 7; = fyi — 7
The classifier F' (Z) becomes

k - k
F (z) = arg max {M, z} = arg max {; Tiw (T - x)} .
3)
The dual program and the resulting classifier depend only
on inner products of the form (Z;-Z). Therefore, we can
perform inner-product calculations in some high dimensional
inner-product space with a kernel function K (-, -) that satisfies
Mercer’s conditions [16]. From (3), the general dual program
using kernel functions is

maXQ :—fZK Z, %) (i - 75 +CZTz v, 4

subject to Vi, 7; < fyi and Vi, 7; - T = 0 and the classification

rule F' (Z) becomes

F (z) = arg max{ Tir K (T :Ic} ®)

The common kernels are shown as Table I, where the
dot denotes the inner-product operation in Euclidean space,
d is the degree of polynomial kernel, and o is a constant
parameter determining the width of RBF kernel. Different
learning machines with various types of decision surfaces can
be constructed by various kinds of kernel functions K (z, x;).



522

In actual applications, it is important to select the proper kernel
function and parameters in the SVM model.

TABLE I
KERNEL FUNCTIONS

Name Kernel function

Linear K(z,z;) =z 24
K (z,2) = (¢ - z;)

K (z,2) = (1+z ;)
2
K (I,Iz) = exp <7!ﬁ42“2>

Homogeneous polynomial
Non-homogeneous polynomial

RBF

III. PV POWER SYSTEM OUTPUT CHARACTERISTICS
AND DATA PREPROCESSING

A. PV Power System Output Characteristics

PV power output is unsteady and fluctuates along with the
types of weather. The efficiency of the PV system can be
expressed as [13]:

n=mn0x[1—=~(Ty = T)] (6)

where T} is the temperature at time ¢; 7', is the reference
temperature (298K); 719 is the efficiency under reference
temperature; ~ is the temperature coefficient of solar bat-
teries where the value is normally between 0.003 °C~! and
0.005 °C~'. The power output at time ¢ is shown as

P=1IxAxn @)

where A is the PV area(m?); ) is the rating efficiency; I is
radiation intensity of the PV inclined plane (kW/m?). From
these equations, we know that there are some uncertain and
varying parameters in the equations, and the factors, such as
different solar panels, season, geographical location, weather,
solar hour angle, observation date, time and clouds are all
closely connected with these parameters. Consequently, many
factors will affect the efficiency of the PV power system.

In addition to the PV power output data, we selected a
part of meteorological data as our input data. The input
variables include atmospheric temperature, solar irradiance,
time, electric current, power, voltage, dew point temperature
and relative humidity. Our data was collected from a small
PV power station in Shenyang city, which is located in the
northeast of China. We collected the data covering the month
of May. The data was measured hourly from 6 am. to 6 p.m.,
including 365 effective samples. All the cases are measured
in the normal working states. We selected 215 samples for
training the SVM model and the others for testing the model.

B. Normalization

When the dimensions of variables are not consistent, the
situation that larger number swallows smaller number often
happens. If the data is preprocessed into a fixed range before
it is input into the SVM model, the above situation will hardly
happen. In this paper, we let the data be restricted within the
range from 0 to 50. The process formula is shown as

Ti — Tmin
Xi = —— x50
Lmax — Lmin
where x; is the original input data, and x,,x and T, are the

maximum and minimum input data, respectively.
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C. Reconstruction of Data Based on Principal Component
Analysis (PCA)

Since the collected data may have some correlation, they
should be preprocessed by principal component analysis
(PCA). The main process of PCA is to search the best orthog-
onal vectors to represent the data. These vectors are viewed
as the basis of the normalized input data. Each orthogonal
vector is perpendicular to the others. We call these vectors the
principal components.

IV. OPTIMIZING THE PARAMETERS IN MULTICLASS SVM

SVM is suitable for classification, but the classified re-
sults depend on the type of the kernel, the parameters of
the kernel, and the soft margin coefficient, which are dif-
ficult to choose. Particle swarm optimization (PSO) algo-
rithm is suitable for solving this problem. It is based on
the birds flocking behavior [17]. In PSO algorithm, particles,
without quality and volume, fly through a D-dimensional
space, adjusting their positions in the D-dimensional space
according to their own or their neighbors experiences.
The position of the particle ¢ is represented with a po-
sition vector X; (k) = (241 (k) , 22 (k),...,z;p (k)) and a
velocity vector V; (k) = (vi1 (k) ,vi2 (k),...,vip (k)). The
best personal position that particle ¢ has visited shows
as P; (k) = (pi1 (k),pia(k),...,pip (k). The best global
position that all particles have visited shows as P, (k) =
(pg1 (k) ,pg2 (k) ,...,pgp (k). The particle’s position and
speed are continuous real numbers. In every time step k,
particle 7 changes its velocity and position according to the
following equations:

Via (k + 1) =wviq (k) + mA1 (pia (k) — w4q (k)
+ m2A2 (Pga (k) — ia (K)) ®)

Zig (k+1) = 240 (k) +vig (kK + 1) )

where 1 <i<m, 1 <d<D, A\, A are the uniform ran-
dom numbers, 7; and 7y are the positive acceleration coef-
ficients, respectively. In this paper, let the fitness function of
PSO be the objective function of SVM and the fitness value
be the error of training, and the number of particles is 5. The
dimension of the particle is 2, and they represent parameter o
in the RBF kernel function and the soft margin coefficient c,
respectively. Set w = 1,17, = 1o = 1.5. The range of o, ¢, and
viq (k) is between 10~2 and 10°. From Fig. 2, we can see that
the results of iteration have no change after about 55 genera-
tions. Then, we get the best parameters o = 4.35, ¢ = 66.205.

The algorithm procedure is given as follows:

Step 1: Initialize all particles including the initial positions
and speeds;

Step 2: Calculate the fitness value of each particle i;

Step 3: For each particle, update P;(k) and P, (k) according
to the fitness values;

Step 4: After each update of parameter c, initialize it by
the probability of 0.1 to make the particles out of the previous
optimal value and search in a larger space;
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Fig.2. Curve of fitness values in PSO.

Step 5: Update X, (k) and V;(k) according to the (8) and
9):

Step 6: When reach the maximal times of generation that
we set before, the program is terminated.

V. FORECASTING RESULTS AND DISCUSSIONS

For the unsteady, periodic and nonlinear relationship be-
tween the input variables and the output variables, we present
multiclass SVM model for predicting the types of weather.
The variables that preprocessed by PCA are viewed as the final
input of the SVM model for training. The types of weather,
which is sunny, foggy, cloudy or rainy, are viewed as the output
of the SVM model. The training set and the testing set are
shown in Table II.

TABLE II
TRAINING SET AND TESTING SET OF SAMPLES
Sunny Foggy Cloudy or Total
samples samples rainy samples samples
Training set 153 36 26 215
Testing set 104 25 21 150

Fig.3 shows that there exists relations between the output
power of the PV power system and the types of weather.
The relations are not linearly separable. SVM is adaptable
to dealing with the nonlinear situation, while the traditional
methods usually do not work in such situation.

1N
w

I ' —-Sunny

= Foggy .
~<Cloudy or rainy

[ i8]

J—
w

<
[

Output power of PV power station (kW)

0
06:00 09:00 12:00

Time (h)

15:00 18:0C

Fig.3. Relations between the output power and the types of weather.

Table IIT shows that the linear kernel function has higher
accuracy in cloudy or rainy samples but lower accuracy in the

other samples. The homogeneous polynomial kernel function
has higher accuracy in foggy samples but lower accuracy in
the other samples. The non-homogeneous polynomial kernel
function has higher accuracy in sunny samples, and has lower
accuracy in the other samples. Thus, the RBF kernel is suitable
for this question. Its training time is shorter and its accuracy
is higher.

We took three principal components whose total contribu-
tion rate was over 85 %. The principal components have no
physical meanings, because each principal component (PC)
is a linear combination of some input variables. The testing
samples expressed by three principal components are shown
in Fig. 4. After prediction based on multiclass SVM with RBF
kernel, they are shown in Fig.5. We can see that the sunny
samples almost have no change, except for few samples. For
example, a few points in Fig. 4 have changed their identifica-
tion marks, which are shown in Fig.5. This leads to the error
of classification. The number of changed identification marks
in the cloudy or rainy samples is very small. Compared with
the others, the number of changed identification marks in the
foggy samples is the most.
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Fig.4. Testing samples before prediction.
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Fig.5. Testing samples after prediction.

We select one day for the test samples with the aim of
observing the prediction results. For example, Fig.6 shows
the original samples on May 26, 2015, while Fig.7 shows
the prediction results of these samples. These samples have
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TABLE III
TRAINING AND TEST RESULTS WITH MULTICLASS SVM
Kernel Number of Training Testing Accuracy of Accuracy of Accuracy of Total
function support vectors time (s) time (s) sunny (%) foggy (%) cloudy or rainy (%) accuracy (%)
Linear 205 102.746 0.062 30.77 32 90.48 39.33
Homogeneous polynomial 215 17003 0.062 25.96 56 14.29 29.33
Non-homogeneous polynomial 210 15670 0.066 97.12 4 4.76 68.67
RBF 146 0.9778 0.049 95.19 60 90.48 88.67

small changes. For example, the dot pointed by the arrow in
Fig. 6 changes its identification mark, which is shown in Fig. 7.
Fig. 8 shows the detailed prediction results in every hour. In
the weather type of Fig. 8, the number 1 represents sunny, 2
represents foggy, and 3 represents cloudy or rainy.

o Sunny
+ Foggy

\]0 /20 PC1
Fig.6. Original samples on May 26, 2015.
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Fig.7. Prediction results on May 26, 2015.
—®— The former
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Q
(=9
=
E 20—o—0 ——— |
Z 1t ——eo—0o—o— 3
06:00 09:00 12:00 15:00 18:00
Time (h)
Fig.8. Weather prediction results on May 26, 2015.

Table IV shows the error matrix of classification. From
Table IIT and Table IV, we can see that the accuracy is 95.19 %
in sunny and 90.48 % in cloudy or rainy. In foggy samples, the

accuracy is 60.00 % and the prediction accuracy is lower than
the others. The errors maybe caused by some random factors
or the factors that we were not considered about. The total
accuracy is 88.67% and the approach shows the promising
results.
TABLE 1V
ERROR MATRIX OF CLASSIFICATION BASED ON MULTICLASS
SVM WiTH TBF KERNEL

Sunny Foggy Cloudy or rainy
Sunny 99 5 0
Foggy 10 15 0
Cloudy or rainy 0 2 19

Facing with the fierce marketing competition among the
PV power enterprises, it is important that how to reduce
the production cost. This paper proposed a novel method
for predicting the types of weather based on the PV power
data and partial meteorological data. It can replace weather
instrument in the PV power system and save lots of money.

1) Because the SVM model was based on the data in May,
we can use this model to predict the weather whose date is in
May of each year or is close to May (the nearer, the better).
References [13] and [14] show the PV power output prediction
of one day ahead. If we predicted the weather whose date was
far from the date in which we collected the data, it would
cause a larger error. Then, a new SVM model should be built
based on the data near these dates.

2) In order to improve the accuracy, we utilized partial
weather data during the prediction. These meteorological data
can be measured with much less cost than the cost of weather
measurement.

3) The SVM models which we built can aid the fault
detection, but we can determine neither the final result of the
PV system’s state or the type of fault, nor the location of
fault. The information of other aspects is needed to make the
further decision. This content is not the focus of our research
and maybe the goal of our next research.

4) The method can also be applied to other classified predic-
tion and fault detection problems with unsteady, periodic and
nonlinear characteristic, such as the wind power generation
field. It has good prospect of the application and economy.
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