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Sampled-data Observer Design for a Class of
Stochastic Nonlinear Systems Based on the

Approximate Discrete-time Models
Xinxin Fu, Yu Kang, Senior Member, IEEE, and Pengfei Li

Abstract—In this paper, we studied the approximate sampled-
data observer design for a class of stochastic nonlinear systems.
Euler-Maruyama approximation was investigated in this paper
because it is the basis of other higher precision numerical
methods, and it preserves important structures of the nonlinear
systems. Also, the form of Euler-Maruyama model is simple
and easy to be calculated. The results provide a reference
for sampled-data observer design method for such stochastic
nonlinear systems, and may be useful to many practical control
applications, such as tracking control in mechanical systems. And
the effectiveness of the approach is demonstrated by a simulation
example.

Index Terms—Approximation model, exponentially bounded,
sampled-data observer, stochastic nonlinear.

I. INTRODUCTION

THE state observer design is always an interesting issue
of control theory and engineering application, especial-

ly for stochastic nonlinear systems, due to its nonlinearity
and stochastic disturbance [1]−[3]. Sampled-data observer
for stochastic nonlinear systems can be used in computer
controlled systems while some states are not convenient to
be measured directly, such as the speed observer based on
position measurements [4], [5]. This can reduce cost and
improve reliability of systems by replacing some sensors [6].
Usually, sampled-data observer is designed based on the exact
discrete-time model of original systems. Actually, the exact
discrete-time model for continuous-time stochastic nonlinear
systems is impossible to be obtained in most cases. Designing
a sampled-data observer based on the approximate discrete-
time models for original systems is a practical and effective
method, which has become more and more popular [7]−[10].
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Controller design method based on approximate discrete-
time plant models was pursued in many control applications,
including but not limited to input-to-state stabilization [11],
optimal control [12], sampled-data observer design [7], re-
ceding horizon control [13], [14] and filtering [15]. Stochas-
tic differential equations (SDEs) play a significant role in
the description and analysis of a lot of practical systems.
Compared with ordinary differential equations and partial
differential equations, SDEs are far more difficult to be solved.
On the other hand, it can be relatively easy to simulate such
systems using computer-based algorithms such as the Monte
Carlo method. The Euler-Maruyama method obtained a lot
of attention and research during the past decades, including
the construction method, convergence, stability and so on
[16]−[19]. In recent years, many modified Euler-Maruyama
methods for various stochastic systems have been researched
and developed, as well as their convergence, stability and
convergence rates [20]−[24].

It is worth to point out that stochastic differential equations
(SDEs) play a significant role in the description and analysis
of a lot of practical systems, for example, automatic control
systems, financial systems, biological systems and mechanical
systems. To the best of the authors’ knowledge, sampled-data
observer design for a class of stochastic nonlinear systems
based on their approximate discrete-time models is still an
open problem. In this paper, we mainly focus on the ve-
locity observation and tracking control problem of mechan-
ical systems and motion control systems, for example, the
spring pendulum hung from a stochastically vibrating ceiling
which can be seen as a telescopic manipulator in a ran-
dom environment [25], [26]. Usually, the velocity observation
for mechanical systems or motion control systems is both
costly and mechanically difficult [27]. On the other hand,
the position transducer has been commonly used in industry,
so, more fast and convenient estimation for velocity with
tolerable accuracy is a significant and practical problem, which
motivates our work. Specifically, the sampled-data observer
which is designed based on the Euler-Maruyama model has
been studied to ascertain whether it is an effective state
observer for the exact model, or in what sense the design
guarantees the convergence when it is applied to the exact
models. We will analyze the convergence of observer error
when the approximate sampled-data observer servers as a state
observer for the exact system under some conditions. The
results provide a reference for sampled-data observer design
method for such stochastic nonlinear systems.

The remainder of this paper is organized as follows. In
Section II, a class of stochastic nonlinear systems and their
approximate sampled-data observers are introduced and the
problem under consideration is formulated, some necessary
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definitions and lemmas are given. The main results are then
discussed in Section III. The simulation results are shown in
Section IV and Section V concludes the paper.

Notations: Throughout this paper, R, R+ and N denote the
sets of real, nonnegative real and natural numbers, respectively.
Rn and Rn×m denote the n-dimensional real space and n×m-
dimensional real matrix space respectively. Given a matrix
A, denote by ∥A∥ its operator norm, and | · | denoting the
Euclidean norm in Rn. Let (Ω,F , {Ft}t≥0,P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the
usual conditions. Let w(t) = (w1(t), . . . , wm(t))T be an m-
dimensional Brownian motion defined on the probability s-
pace. E{·} is the mathematical expectation of random variable
to the given probability space. Also, let Lp

Ft
(Ω;Rn) denote

the family of all Ft-measurable random variables ξ : Ω → Rn

such that E|ξ|p < ∞. All the matrices are assumed to have
compatible dimensions if they are not explicitly specified.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let us consider a class of second-order stochastic nonlinear
mechanical systems with the following state-space form:

dx1 = f1(x1, x2)dt

dx2 = f2(x1, x2, u)dt+ g2(x1, x2)dw

y = l(x1) (1)

where x1, x2 ∈ Rn can usually be the generalized coordinates
and velocity vector, respectively; and u is a torque input;
y ∈ Rm is measurement output. The system is supposed to
be disturbed by white noise, where w is an r-dimensional
standard Wiener process.

The model can be presented in the following compact form:[
dx1

dx2

]
=

[
f1(x1, x2)

f2(x1, x2, u)

]
dt+

[
0

g2(x1, x2)

]
dw

which can be rewritten as

dx = f(x, u)dt+ g(x)dw

y = h(x) (2)

where x : = [xT
1 , x

T
2 ]

T , f(x, u) : = [fT
1 , fT

2 ]T , g(x) := [0,
gT2 ]

T , h(x) := l(x1). We need to design a sampled-data
observer for the velocity vector x2 for the original system (1),
while only the measurement output relative to position vector
is available. Many sampled-data observer design procedure is
based on the availability of the exact discrete-time model for
the original systems [28], [29]. It is not difficult to make the
exact discretization for linear systems directly. However, for
nonlinear systems, the exact discrete-time model is impossible
to obtain in most practical cases. As an effective and realistic
method, a family of approximate discrete-time models can be
obtained by different numerical integration methods. Some
researchers consider the approximate models for nonlinear
systems instead of exact discrete-time models [9], [10].

Assume that a zero-order holder with sampling period T
is applied to systems (2), and the state measurement x(k) :=
x(kT ) are available at sampling instants kT, k ∈ N. We can
write the solution of system (2) in discrete-time form that starts
from the initial state x(k) := x(kT ) while keeping the control
signal uT (t) = u(kT ) =: u(k), ∀t ∈ [kT, (k + 1)T ], k ∈ N,

which is said to be the exact discrete-time model of system
(2):

x(k + 1) = x(k) +

∫ (k+1)T

kT

f(x(τ), uT (k))dτ

+

∫ (k+1)T

kT

g(x(τ))dw(τ) , F e
T (x(k), uT (k))

y(k) = h(x(k)). (3)

In this paper, we consider the Euler-Maruyama approxima-
tion for stochastic differential (2):

xem(k + 1) = x(k) + f(x(k), uT (k)) · T + g(x(k)) ·∆w(k)

, F a
T (x(k), uT (k))

y(k) = h(x(k)) (4)

where ∆w(k) = w((k + 1)T )− w(kT ), k ∈ N, and we have
E{∆w(k)} = 0, E{(∆w(k))2} = T .

Based on the Euler-Maruyama model (4), a full state
sampled-data observer for system (2) can be formulated as:

x̂(k + 1) = x̂(k) + f(x̂(k), uT (k)) · T +KT (x̂(k), y(k))
(5)

where KT (x̂(k), y(k)) is the correction term, and satisfies
KT (x(k), y(k)) = 0 in general. Many useful observer design
methods for such a discrete-time stochastic system (4) can be
found in [1], [30], [31]. Now we aim to analyze under what
conditions the design (5) can be an effective state observer of
the exact model (3), or in what sense the design guarantees
the convergence when it is applied to the exact models. The
following lemma will be useful in the analysis of main results:

Lemma 1 [31]: Consider a discrete-time stochastic process
ξk, we say it is exponentially bounded in mean square sense
if there exists a Lyapunov function V (ξk) and real scalars
0 < c1 < c2, 0 < c3 < 1, λ ≥ 0, such that

c1∥ξk∥2 ≤ V (ξk) ≤ c2∥ξk∥2

E{V (ξk+1)} − V (ξk) ≤ −c3V (ξk) + λ. (6)

More specifically, we have

E{∥ξk∥2} ≤ c2
c1

∥ξ0∥2(1− c3)
k +

λ

c1c3
. (7)

III. CONVERGENCE ANALYSIS

In this section, we will analyze the convergence of observer
error when the approximate sampled-data observer (5) serves
as a state observer for the exact system (3). For our analysis,
we define the observer errors: e = x̂− x, ẽ = x̂− xem. Then,
we have the following definition:

Definition 1: We can say that the observer (5) is an
exponentially bounded observer for system (4) in mean square
sense, if there exist real scalars α1 ≥ 1, α2 > 0, λ ≥ 0, and
T ∗ > 0, such that for each T ∈ (0, T ∗], we have

E{∥ẽ(k)∥2} ≤ α1∥ẽ(0)∥2e−α2kT + λ. (8)

Before the main results about the convergence properties of
observer error e are given, we present the following lemma
firstly, which quantizes the model error between the exact
discrete-time model and its Euler-Maruyama model, as a
consistency condition in mean square.
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Lemma 2: For the exact discrete-time model (3) and its
Euler-Maruyama model (4), if there exist constants L∗ > 0
and K > 0, such that for all x, y ∈ Rn, the following hold

|f(x, uT (x))−f(y, uT (y))|≤L∗|x− y| (9)
|f(x, uT (x))−f(y, uT (x))| ∨ |g(x)−g(y)|≤K|x−y| (10)

then, there exist positive constants c5 > 0, T ∗ > 0 such that
for all T ∈ (0, T ∗), the one-step consistency between the two
models can be presented as following inequality:

E
∥∥F e

T (x, uT (x))− F a
T (x, uT (x))

∥∥2 ≤ c5T E∥x∥2. (11)

Proof: Let x(t;x0, t0) be the solution of system (2), then
we can write the following equation on t0 ≤ t ≤ T ′:

x(t;x0, t0) = x0 +

∫ t

t0

f(x(τ), uT (τ))dτ +

∫ t

t0

g(x(τ))dw(τ).

(12)

Consider the solution (2), we can write for t ∈ [t0, t0 + T ]
that,

E∥x(t)∥2 =E
{
|x(t0)|2 + 2|x(t0)||

∫ t

t0

f(x(τ), u)dτ |

+ |
∫ t

t0

f(x(τ), u)dτ |2 + |
∫ t

t0

g(x(τ))dω(τ)|2
}

≤E
{
|x(t0)|2 + 2|x(t0)||

∫ t

t0

L∗|x(τ)|dτ |

+ |
∫ t

t0

f(x(τ), u)dτ |2 + |
∫ t

t0

g2(x(τ))dτ |
}

(13)

then by Cauchy inequality (or Jensen inequality), we have

|
∫ t

t0

f(x(τ), u)dτ |2 ≤ L∗2T

∫ t

t0

|x(τ)|2dτ.

Notice that 2|x(t0)||x(τ)| ≤ |x(t0)|2 + |x(τ)|2, so

E∥x(t)∥2 ≤E
{
|x(t0)|2 + L∗

∫ t

t0

(|x(t0)|2 + |x(τ)|2)dτ

+ L∗2T

∫ t

t0

|x(τ)|2dτ +K2

∫ t

t0

|x(τ)|2dτ
}

≤E
{
(1 + L∗T )|x(t0)|2

+ (L∗ + L∗2T +K2)

∫ t

t0

|x(τ)|2dτ
}
. (14)

By the Gronwall inequality, we can obtain that

E ∥x(t)∥2 ≤ e(2L
∗+L∗2T+K2)T ∥x(t0)∥2, t ∈ [t0, t0 + T ].

According to Hölder inequality, when p ≥ 1, we have(
E∥x(t)∥

)p ≤ E
{
∥x(t)∥p

}
.

Thus we can write(
E∥x(t)∥

)2 ≤ e(2L
∗+L∗2T+K2)T ∥x(t0)∥2

⇒E∥x(t)∥ ≤ M∥x(t0)∥, t ∈ [t0, t0 + T ], ∀x(t0), t0 ≥ 0

where M := e(2L
∗+L∗2T∗+K2)T∗/2.

Now, let us consider one-step model error in mean square
between the exact discrete-time model (3) and its Euler-
Maruyama model (4), named one-step consistency:

E
∥∥F e

T (x, uT (x))− F a
T (x, uT (x))

∥∥2
=E

∥∥∥ ∫ T

0

[
f(x(τ), uT )− f(x, uT )

]
dτ

+

∫ T

0

[
g(x(τ))− g(x)

]
dω(τ)

∥∥∥2
≤E

∣∣∣∣∣(
∫ T

0

[
f(x(τ), uT )− f(x, uT )

]
dτ

)2
∣∣∣∣∣

+ E

∣∣∣∣∣(
∫ T

0

[
g(x(τ))− g(x)

]
dω(τ)

)2
∣∣∣∣∣

≤K(M − 1)2(T + 1)T E ∥x∥2 (15)

denote c5 := K(M − 1)2(T ∗ + 1) > 0, which completes the
proof. �

Now we aim to analyze under what conditions the design
(5) can be an effective state observer of the exact model (3), or
in what sense the design guarantees the convergence when it is
applied to the exact models. To state our results conveniently,
we have the following assumption:

Assumption 1: For each x0 ∈ Rn, there exist a compact
set X ∈ Rn and a positive number ∆x > 0, T ∗ > 0 such
that for T ∈ (0, T ∗] and t > 0, k > 0, we have x(t) ∈ X,
∥x(k)∥2 ≤ ∆x.

Remark 1: Assumption 1 is satisfied by many engineering
applications, e.g., pose estimation of a robot moving on earth’s
surface, state estimation for aircraft guidance and control, etc
[3].

Theorem 1: For any compact set X ∈ Rn and T ∗ > 0,
suppose that the approximate sampled-data observer (5) is an
exponentially bounded observer for system (4) in mean square,
and the model error between the exact discrete-time model (3)
and its Euler-Maruyama model (4) satisfies the consistency
condition (11), then the observer error between (5) and (3) is
exponentially bounded in mean square.

Proof: Consider the stochastic nonlinear system (2) and
sampled-data observer (5) designed based on its discrete-time
approximation (4). Let us define new variables: e = x̂−x, ẽ =
x̂− xem. We have

e(k + 1) = x̂(k + 1)− xem(k + 1) + xem(k + 1)− x(k + 1)

= ẽ(k + 1) + F a
T (x, uT (x))− F e

T (x, uT (x)).

Denoting RT (x) = F a
T (x, uT (x))− F e

T (x, uT (x)), we can
obtain that ∥RT (x)∥2 ≤ c5T∥x∥2.

Suppose that (5) is an exponential bounded observer in
mean square for (4), then we have

E {∥ẽ(k)∥2} ≤ α1∥ẽ(0)∥2e−α2kT + λ

where α1 ≥ 1, α2 > 0, λ ≥ 0, and assume there exists a
T ∗ > 0, such that for each T ∈ (0, T ∗], we have

e−α2T <
1

2
. (16)
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Without loss of generality, the positive-definite function can
be chosen as V (x) = ∥x∥2, then, we can write

V (e(k + 1))− V (e(k))

= ∥e(k + 1)∥2 − ∥e(k)∥2

≤ 2∥ẽ(k + 1)∥2 + 2∥RT (x)∥2 − ∥e(k)∥2

≤− (1− 2e−α2T )∥e(k)∥2 + 2c5T∆x + 2(1− e−α2T )λ

thus, we have

E{V (e(k + 1))} − V (e(k)) ≤ −c3V (e(k)) + λ∗

where c3 := 1 − 2e−α2T ∈ (0, 1), γ∗ := 2c5T∆x + 2(1 −
e−α2T )λ ≥ 0.

It can be obtained directly that

E{∥e(k)∥2} ≤ c2
c1

∥e(0)∥2(1− c3)
k +

λ∗

c1c3
(17)

hence it can be said that the observer error it is exponentially
bounded in mean square. �

IV. NUMERICAL SIMULATION

Second-order stochastic nonlinear equation has been used to
describe and analyse many practical, especially financial and
motion control systems. For simplicity, let us consider the Van
der Pol oscillator [8] driven by Wiener processes:

dx1 = x2dt

dx2 = [−x1 + ϵ(1− x2
1)x2]dt+ 0.5dw

y = x1 (18)

where ϵ = 0.8. Let x = [x1, x2]
T ,

f(x) =

[
x2

−x1 + ϵ(1− x2
1)x2

]
.

We have the Euler-Maruyama approximations

x[k + 1] = x(k) + f(x) · T + g(x)∆w

y[k] = [1, 0]x[k] (19)

and the approximate sampled-data observer:

x̂(k + 1) = x̂(k) + f(x̂(k), uT (k)) · T +KT (x̂(k), y(k)).

Let

l1(x̂, y) = (5− ϵ(1− y2[k]))T

l2(x̂, y) = (5− ϵ(x̂1[k] + y[k])x̂2[k]

+ (5 + ϵ(1− y2[k]))ϵ(1− y2[k]))T

and

KT (x̂(k), y(k)) =

[
l1(x̂, y)
l2(x̂, y)

]
(y − x̂1[k]).

Let the system initial state x[0] = [1, 0]T , observer initial
state z[0] = [0, 1]T . Take the value of T as 0.03, 0.1 and 0.3,
respectively, and the simulation results are shown in Figs. 1–3.
Through running the simulation, the results indicate that the
error of sampled-data observer grows as the sampling period
increases.

Fig. 1: The output of observer with T = 0.03.

Fig. 2: The output of observer with T = 0.1.

Fig. 3: The output of observer with T = 0.3.

V. CONCLUSION

In this paper, we have studied the approximate sampled-data
observer design for a class of stochastic nonlinear systems.
Euler-Maruyama approximation was investigated in this paper
because it is the basis of other higher precision numerical
methods, and it preserves important structures of the nonlinear
systems. Also, the form of Euler-Maruyama model is simple
and easy to be calculated. The results provide a reference
for sampled-data observer design method for such stochastic
nonlinear systems, and may be useful to many practical control
applications, such as tracking control in mechanical system-
s. We believe that more accurate numerical approximation
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method will bring better observer performance. Some further
questions like this will be studied in our future work.
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[7] M. Arcak and D. Nešić, “A framework for nonlinear sampled-data
observer design via approximate discrete-time models and emulation,”
Automatica, vol. 40, no. 11, pp. 1931−1938, Nov. 2004.

[8] H. Y. Jin, B. Q. Yin, Q. Ling, and Y. Kang, “Sampled-data observer
design for nonlinear autonomous systems,” in Proc. Chinese Control
and Decision Conf.. Guilin, China, 2009, pp. 1516−1520.

[9] H. Katayama and H. Aoki, “Straight-line trajectory tracking control for
sampled-data underactuated ships,” IEEE Trans. Control Syst. Technol.,
vol. 22, no. 4, pp. 1638−1645, Jul. 2014.

[10] H. Beikzadeh and H. J. Marquez, “Multirate observers for nonlin-
ear sampled-data systems using input-to-state stability and discrete-
time approximation,” IEEE Trans. Automat. Control, vol. 59, no. 9,
pp. 2469−2474, Sep. 2014.

[11] D. Nesic and D. S. Laila, “A note on input-to-state stabilization
for nonlinear sampled-data systems,” IEEE Trans. Automat. Control,
vol. 47, no. 7, pp. 1153−1158, Jul. 2002.
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