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Robust Tracking Control for Self-balancing Mobile
Robots Using Disturbance Observer

Mou Chen, Member, IEEE

Abstract—In this paper, a robust tracking control scheme
based on nonlinear disturbance observer is developed for the
self-balancing mobile robot with external unknown disturbances.
A desired velocity control law is firstly designed using the
Lyapunov analysis method and the arctan function. To improve
the tracking control performance, a nonlinear disturbance ob-
server is developed to estimate the unknown disturbance of the
self-balancing mobile robot. Using the output of the designed
disturbance observer, the robust tracking control scheme is
presented employing the sliding mode method for the self-
balancing mobile robot. Numerical simulation results further
demonstrate the effectiveness of the proposed robust tracking
control scheme for the self-balancing mobile robot subject to
external unknown disturbances.

Index Terms—Disturbance observer, robust tracking control,
self-balancing mobile robot, sliding mode control (SMC).

I. INTRODUCTION

AS it is well known, stabilization of non-holonomic
wheeled mobile robots has received much attention due

to their wide usefulness in various applications [1]. Moreover,
the tracking control scheme of the wheeled mobile robot
has been extensively studied in the past decades [2], [3].
The self-balancing mobile robot is a special kind of wheeled
mobile robots which form a class of nonlinear, coupled and
under-actuated systems. As a result, the modeling, control
and application problems of the self-balancing mobile robot
have received increasing attention from researchers and have
been widely investigated [4], [5]. Recently, some various and
efficient control schemes have been proposed for the self-
balancing mobile robot. In [6], the modeling and control de-
sign were studied for self-balancing two-wheeled vehicles. An
adaptive backstepping self-balancing control was developed
for a two-wheeled electric scooter in [7]. In [8], the application
of fuzzy control scheme was studied for a self-balancing
two-wheeled vehicle. Adaptive neural network control was
proposed for a self-balancing two-wheeled scooter in [9]. In
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[10], an adaptive robust self-balancing and steering control was
developed for a two-wheeled human transportation vehicle.
Neural network-based motion control was proposed for an
under-actuated wheeled inverted pendulum model in [11]. In
[12], a robust adaptive motion/force control was presented for
wheeled inverted pendulums.

Due to the stronger robustness against large uncertainties,
nonlinearities, and bounded external disturbances, the sliding
mode control (SMC) has been widely applied in the control of
uncertain nonlinear systems [13]. Generalized SMC was pro-
posed for multi-input nonlinear systems in [14]. In [15], a non-
singular terminal SMC was proposed for the nonlinear second-
order systems with input saturation. Up to now, the SMC has
been applied to various practical systems [16]. In [17], a robust
multi-input and multi-output (MIMO) water level control was
developed for interconnected twin-tanks using second order
SMC. A higher-order sliding mode three-axis solar pressure
satellite attitude control system was designed in [18]. In [19],
a trajectory tracking SMC was designed for under-actuated
autonomous underwater vehicles. Extended state observer-
based adaptive SMC was studied for the differential-drive
mobile robot with uncertainties in [20]. In [21], a sliding-
mode velocity control was designed for a two-wheeled self-
balancing vehicle. Although different SMC schemes have been
extensively studied in the practical systems, the SMC needs to
be further developed for the self-balancing mobile robot and
the dynamic information of the unknown disturbance should
be fully utilized.

To further improve the disturbance attenuation performance,
the disturbance observer can be introduced to handle the
unknown disturbance for the self-balancing mobile robot.
Since the disturbance compensation method using disturbance
observer has more robustness against unknown disturbances
than the conventional control methods, many efficient dis-
turbance observer based control (DOBC) schemes have been
developed in the recent decades [22]−[29]. The disturbance
attenuation and rejection problem was studied for a class
of MIMO nonlinear systems using the DOBC technique in
[26]. In [29], a robust autopilot design was proposed for
bank-to-turn missiles using disturbance observers. Now, the
disturbance observer has been introduced to design the SMC
in order to further enhance the robust control performance.
For uncertain nonlinear systems with disturbances, the DOBC
scheme using terminal SMC was developed to improve the
anti-disturbance ability [30]. In [31], a SMC scheme was
designed for a class of uncertain nonlinear systems based on
disturbance observer to tackle system uncertainty and external
disturbance. A prediction-accuracy-enhanced continuous-time
model predictive control was proposed for disturbed systems
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via a disturbance observer in [32]. At the same time, some dis-
turbance observer based control schemes have been developed
for various robots [33]. In [34], a nonlinear DOBC design was
given for a robotic exoskeleton incorporating fuzzy approxi-
mation. Nonlinear disturbance observer-based dynamic surface
control was proposed for mobile wheeled inverted pendulum in
[35]. In [36], a robust tracking control scheme was developed
for wheeled mobile robots with skidding and slipping using
fuzzy disturbance observer. However, to improve the tracking
performance, the robust tracking control scheme based on the
disturbance observer is needed to be further refined for the
self-balancing mobile robot with unknown disturbances.

Inspired by the above discussion, a disturbance observer
based robust tracking control scheme is proposed for self-
balancing mobile robot with unknown disturbances in this
paper. The organization of this paper is as follows. Sec-
tion II details the problem formulation and preliminaries.
The disturbance observer based robust tracking controller is
designed in Section III. Numerical simulation studies are
presented in Section IV to demonstrate the effectiveness of the
developed robust tracking control method of the self-balancing
mobile robot with unknown disturbances, followed by some
concluding remarks in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Nonlinear Model of Self-balancing Mobile Robots

A self-balancing mobile robot made by Googol Technology
Consulting Inc is employed in this paper. In general, the pitch
channel and the yaw channel are coupled for the studied
self-balancing mobile robot. To facilitate designing of the
tracking control scheme of the self-balancing mobile robot,
we introduce the decoupling matrix to render the pitch channel
and the yaw channel decouple [37]. Considering the external
disturbance forces, the nonlinear dynamic model of self-
balancing mobile robot is given as follows [37]:

˙̄x1 = x̄2

˙̄x2 = F (x̄) + G(x̄)u + D (1)

where x̄1 = [x, θ, δ]T , x̄2 = [ẋ, θ̇, δ̇]T and x̄ = [x̄T
1 , x̄T

2 ]T . x is
the linear displacement of chassis, θ is the pitch angle and δ is
the yaw angle of self-balancing mobile robot, respectively. u =
[Cθ, Cδ]T is the control input vector. Cθ and Cδ are the pitch
torque and the yaw torque, respectively. D = [d1, d2, d3]T

is the unknown external disturbance torque vector. F (x̄) =
[f1(x̄), f2(x̄), 0]T and G(x̄) = [g11(x̄), 0; g21(x̄), 0; 0, g32(x̄)]
are the system function vector and the control input matrix,
respectively. The detailed expressions of F (x̄) and G(x̄) are
given by [37]

B = M2
p L2 cos2 θ − (MpL

2 + Jp)
(

Mp +
2Jr

R2
+ 2Mr

)

f1 =
(M2

p gL2 sin θ cos θ − (MpL
2 + Jp)MpLθ̇ sin θ)

B
f2

=

(
M2

p L2θ̇2 sin θ cos θ −MpgL sin θ
(
Mp + 2Jr

R2 + 2Mr

))

B

g11 =
−2

(
MpL

2 + Jp + MpLR cos θ
)

RB

g21 = −2

(
MpL cos θ +

(
Mp + 2Jr

R2 + 2Mr

)
R

)

RB

g32 =
2D̄(

MrR +
Jr

R

)
D̄2 + 2JδR

where Mp is the mass of self-balancing mobile robot. L is
the distance between the chassis and the center of gravity of
robot body. Jp is the moment of inertia of the body around the
center of gravity. Jr is the equivalent rotary inertia of wheel,
speed reducer and motor rotor. R is the wheel radius. Mr

is the wheel mass. g is the acceleration of gravity. D̄ is the
distance between two wheels and Jδ is the moment of inertia
of the vehicle body around the Y axis.

From (1), we know that the self-balancing mobile robot
is an under-actuated system. Since the pitch channel and the
yaw channel are decoupled by using the decoupling matrix,
the system (1) can be transformed to two subsystems. One
subsystem can be described as

Ẋ = φ(X) + Γ(X)Cθ + D0 (2)

where X = [ẋ, θ̇]T , φ(X) = [f1, f2]T , Γ(X) = [g11, g21]T

and D0 = [d1, d2]T .
Another subsystem is expressed as

δ̈ = g32Cδ + d3. (3)

For the studied self-balancing mobile robot, the two wheels
are coaxial and they are driven by two DC motors in differ-
ential mode. The nonholonomic self-balancing mobile robot
is considered in this paper. It is always assumed in the
literature that the system is subject to a “pure” rolling without
slipping constraint. Then, the non-holonomic constraints of
self balancing vehicle are as follows [38]:

y cos δ − x sin δ = 0

x cos δ + y sin δ +
D̄δ

2
= Rψ1

x cos δ + y sin δ − D̄δ

2
= Rψ2 (4)

where x and y are positions in the transverse and vertical
coordinates. ψ1 and ψ2 are angular velocities of the left and
right wheels, respectively.

To design the robust tracking control scheme, we define the
pose of the self-balancing mobile robot as q0 = [x, y, δ]T .
Then, we have [38]

q̇0 =




ẋ
ẏ

δ̇


 =




cos δ 0
sin δ 0

0 1




[
v
ω

]
(5)

where v = R(ψ̇1 + ψ̇2)/2 and ω = R(ψ̇1 − ψ̇2)/2. v is the
forward speed of the chassis and ω is the yaw rate of self-
balancing mobile robot.
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Define the reference pose as qr = [xr, yr, δr]T and the
reference velocity is defined as zr = [vr, ωr]T . The reference
trajectory is chosen as [38]

q̇r =




ẋr

ẏr

δ̇r


 =




cos δr 0
sin δr 0

0 1




[
vr

ωr

]
. (6)

A smooth velocity control law zc = fc(qe, zr) can be
designed according to limt→∞ qe = 0 where qe is the tracking
error and is defined as follows [38]:

qe =




xe

ye

δe


 =




cos δ sin δ 0
− sin δ cos δ 0

0 0 1







xr − x
yr − y
δr − δ


 .

(7)
Then, we can obtain [38]

q̇e =




ẋe

ẏe

δ̇e


 =




vr cos δe − vc + yeωc

vr sin δe − xeωc

ωr − ωc


 (8)

where vc is the desired forward speed of the chassis and ωc

is the desired yaw rate of self-balancing mobile robot.

B. Design of Desired Velocity Control Law

A virtual velocity control should be designed to track
the kinematic model of the self-balancing mobile robot (1).
Namely, under the given virtual velocity control, qe is stable
under the assumption vr > 0.

To design the desired velocity control law zc, we assume
that the yaw angle δ of self-balancing mobile changes in the
interval (−π/2, π/2) and define a new variable as [39]

x̄e = xe − λ1ϕ(ωc)ye (9)

where λ1 is a positive design parameter, and ϕ(ωc) =
arctan(ωc). From (9), we can know xe → 0 when x̄e → 0
and ye → 0.

The designed desired velocity control law should guarantee
the convergence of the tracking error qe. To obtain the de-
sired velocity control law, we choose the following Lyapunov
function candidate:

V0 =
1
2
x̄2

e +
1
2
y2

e + 2
(

1− cos
δe

2

)
. (10)

Then, we obtain

V̇0 = x̄e ˙̄xe + yeẏe + sin
δe

2
δ̇e. (11)

Invoking (8) and (9) yields

˙̄xe = ẋe − λ1ϕ̇(ωc)yeω̇c − λ1ϕ(ωc)ẏe

= vr cos δe − vc + yeωc − λ1ye

1 + ω2
c

ω̇c

− λ1ϕ(ωc)(vr sin δe − xeωc). (12)

Considering (9) and (12), we have

x̄e ˙̄xe = x̄evr cos δe − x̄evc + yexeωc

− λ1ϕ(ωc)y2
eωc − λ1x̄eye

1 + ω2
c

ω̇c

− λ1ϕ(ωc)vrx̄e sin δe + λ1ϕ(ωc)x̄exeωc. (13)

Substituting (8) and (13) into (11), we obtain

V̇0 = x̄evr cos δe − x̄evc − λ1ϕ(ωc)y2
eωc − λ1x̄eye

1 + ω2
c

ω̇c

− λ1ϕ(ωc)vrx̄e sin δe + λ1ϕ(ωc)x̄exeωc

+ yevr sin δe + sin
δe

2
(ωr − ωc). (14)

Considering the following fact

sin δe = 2 sin
δe

2
cos

δe

2
(15)

we have

V̇0 = x̄evr cos δe − x̄evc − λ1ϕ(ωc)y2
eωc − λ1x̄eye

1 + ω2
c

ω̇c

− λ1ϕ(ωc)vrx̄e sin δe + λ1ϕ(ωc)x̄exeωc

+ sin
δe

2

(
ωr − ωc + 2yevr cos

δe

2

)
. (16)

According to (16), the desired velocity control law is
designed as

zc =
[

ωc

vc

]
(17)

where ωc = ωr + 2yevr cos(δe/2) + β1 sin(δe/2) and vc =
β2x̄e + vr cos δe − λ1yeω̇c/(1 + ω2

c ) − λ1ϕ(ωc)vr sin δe +
λ1ϕ(ωc)xeωc. β1 > 0 and β2 > 0 are positive design
constants.

Substituting (17) into (16) yields

V̇0 = −β1 sin2 δe

2
− β2x̄

2
e − λ1ϕ(ωc)y2

eωc. (18)

According to the property of the arctan function and the
definition of ϕ(ωc), we know that

−ϕ(ωc)ωc ≤ 0. (19)

Thus, we have

−λ1ϕ(ωc)y2
eωc ≤ 0. (20)

Invoking (18) and (20), we have

V̇0 ≤ −β1 sin2 δe

2
− β2x̄

2
e ≤ 0. (21)

From (21), we can obtain that x̄e → 0, ye → 0 and δe → 0
when t → ∞. In accordance with (9), we know xe → 0
when x̄e → 0 and ye → 0. Namely, the pose of self-balancing
mobile robot can track the reference pose qr under the desired
velocity control law (17).

Now, the control object of this paper is to design the torque
input Cθ and Cδ such that v → vc, ω → ωc and θ → 0 as t
→ ∞.
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III. ROBUST TRACKING CONTROL BASED ON NONLINEAR
DISTURBANCE OBSERVER

In this section, the nonlinear disturbance observer is firstly
designed. Then, the robust tracking control scheme consider-
ing the unknown disturbance will be designed for the self-
balancing mobile robot. To proceed with the design of dis-
turbance observer based tracking control scheme for the self-
balancing mobile robot (1), the following lemma is required:

Lemma 1 [40]: For bounded initial conditions, if there exists
a C1 continuous and positive definite Lyapunov function V (x)
satisfying γ1(‖x‖) ≤ V (x) ≤ γ2(‖x‖), such that V̇ (x) ≤
−κV (x) + c, where γ1, γ2 : Rn → R are class K functions, κ
and c are positive constants, then the solution x(t) is uniformly
bounded.

A. Nonlinear Disturbance Observer Design

In order to further enhance the robustness performance of
tracking control scheme, the nonlinear disturbance observer
can be developed to estimate the system unknown disturbance
D(t). From a practical view, we can assume

‖Ḋ‖ ≤ ε1, ‖D̈‖ ≤ ε2 (22)

where ε1 and ε2 are positive constants. Throughout the paper,
‖ · ‖ denotes the 2-norm of a vector.

To estimate the unknown disturbance of the self-balancing
mobile robot, the nonlinear disturbance observer is designed
as [41], [42]

D̂ = ξ1 + K1(x̄2)

ξ̇1 = −L1(x̄2)(F (x̄) + G(x̄)u + D̂) + ˆ̇D
ˆ̇D = ξ2 + K2(x̄2)

ξ̇2 = −L2(x̄2)(F (x̄) + G(x̄)u + D̂) (23)

where D̂ and ˆ̇D are the estimations of the compound distur-
bance D and the derivation of the compound disturbance Ḋ,
respectively. K1(x̄2) and K2(x̄2) are the design parameters of
the developed nonlinear disturbance observer. The design pa-
rameters L1(x̄2) and L2(x̄2) should satisfy L1(x̄2) = ∂K1(x̄2)

∂x̄2

and L2(x̄2) = ∂K2(x̄2)
∂x̄2

. ξ1 and ξ2 are the intermediate state
variables of the developed nonlinear disturbance observer.

Define D̃ = D − D̂ and ˜̇D = Ḋ − ˆ̇D. Invoking (23), we
have

˙̃D = Ḋ − ˙̂
D = Ḋ − ξ̇1 − L1(x̄2) ˙̄x2

=− L1(x̄2)D̃ + ˜̇D (24)

˙̇̃
D = D̈ − ˙̇̂

D = D̈ − ξ̇2 − L2(x̄2) ˙̄x2

=− L2(x̄2)D̃ + D̈. (25)

Define ρ = [D̃T , ˜̇DT ]T . Invoking (24) and (25) yields

ρ̇ = L(x̄2)ρ + ΥD̈ (26)

where L(x̄2) =
[ −L1(x̄2) I3

−L2(x̄2) 0

]
and Υ =

[
0
I3

]
.

In order to analyze the stability of the disturbance estimate
error ρ, the Lyapunov function candidate is chosen as [33]

Vo =
1
2
ρT ρ. (27)

Differentiating Vo and invoking (26), we have

V̇o = ρT ρ̇ = ρT (L(x̄2)ρ + ΥD̈)

≤ ρT (L(x̄2) + 0.5‖Υ‖2I6)ρ + 0.5ε2
2. (28)

The above nonlinear disturbance observer design procedure
for the self-balancing mobile robot can be summarized in the
following theorem.

Theorem 1: Considering the self-balancing mobile robot
(1) with the unknown disturbance, the nonlinear disturbance
observer is designed according to (23). Then, the disturbance
estimate error D̃ is bounded for the developed nonlinear
disturbance observer.

Proof: From (28), we know that the disturbance estimate
ρ is bounded according to Lemma 1 if the design parameters
L1(x̄2) = ∂K1(x̄2)

∂x̄2
and L2(x̄2) = ∂K2(x̄2)

∂x̄2
are chosen such

that L(x̄2) + 0.5‖Υ‖2I6 is a negative definite matrix. ¥
Remark 1: In our developed nonlinear disturbance observer,

the design function vectors K1(x̄2) and K2(x̄2) should be
carefully chosen to guarantee the convergence of the distur-
bance estimate error. In order to facilitate the analysis, the
design functions K1(x̄2) and K2(x̄2) can be chosen as the
linear function vectors to obtain the constant matrices L1 and
L2.

B. Tracking Control Scheme Design

Based on the output of the developed nonlinear disturbance
observer, the robust tracking control scheme can be designed
using the sliding mode control method.

Firstly, the robust tracking control scheme will be designed
for the first subsystem. Define

σ1 = ẋ− vc (29)

σ2 = θ̇ + λ2θ (30)

where λ2 > 0 is a design parameter.
The sliding mode surface of the first subsystem is chosen

as

σ = σ1 + λ3σ2 (31)

where λ3 > 0 is a design parameter.
Considering (2), we have

σ̇ = f1 + g11Cθ + d1 − v̇c

+ λ3(f2 + g21Cθ + d2 + λ2θ̇). (32)

According to (32), the robust tracking control scheme of the
first subsystem is designed as

Cθ =
−k1σ − k2sign(σ) + χ− d̂1 − λ3d̂2

g11 + λ3g21
(33)

where χ = −f1−λ3f2+v̇c+λ2λ3θ̇. k1 and k2 are the positive
design constants.
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Substituting (33) into (32) yields

σ̇ = −k1σ − k2sign(σ) + d1 − d̂1 + λ3(d2 − d̂2). (34)

Define d̃1 = d1 − d̂1 and d̃2 = d2 − d̂2. Then, we have

σ̇ = −k1σ − k2sign(σ) + d̃1 + λ3d̃2. (35)

From (35), we obtain

σσ̇ = −k1σ
2 − k2|σ|+ σd̃1 + λ3σd̃2

≤ −(k1 − 0.5− 0.5λ2
3)σ

2 − k2|σ|+ ‖ρ‖2. (36)

For the second subsystem, the sliding mode surface is
chosen as

s = ω − ωc (37)

where ω = δ̇.
Invoking (3) and (37) yields

ṡ = ω̇ − ω̇c = g32Cδ + d3 − ω̇c. (38)

Using the output of the nonlinear disturbance observer, the
robust tracking control scheme of the second subsystem is
designed as

Cδ =
−k3s− k4sign(s)− d̂3 + ω̇c

g32
(39)

where k3 and k4 are positive design constants.
Substituting (39) into (38) yields

ṡ = −k3s− k4sign(s) + d3 − d̂3. (40)

Define d̃3 = d3 − d̂3. Then, we obtain

ṡ = −k3s− k4sign(s) + d̃3. (41)

Considering (41), we have

sṡ = −k3s
2 − k4|s|+ sd̃3

≤ −(k3 − 0.5)s2 − k4|s|+ 0.5‖ρ‖2. (42)

The robust tracking control scheme design for the self-
balancing mobile robot with the unknown disturbance can be
summarized in the following theorem.

Theorem 2: Considering the self-balancing mobile robot
(1) with the unknown disturbance, the nonlinear disturbance
observer is designed according to (23) and the robust control
scheme is designed as (33) and (39). Then, the tracking error
is bounded under the developed disturbance observer based
robust tracking control scheme.

Proof: To analyze the closed-loop system stability, consider
the following Lyapunov function candidate:

V = Vo +
1
2
σ2 +

1
2
s2 =

1
2
σ2 +

1
2
s2 +

1
2
ρT ρ. (43)

Consider (28), (36) and (42). Differentiating V yields

V̇o = σσ̇ + sṡ + ρT ρ̇

≤− (k1 − 0.5− 0.5λ2
3)σ

2 − k2|σ|+ ‖ρ‖2
− (k3 − 0.5)s2 − k4|s|+ 0.5‖ρ‖2
+ ρT (L(x̄2) + 0.5‖Υ‖2I6)ρ + 0.5ε2

2

≤− (k1 − 0.5− 0.5λ2
3)σ

2 − (k3 − 0.5)s2

+ ρT (L(x̄2) + (1.5 + 0.5‖Υ‖2)I6)ρ + 0.5ε2
2

≤− κV + C (44)

where

κ = min




k1 − 0.5− 0.5λ2
3

k3 − 0.5
λmin(L(x̄2) + (1.5 + 0.5‖Υ‖2)I6)


 > 0 (45)

C = 0.5ε2
2 > 0. (46)

From (44), we know that all the closed-loop system signals
are bounded under the developed robust controller (33) and
(39) according to Lemma 1. Thus, the sliding mode surfaces
σ, s and the disturbance estimate error ρ are bounded. From
(29), (30), (31) and (37), we obtain that the self-balancing
mobile robot can track the desired trajectory under the effect
of unknown disturbance. ¥

IV. SIMULATION RESULTS

The simulation results are presented to illustrate the effec-
tiveness of the proposed disturbance observer based robust
tracking control scheme of the self-balancing mobile robot.
The used self-balancing mobile robot is produced by Googol
Technology Consulting Inc. The main parameters of the stud-
ied self-balancing mobile robot are given in Table I.

TABLE I
SYSTEM PARAMETERS OF THE SELF-BALANCING MOBILE ROBOT

Symbol Name Value

Mr Wheel mass 0.42 kg

Mp Car body mass 20.82 kg

R Wheel radius 0.09 m

L Distance between the chassis and the center 0.2 m

D̄ Distance between two wheels 0.438 m

In the simulation study, the unknown time-varying distur-
bances are considered as follows:

d1(t) = −0.2 sin(0.6t)Nm

d2(t) = −0.5 cos(0.8t)Nm

d3(t) = −0.3 sin(0.5t)Nm.

In the nonlinear disturbance observer design, the function
vectors K1(x) and K2(x) are chosen as K1(x) = [5ẋ, 5θ̇, 5δ̇]T

and K2(x) = [10ẋ, 5θ̇, 15δ̇]T . Thus, we can obtain L1 =
diag{5, 5, 5} and L2 = diag{10, 5, 15}. For the tracking
control scheme design, all the other design parameters are
chosen as λ1 = 0.185, λ2 = 5, λ3 = 0.85, β1 = 1,
β2 = 1, k1 = 10, k2 = 1, k3 = 10, k4 = 1. The
nonlinear disturbance observer is designed according to (23)
and the robust control scheme is designed as (33) and (39).
To illustrate the effectiveness of the proposed disturbance
observer based robust tracking control scheme, two cases are
given. In Case 1, we set the desired trajectory as a line signal.
In Case 2, we set the desired trajectory as a circle signal.
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A. Simulation Results of Case 1
The desired tracking signal comprises two components: vr

= 0.2 m/s and ωr = 0 rad/s. The initial conditions are chosen
as D̂ = [0, 0, 0]T and qr0 = [0.28, 0.52, 0]T . The tracking
control result of the self-balancing mobile robot under the
proposed control scheme is shown in Fig. 1 and the pitch angle
and yaw angle responses are given in Fig. 2. Although the self-
balancing mobile robot is subject to the unknown disturbance,
the position efficiently tracks the corresponding desired line
signal. At the same time, the zero requirement of pitch angle is
guaranteed. Fig. 3 shows the pose errors of the self-balancing
mobile robot and they are convergent and bounded. The dis-
turbance estimate errors of the designed nonlinear disturbance
observer are given in Fig. 4 which are also convergent. From
Figs. 1−4, we can see that the developed disturbance observer-
based robust tracking control scheme is effective for tracking
desired line trajectory of the self-balancing mobile robot.

B. Simulation Results of Case 2
The desired tracking signals are chosen as vr = 0.2 m/s and

ωr = 0.1 rad/s. In the simulation study, the initial conditions
are chosen as D̂ = [0, 0, 0]T and qr0 = [0.5,−0.2, π/3]T . The
tracking control result of the self-balancing mobile robot is

Fig. 1. Tracking control result of the line trajectory.

Fig. 2. Pitch angle and yaw angle responses of Case 1.

shown in Fig. 5. The position of the self-balancing mobile
robot effectively tracks the corresponding desired circle track-
ing trajectory even in the presence of the unknown disturbance.
In Fig. 6, the pitch angle and yaw angle responses are pre-
sented. From Fig. 6, we can note that the pitch angle converges
to zero and satisfies the requirement. Fig. 7 shows that the
pose errors of the self-balancing mobile robot are convergent
and bounded, and Fig. 8 shows that the disturbance estimate
errors of the developed disturbance observer are convergent.
These results further validate that the developed disturbance
observer based tracking control scheme is effective for tracking
the circle trajectory of the self-balancing mobile robot with
unknown disturbances.

Based on these simulation results of Case 1 and Case 2,
we verify that the proposed disturbance observer based robust
tracking control scheme is valid for the self-balancing mobile
with the unknown disturbance.

V. CONCLUSION

For the self-balancing mobile with external unknown
bounded disturbances, a robust tracking control scheme has
been proposed. The desired velocity control law has been
designed using the Lyapunov analysis method and the arctan

Fig. 3. The pose errors of Case 1.

Fig. 4. The disturbance estimate errors of Case 1.
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Fig. 5. Tracking control result of the circle trajectory.

Fig. 6. Pitch angle and yaw angle responses of Case 2.

Fig. 7. The pose errors of Case 2.

function. At the same time, a nonlinear disturbance observer
has been developed to tackle the unknown disturbance. By
using the output of the nonlinear disturbance observer, the
tracking control scheme has been designed using the sliding
mode technique to guarantee that all the closed-loop signals
are ultimately uniformly bounded. The self-balancing mobile

robot produced by Googol Technology Consulting Inc has
been used to illustrate the effectiveness of the developed
disturbance observer based control scheme by numerical sim-
ulations and the simulation results have shown that a good
tracking performance has been achieved. In future work, the
experimental study will be done for the self-balancing mobile
robot.

Fig. 8. The disturbance estimate errors of Case 2.
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