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Abstract—The rapid development of location-based social net-
works (LBSNs) provides people with an opportunity of better
understanding their mobility behavior which enables them to
decide their next location. For example, it can help travelers
to choose where to go next, or recommend salesmen the most
potential places to deliver advertisements or sell products. In
this paper, a method for recommending points of interest (POIs)
is proposed based on a collaborative tensor factorization (CTF)
technique. Firstly, a generalized objective function is constructed
for collaboratively factorizing a tensor with several feature
matrices. Secondly, a 3-mode tensor is used to model all users’
check-in behaviors, and three feature matrices are extracted to
characterize the time distribution, category distribution and POI
correlation, respectively. Thirdly, each user’s preference to a POI
at a specific time can be estimated by using CTF. In order to
further improve the recommendation accuracy, PCTF (Partition-
based CTF) is proposed to fill the missing entries of a tensor
after clustering its every mode. Experiments on a real check-
in database show that the proposed method can provide more
accurate location recommendation.

Index Terms—Clustering, context, feature extraction, point of
interest (POI) recommendation, tensor factorization.

I. INTRODUCTION

RECENTLY, location-aware devices such as mobile
phones and GPS navigation systems greatly promote

the development and wide application of location-based ser-
vices. Navigational assistance and location sharing become
very popular with the prevalence of location-based social
networks (LBSNs) [1] such as Foursquare, Gowalla, GeoLife
and Weibo. As shown in Fig. 1, an LBSN usually contains two
parts: a map (physical-world) and a social network (cyber-
space). There are lots of points of interest (POIs) in the
physical-world. When a user arrives at a POI, a record named
check-in can be generated and released into the cyber-space.

Manuscript received April 17, 2016; accepted December 20, 2016. This
work was supported in part by the National Nature Science Foundation
of China (91218301, 61572360), the Basic Research Projects of People’s
Public Security University of China (2016JKF01316), and in part by Shanghai
Shuguang Program (15SG18). Recommended by Associate Editor Tadahiko
Murata. (Corresponding authors: Guanjun Liu and Changjun Jiang.)

Citation: W. J. Luan, G. J. Liu, C. J. Jiang, and L. Qi, “Partition-based
collaborative tensor factorization for POI recommendation,” IEEE/CAA J. of
Autom. Sinica, vol. 4, no. 3, pp. 437−446, Jul. 2017.

W. J. Luan, G. J. Liu, and L. Qi are with the Department of Computer
Science and Technology, Tongji University, Shanghai 200092, China (e-mail:
wenjingmengjing@163.com; liugj1116@163.com; 1210513@tongji.edu.cn).

C. J. Jiang is with the Key Laboratory of Embedded System and Service
Computing, Tongji University, Shanghai 200092, China (e-mail: cjjiang@
tongji.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2017.7510538

Thus, through these LBSNs, people can easily record or share
their real-time location as well as the real-life experiences.
These LBSNs can closely connect the real world with the
virtual internet. By June 2016, Foursquare has recorded over
8 billion check-ins made by more than 50 million people
worldwide1. Weibo is currently the most popular LBSN in
China and has 212 million active users till February 2015, and
its users continuously grow every day. Such a huge number
of geo-spatially tagged data produced from mobile devices
in LBSNs provide researchers a great opportunity to mine,
understand and analyze users’ interests and behaviors, and thus
service the users better.

Fig. 1. A typical example of LBSN.

A personalized POI recommendation method generally
yields a list of POIs according to several explicit or implicit
evaluation scores on POIs [1]. In reality, check-ins made
by a user in the cyber-space are not too many although
POIs visited by her/him in the physical-world are plentiful.
Thus, it is a big challenge for a recommendation method
to make an accurate POI recommendation based on these
sparse check-in data. Many researches are trying to solve
this problem. For example, some recommendation methods
have been proposed based on collaborative filtering (CF)
and/or matrix factorization (MF) [2]−[8]. These methods
can provide recommendation with high prediction accuracy
and scalability. However, they ignore some other important
factors such as time which is necessary to further enhance the
accuracy of personalized POI recommendation. Figs. 2 and
3 show the check-in frequency during different time-slots in
one day (one hour is treated as a time-slot), which is the ratio
between the number of check-ins in a time-slot and that of all
check-ins. We can see that users’ check-in behaviors are quite
different in different time-slots. For example, according to the
check-in data derived from Weibo, it is obvious that people
create more check-ins during daytime and before midnight

1https://foursquare.com/about/
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than other time-slots. In addition, different POIs have their
special time when to be frequently visited. Fig. 3 shows users’
check-in frequencies for different categories including Art &
Entertainment, Hotel, Shop, and Living Service. We can see
that most check-ins take place in a particular time interval.
For example, Art & Entertainment are often visited at nearly
noon, Shops are welcomed in the afternoon, and Hotel and
Living Service are hot places at night. It carries no meaning

Fig. 2. Users’ check-in frequencies in different time-slots.

Fig. 3. Check-in frequency in different time-slots in different categories.

if a POI is recommended to a user at a wrong time [9].
Notice that Figs. 2 and 3 are from the statistics of our real
check-in dataset on Weibo. This work presents a personalized
POI recommendation method by fully considering the effect
of different time spans on user’s check-ins.

Note that the check-in data is usually very rare and sparse.
During the period from December 1st, 2012 to September
25th, 2014, over 95 % of users made less than 20 check-ins
in total and over 93 % of POIs were checked in less than 10
times. Thus, it is difficult to provide users appropriate POI
recommendations by only considering their historical records.
In this paper, we focus on a personalized POI recommendation
based on a collaborative tensor factorization (CTF) approach
[10]. It can be used to recover the missing entries (i.e., without
any check-in records). It considers not only the relation among
user, POI and time-slots, but also category distribution, time
distribution, and the correlations between two POIs. After that,
a value of an entry is used as a POI rating score given by a user
in each time-slot, and then an accurate POI recommendation
can be made.

In practice, there are a large number of users and POIs.
A huge and sparse tensor can be constructed by using the
whole data. It is difficult and unnecessary to deal with the
whole tensor because some users or POIs or time-slots have
the same features. Thus, using the similar objects’ information
to recommend POIs is enough to some extent. This is also the
idea of collaborative filtering. Based on this idea, we partition
a tensor through a clustering algorithm and then propose a
personalized POI recommendation method.

The major contributions of this paper are summarized as
follows:

1) We present a generalization of collaborative tensor fac-
torization in order to deal with the sparse data. A framework of
simultaneously factorizing an n-mode tensor with m features
is presented that can be used for multi-relationship prediction
and context-aware recommendation.

2) We use a three-mode tensor to model the correlation
among users, POIs and time-slots. The POI recommendation
is modeled as a problem of filling the missing entries of a
tensor.

3) We propose a partition-based collaborative tensor fac-
torization (PCTF) method to recommend POIs. Firstly, we
partition a tensor by a clustering algorithm. Secondly, we
recover the tensor by using the CTF over sub-tensors. Finally,
a set of POIs are provided to users.

The rest of the paper is organized as follows: Section II
reviews the related definitions and a generalization of collab-
orative tensor factorization. Section III proposes a partition-
based collaborative tensor factorization method for POI recom-
mendation method. Experiment design and result evaluations
are given in Section IV. Section V introduces the related work.
Section VI draws our conclusions and presents future work.

II. PRELIMINARIES

This section recalls POIs, user check-ins, and the POI rec-
ommendation problem [11]. Then, an extended collaborative
tensor factorization is presented.
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A. Problem Definition

Definition 1 (POI): A point of interest (POI) is denoted as
P = [Pid, L1, L2, C1, C2, . . . , Ck], where

1) Pid is the unique identifier of the POI;
2) L1 and L2 denote the latitude and longitude of the POI,

respectively; and
3) C1−Ck denote k categories which the POI belongs to.
A POI is a significant venue/location in the physical world,

like a shopping mall or a theatre. Usually, a POI belongs to one
or more categories such as Entertainment & Arts, Vehicles,
Education, Food & Dining, Government, Health & Beauty,
Home & Family, Shopping, Sports & Recreation, and Travel.

Definition 2 (User check-in): A check-in is denoted by
ci = [UCid, Uid, Pid, T ], where

1) UCid, Uid, and Pid are the unique identifiers of a check-
in, a user, and a POI, respectively; and

2) T is a time stamp.
In LBSNs such as Foursquare and Weibo, a user can mark

a POI while visiting it, and thus a check-in is generated.
Definition 3 (POI recommendation): Given a set of check-

ins CI = {ci1, ci2, . . . , cin}, a POI recommendation is to
provide an ordered list of top-k POIs LP = (P ′1, P

′
2, . . . , P

′
k)

via CI .
Note that the goal of POI recommendation is to provide POI

lists to users according to their preference for different POIs
during different time-slots. Thus we need to obtain a user’s
preferences to all POIs before recommendation. It is assumed
that the check-in frequency can characterize a user’s visiting
preference, i.e., the higher the check-in frequency is, the more
the POI is preferred by a user [12]. Based on this assumption,
we estimate a user’s visiting preference for a POI which is
called POI rating by using the related check-in frequency.

B. Tensor Factorization

First, R is the set of real numbers, R+ is the set of positive
real numbers; N = {0, 1, 2, . . .} is the natural number set, N+

= N/{0}, Nk = {0, 1, 2, . . . , k}, and N+
k = {1, 2, . . . , k}, k

∈ N+.
A tensor is a multi-dimensional array. Generally, a one-

mode tensor is a 1-dimension array that is represented as a
vector. A two-mode tensor is a 2-dimension array represented
by a matrix. In the same way, an n-mode tensor is an n-
dimensional array.

Fig. 4 shows an example of 3-mode tensor X ∈ R5×4×3.
Its three modes respectively represent users, POIs and time-
slots. This “user-POI-time” tensor can be flattened in three
ways to obtain matrices comprising its modes. An entry in
X is denoted by x(i, j, k) and its value equals the check-
in frequency of user ui in POI pj at time-slot tk. Given X ,
the distribution of check-ins over different POIs visited by a
user ui during a time-slot tk can be obtained by retrieving
the vector X(i, j, k), j ∈ N+

4 . Users can also be ranked at
tk according to pj based on X(i, j, k), i ∈ N+

5 . POIs can be
ranked according to overall check-in

∑5
i=1

∑3
k=1 Xijk.

Given an n-mode tensor X ∈ RD1×D2×···×Dn , a common
approach to recover the missing entries of X is to factorize X
into the multiplication of a core tensor G ∈ RK1×K2×···×Kn

and a set of (low-rank) matrices M1 ∈ RD1×K1 , M2 ∈
RD2×K2 , . . . , and Mn ∈ RDn×Kn based on X’s non-zero
entries [7]. The objective function to control the error of the
factorization is defined by the following formula:

L(G,M1,M2, . . . , Mn)

=
1
2
‖X −G×1 M1 ×2 M2 ×3 · · · ×n Mn‖2

+
λ

2

(
‖G‖2 +

n∑

i=1

‖Mi‖2
)

(1)

where ‖ · ‖2 denotes the l2 norm; × stands for the ma-
trix multiplication; ×i denotes the tensor-matrix multipli-
cation and the subscript i represents the ith mode of a
tensor; G ∈ RK1×K2×···×Kn is a tensor, Mi ∈ RDi×Ki

is a matrix, and their multiplication is (G ×i Mi) ∈
RK1×···×Ki−1×Di×Ki+1×···×Kn such that:

(G×i Mi)k1×···×ki−1×di×ki+1×···×kn

=
Ki∑

ki=1

xk1×···×ki−1×ki×ki+1×···×kn
mdiki

.

The first part of (1) is to control the factorization error
and the second one is a regularization penalty to avoid over-
fitting. λ is a parameter which denotes the weight of the
regularization penalty. Note that K1−Kn are usually very
small. By minimizing the objective function, we can get a set
of optimized matrices M1−Mn. Afterwards, we can recover
the missing entries of X by the following formula:

Xrec = G×1 M1 ×2 M2 ×3 · · · ×n Mn. (2)

If the original tensor is very sparse, it is not accurate enough
to fill the missing entries only by using those non-zero entries.
In [13], a model of collective matrix factorization is proposed
to improve the prediction accuracy by exploiting information
from one relation while predicting another. Several matrices
are simultaneously factorized, since parameters are shared
among factors when an entity participates in multiple relations.
Based on this idea, we can collaboratively factorize a tensor
with several feature matrices to achieve a higher prediction
accuracy of the missing entries in a tensor.

Given an n-mode tensor and several feature matrices, we
collaboratively factorize tensor X with feature matrices F1−
Fm. It is worth noting that at least one mode of feature matrix
Fi should occur in tensor X.

1) If Fi shares one mode with X , Fi ∈ RDi×Fi can be
factorized into the multiplication of two matrices, i.e., Fi =
Fi1 × Fi2, where Fi1 ∈ RDi×Ki and Fi2 ∈ RKi×Fi are low
rank latent factors for Fi. Tensor X and matrix Fi share matrix
Fi1 or Fi2.

2) If the two modes of Fi both belong to X , Fi ∈ RDi×Dj

can be factorized into the multiplication of two matrices, i.e.,
Fi = Fi1×Fi2, where Fi1 ∈ RDi×Ki and Fi2 ∈ RKi×Dj are
low rank latent factors for Fi. Tensor X and matrix Fi share
matrices Fi1 and Fi2.

For the collaborative tensor factorization, the objective
function can be defined as follows:

L(G,M1, . . . , Mn, F11, . . . , Fm1, F12, . . . , Fm2)
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=
1
2
‖X −G×1 M1 ×2 · · · ×n Mn‖2

+
m∑

i=1

λi

2
‖Fi − Fi1 × Fi2‖2

+
λ0

2

(
‖G‖2 +

n∑

i=1

‖Mi‖2 +
m∑

i=1

(‖Fi1‖2 + ‖Fi2‖2
)
)

(3)

where ‖X−G×1 M1×2 · · ·×n Mn‖2 and ‖Fi−Fi1×Fi2‖2
are respectively used to control the errors of factorizing X
and Fi; ‖G‖2 +

∑n
i=1 ‖Mi‖2 +

∑m
i=1(‖Fi1‖2 + ‖Fi2‖2) is a

regularization penalty to avoid over-fitting; and λi, i ∈ Nm,
are parameters denoting the weights of each part during the
collaborative factorization. If λi = 0, our model degenerates
to the original tucker decomposition method [14]−[16]. Since
at least one mode of feature matrix Fi is shared with X, there
exists an Fij , i ∈ N+

m, j ∈ N+
2 , that is identical with some

Mk, k ∈ N+
n .

In order to solve the optimization problem, we use gradient
descent algorithm to find a local optimization. Specifically, we
use an element-wise optimization algorithm [7], which updates
each entry in the tensor independently. After the factorization,
we can recover X by (2).

C. Clustering Algorithm

Clustering algorithms are generally used in the unsupervised
fashion. By clustering, a set of data instances can be grouped
according to some notion of similarity. Such an algorithm
needs only the set of object features as its input, but not all
label information.

K-means clustering algorithm [17], [18] is a simple and
popular method used to automatically partition a set of in-
stances into k clusters. It proceeds by selecting k initial cluster
centers and then iteratively refines them as follows:

1) Each instance Ii is assigned to its closest cluster center.
2) Each cluster center CCi is updated to be the mean of its

constituent instances.
3) The algorithm converges when there is no further change

in assignment of instances to clusters.
Similarity calculation between instances is a key basis to

a clustering algorithm. There are many methods to calcu-
late object similarity, such as Euclidean distance, Manhattan
distance, Cosine distance, Mahalanobis distance, and Jaccard
coefficient. Cosine distance is a popular way to calculate
the vector similarity. For vectors x = [x1, x2, . . . , xn] and
y = [y1, y2, . . . , yn], their similarity can be calculated by the
following equation.

Sim(x, y) = cos θ =
−→x · −→y
‖x‖ · ‖y‖

=

n∑
i=1

xiyi

√
n∑

i=1

x2
i ·

√
n∑

i=1

y2
i

.

D. Tensor Partition

If a tensor is very huge and sparse, the correlation degree
between entries is usually different. For example, in the “user-
POI-time” tensor in Fig. 4, similarities between users (or time-
slots or POIs) are different. According to the idea of collabora-
tive filtering, users (or time-slots or POIs) with similar features
should bring stronger influences to each other. Thus, in order
to recover more accurate entries, a tensor can be partitioned
into several small sub-tensors according to its modes before
collaboratively factorizing these tensors. For example, if users
are partitioned into two sets ({u1, u2}, {u3, u4, u5}), time-
slots into two sets ({t1}, {t2, t3}), and POIs into two sets
({p1, p2}, {p3, p4}), then the “user-POI-time” tensor can be
partitioned into 2× 2× 2 = 8 sub-tensors, as shown in Fig. 5.

III. POI RECOMMENDATION METHOD BASED ON PCTF

This section proposes a partition-based collaborative tensor
factorization (PCTF) method for POI recommendation. We
model a “user-POI-time” tensor and extract three feature
matrices, and then partition them into sub-tensors and sub-
matrices by clustering every mode. Finally, we collaboratively
factorize the corresponding sub-tensor with sub-matrices.

A. Framework

Fig. 6 shows the framework of our PCTF-based POI rec-
ommendation method, which consists of four layers: 1) data
collection and pre-processing, 2) tensor construction and fea-
ture extraction, 3) tensor partition and factorization, and 4)
personalized POI recommendation.

Firstly, we collect users’ check-in data and POI information
from Weibo and Dianping websites, and then extract data
through processing and filtering. Secondly, we construct a
tensor and three feature matrices by using the obtained data.
Thirdly, we partition the tensor and matrices through clustering
every mode and then recover the tensor by using CTF over
sub-tensors and sub-matrices. Finally, we can recommend an
ordered POI list to a user according to his/her preference
ratings to different POIs in different time-slots which are
queried from the recovered tensor. Since the middle layers
are the key parts of our method, we especially introduce them
in detail in the following sections.

B. Tensor Construction

We represent the preference of a user to a location during
a time-slot by a 3-mode tensor X ∈ RN×M×T , where N ,
M and T denote the counts of users, POIs and time-slots,
respectively, as shown in Fig. 4. We give the formal models
for users, POIs, and time-slots as follows:

Mode-1 (Users): U = [u1, u2, . . . , ui, . . . , uN ] denotes N
different users;

Mode-2 (POIs): P = [p1, p2, . . . , pj , . . . , pM ] denotes M
different POIs;

Mode-3 (Time-slots): T = [t1, t2, . . . , tk, . . . , tT ] denotes T
different time spans.

We divide a day into 24 time-slots with equal length, and
thus the number of slots in the time dimension is fixed. After



LUAN et al.: PARTITION-BASED COLLABORATIVE TENSOR FACTORIZATION FOR POI RECOMMENDATION 441

Fig. 4. An example of “user-POI-time” tensor.

Fig. 5. An example of tensor partition.

projecting the check-ins over a long period into one day, we
can calculate the check-in frequency for each time-slot of a
day over the period. Thus, an entry x(i, j, k) stores the check-
in frequency (i.e., preference rating) of user ui in pj in tk over
a long period of time. The value of each entry in tensor X is
normalized to [0, 1] for the convenience of factorization.

C. Feature Extraction
Since the constructed “user-POI-time” tensor X is too

sparse, factorizing X solely based on its own non-zero entries
cannot produce an accurate result. To deal with this problem,
we extract and utilize three feature matrices that can be used as
contexts in the factorization process. They reflect features of
user, time, and POI correlation. The three matrices are denoted
by F1−F3 and describe the preference correlation between
different users, the temporal correlation between different
time-slots, and the co-occurrence correlation between different
POIs, respectively.

1) User Feature: F1 ∈ RN×L is the “user-POI category”
matrix where F1(i, j) denotes the number of check-ins of
user ui in POI category cj . Matrix F1 gives the distribution
of users over different categories, such as Hotel, Shop, and
Entertainment & Arts. It incorporates the similarity between
two users in terms of their category preferences. Intuitively,
users with similar category preference features could have a
similar POI check-in situation.

2) Time Feature: F2 ∈ RT×N is the “time-user” matrix
where F2(i, j) denotes the number of check-ins created in
time-slot ti by user uj . Matrix F2 reveals the correlation
between different time-slots in terms of the distribution of
check-ins of different users. Two time-slots sharing a similar
user distribution could have a similar check-in situation.

3) POI Correlation Feature: F3 ∈ RM×M is the “POI-POI”
matrix where F3(i, j) describes the co-occurrence correlation
between POIs pi and pj . It is calculated by F3(i, j) = |U i

∩ U j |. Notice that U i (resp., U j) denotes the set of users
who have checked in pi (resp., pj) and |U | is the number of
elements in the set U . Then the value of each entry in matrix
F3 is normalized to [0, 1]. Once the correlation is determined,
we can infer the visit probability of other POIs for a user
through the user’s check-in history.

D. Collaborative Tensor Factorization
Based on the tensor construction and feature extraction

methods introduced above, we can obtain the “user-POI-time”
tensor X ∈ RN×M×T and three feature matrices: “user-
POI category” matrix F1 ∈ RN×L, “time-user” matrix F2 ∈
RT×N , and “POI-POI” matrix F3 ∈ RM×M .

As shown in Fig. 7, X and F1−F3 are simultaneously
factorized. The three feature matrices have correlations with
different modes of the tensor, respectively. F1 shares a factor
M1 with X , F2 shares M2 with X , and F3 shares M2 and
M3 with X . By using the collaborative tensor factorization
method described in Section II-B, the objective function of
our model is defined as follows:

L(G,M1,M2,M3, F11, F12, F21, F22, F31, F32)

=
1
2
‖X −G×1 M1 ×2 M2 ×3 M3‖2

+
3∑

i=1

λi

2
‖Fi − Fi1 × Fi2‖2

+
λ0

2

(
‖G‖2 +

3∑

i=1

‖Mi‖2 +
3∑

i=1

(‖Fi1‖2 + ‖Fi2‖2)
)

.

(4)
Since F1−F3 share factors with X in the factorization, we

have that F11 = M1, F12 ∈ RK1×L, F21 = M2, F22 = MT
2 ,
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Fig. 6. The framework of PCTF-based POI recommendation (Xi, UFi, PFi, and TFi denote the ith sub-tensor, the ith sub-matrices of user feature matrix,
POI correlation matrix and time feature, respectively).

Fig. 7. Collaborative tensor factorization.

F31 = M3, and F32 = MT
1 . Thus the objective function is:

L(G,M1,M2,M3, F12)

=
1
2
‖X −G×1 M1 ×2 M2 ×3 M3‖2

+
λ0

2

(
‖G‖2 +

3∑

i=1

‖Mi‖2 + ‖F12‖2
)

+
λ1

2
‖F1 −M1 × F12‖2

+
λ2

2
‖F2 −M2 ×MT

2 ‖2

+
λ3

2
‖F3 −M3 ×MT

1 ‖2. (5)

Then, we use an element-wise gradient descent optimization

algorithm [7] to solve this optimization problem.
Finally, we can recover X by Xrec = G×1M1×2M2×3M3.

Every user’s preferences to different POIs in different time-
slots (i.e., the recovered values) can be obtained, and thus an
ordered POI list can be recommended to a user according to
his/her preferences (i.e., the recovered tensor).

E. Partition-based POI Recommendation

The result of performing CTF on one big tensor is not
accurate due to the fact that correlation degree between users
(or time-slots or POIs) are not considered in CTF. Therefore,
we partition the tensor into sub-tensors according to the related
similarities and perform CTF on the corresponding sub-tensors
and sub-matrices. Algorithm 1 describes our PCTF algorithm
where X is the “user-POI-time” tensor and F1, F2, and F3 are
user feature matrix, time feature matrix, and POI correlation
feature matrix, respectively. Here, one object is denoted by a
feature vector, and we use cosine distance to compute their
similarities.

In what follows, we analyze the complexity of our al-
gorithm. During Step 2, we use the K-means clustering
algorithm on F1 ∈ RN×L, F2 ∈ RT×N , F3 ∈ RM×M ,
respectively, and the algorithm complexity is O(I1NuNL)
+ O(I2NtTN) + O(I3NpMM), where Ii (i = 1, 2, 3)
denotes the number of iterations, and Nu, Nt, and Np are
respectively the number of clusters of users, time-slots and
POIs. According to [7], if we use CTF on the whole tensor
and matrices, the complexity is O(KK1K2K3ru), where K
is the number of ratings and Ki (i = 1, 2, 3) and ru are the
dimensionalities of the factors Mi (i = 1, 2, 3) and F1, respec-
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Algorithm 1 Algorithm of partition-based collaborative tensor factorization

Input:
X ∈ RN×M×T , F1 ∈ RN×L, F2 ∈ RT×N , F3 ∈ RM×M ;

Output:
Xrec ∈ RN×M×T ;

Step 1: Compute user, time, and POI similarities by cosine distance over F1, F2 and F3, respectively;
Step 2: Cluster users into Nu clusters, time-slots into Nt clusters, and POI into Np clusters by using K-means algorithm, the user, time-slot and POI

similarities are used as the inputs of K-means, respectively;
Step 3: Partition X into Nu ×Nt ×Np sub-tensors, denoted by Si, i ∈ [1, Nu ×Nt ×Np];
Step 4: Partition F1, F2, F3 into Nu, Nt, Np sub-matrices, respectively;
Step 5: For each sub-tensor Si with the corresponding sub-matrices, factorize it using the CTF method;
Step 6: Recover each sub-tensor to obtain a new tensor Sirec ;
Step 7: Merge Sirec (i ∈ [1, Nu ×Nt ×Np]) and obtain the whole tensor Xrec;
Step 8: Return Xrec.

tively. However, we have partitioned the tensor and matrices
into several non-over- lapping sub-tensors (correspondingly,
some non-overlapping sub-matrices). Therefore, it is easy to
parallelize by performing CTF on them independently that can
greatly reduce the execution time.

IV. EXPERIMENTS

A. Data Collection and Analysis

This section introduces our datasets. They are crawled
from two publicly accessed websites: Weibo and DianPing.
We collect users’ check-in data from Weibo which is the
largest social network website in China. In total, we crawl
694 million check-ins created by 390 000 users in 90 000
POIs of Shanghai city from December 1st, 2012 to September
25th, 2014. For each POI, we crawl its description including
identifier, geographic coordinates and categories. For the POIs
without category labels, we supply the category information
according to that from DianPing website. For each check-in,
its description includes not only identifiers of the check-in,
user, and POI, but also a timestamp.

Since every user’s check-in behaviors usually happen with
randomness and uncertainty, and the check-in data is too large
and sparse, a small dataset is extracted from the raw data to
evaluate our method. First, we select all such users whose total
check-in number is more than 500. Secondly, from the selected
data, we delete the check-ins which are created in the POIs
that are in total visited less than 50 times. After preprocessing
and filtering, a collection of 17 469 check-ins created by 131
unique users in 106 different POIs are eventually obtained.

We set one hour as a time-slot in this paper. By using the
extracted dataset, we construct a “user-POI-time” tensor and
its size is 131×106×24. Even though the tensor is constructed
based on this preprocessed dataset, it is still very sparse, i.e.,
only 0.98 % of entries of X have non-zero values.

B. Experiment Design and Evaluation

Some experiments are conducted to evaluate our proposed
POI recommendation model by using the extracted dataset.
We compare our proposed PCTF method with the matrix
factorization approach with time slicing (TMF) [19] and
collaborative tensor factorization (CTF). The three methods

aim to obtain every user’s ratings to every POIs in each time-
slot.

1) TMF method is realized as follows: a) project all the
check-ins into one day, b) divide all the check-ins into 24
subsets according to their timestamps, e.g., if the timestamp
of a check-in is 8:08, then it belongs to the subset in time-
slot “8:00−9:00”, c) construct 24 “user-POI” matrices of the
check-ins in each time-slot, and 4) fill the missing entries by
matrix factorization for each “user-POI” matrix.

2) CTF method simultaneously factorizes the “user-POI-
time” tensor with other three feature matrices by using the
method presented in Section III.

3) PCTF method partitions the “user-POI-time” tensor into
a group of sub-tensors, and each feature matrix is partitioned
into a group of sub-matrices. For each sub-tensor, it is fac-
torized with corresponding sub-matrices by using the CTF.
Finally, the whole recovered tensor is obtained by merging
the recovered sub-tensors (see Algorithm 1).

In our experiments, two metrics are used to evaluate the
performance of the methods. They are mean absolute error
(MAE) and root mean square error (RMSE) [11], where yrec

is a recovered value, y is the ground truth, and n is the number
of entries. MAE and RMSE can be calculated by (6) and (7),
respectively.

MAE =

n∑
i=1

|yi − (yrec)i|
n

(6)

RMSE =

√√√√
n∑

i=1

(yi − (yrec)i)2

n
. (7)

In our experiments, we realize TMF with SVD [19] (k =
10) and solve the CTF optimization problem by using element-
wise gradient descent optimization algorithm proposed in [7].
In PCTF, we set the numbers of user clusters, time-slot clusters
and POI clusters to be 5, 5 and 2, respectively. In the following,
we study the effect from the number of clusters through
experiments. We set ε = 0.02 and conduct ten groups of
experiments. Each group contains ten sub-experiments. In each
sub-experiment, we randomly select 70 % of entries as training
data, and the remaining 30 % are used as validation data. After
completing all the sub-experiments, the result of each group
is recorded by computing the average MAE and RMSE of
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its ten sub-experiments. Fig. 8 presents the performance of
the three approaches. We can see that both CTF and PCTF
outperform TMF. The reason is that the TMF method only
uses the factorization of “user-POI” matrix which neglects the
correlations among different time-slots. In addition, not only
the time correlations in tensor but also the features of users,
POIs and time-slots are leveraged in CTF-based methods.

Fig. 8. Performance comparison of TMF, CTF and PCTF.

In order to study the influence from the number of clusters
to the recommendation results, we conduct the following
experiments. When the numbers of clusters are set differently
for users (or time-slots or POIs), the MAE and RMSE change
accordingly, as shown in Figs. 9 and 10. In Figs. 9 and 10,
Nu × Np × Nt denotes the numbers of user-clusters, POI-
clusters and time-slot-clusters are Nu, Np, Nt, respectively.
They indicate that the number of sub-tensors should be de-
cided according to different datasets. However, PCTF always
outperforms TMF and CTF.

V. RELATED WORK

A. Applications of Tensor Factorization

In urban computing [20], tensor factorization method has
been widely used. For example, in order to realize different
kinds of recommendations, some context-aware tensor factor-
ization methods have been proposed by leveraging additional
information, such as the activity-activity correlation and geo-
graphical features of a location [21]−[23]. Urban refueling
behavior has been inferred together with POI data, traffic
features, and gas stations’ contextual features [24], [25]. Travel
time of a road segment without being traversed by trajectories
in current time-slot has also been estimated through a context-
aware tensor factorization approach [21]. Based on the tensor
factorization method, the fine-grained noise situation of differ-
ent times of a day for each region of NYC has been inferred by
using the 311 compliant data together with social media, road
network data, and POIs [11]. To the best of our knowledge,
the personalized POI recommendation method of collaborative
tensor factorization has not been presented yet.

Fig. 9. MAE under different numbers of sub-tensors.

B. Context-aware POI Recommendation

Recently, many contexts have been considered in the model
and many context-ware recommendation methods have been
proposed to improve the effectiveness of personalized POI
recommendation. For example, Hsieh et al. [9] consider time
factor into route recommendation. Ye et al. [26], [27] use a
linear fusion framework to integrate the social and geograph-
ical characteristics of users and locations to recommend the
next location. Zheng et al. [28] use GPS data and comments at
various locations to discover interesting locations and possible
activities that can be performed for recommendation. Cheng
et al. [29] fuse matrix factorization with geographical and
social influence for POI recommendation. However, there is
no general framework that has the capacity to model different
contexts.

C. Block-based Tensor Factorization

In practice, two toolboxes are widely used for tensor ma-
nipulation: one is the Tensor Toolbox for MATLAB [30] (for
sparse tensors) and another is an N-way Toolbox for MATLAB
[31] (for dense tensors). Besides, various block-based algo-
rithms [32]−[35] and systems have been developed due to the
significant cost of tensor factorization. Various parallelization
strategies, such as map-reduce-based implementation [33], and
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sampling-based method [34] are proposed to perform tensor
factorization [35]. In [36], a personalized tensor decomposition
mechanism for considering the user’s focus is proposed to im-
prove the accuracy and reduce the overall decomposition time.
Based on these works, we partition the tensor by clustering its
every mode, factorize each sub-tensor with corresponding sub-
matrices by using collaborative tensor factorization method,
and then recover the whole tensor.

Fig. 10. RMSE under different numbers of sub-tensors.

VI. CONCLUSIONS

In this paper, a generalization model of collaborative ten-
sor factorization is presented. In order to realize POI rec-
ommendation, we model all users’ check-in behaviors as a
3-mode “user-POI-time” tensor and construct three feature
matrices from different perspectives. Then, we recover users’
POI preferences by using the partition-based collaborative
tensor factorization method. Compared with the method using
“user-POI” matrix factorization with time slicing, CTF-based
methods can provide more accurate recommendation.

Note that this paper is an extended version of our con-
ference version [10]. Based on the work in [10], the tensor-
partition module is proposed and then the partition-based CTF
algorithm is developed. Experiments illustrate that PCTF can
obtain better results in comparison with TMF and CTF.

Our future work focuses on the impacts of context features
on the recommendation results.

REFERENCES

[1] Y. Zheng, X. Xie, and W. Y. Ma, “GeoLife: a collaborative social
networking service among user, location and trajectory,” IEEE Data Eng.
Bull., vol. 33, no. 2, pp. 32−40, 2010.

[2] L. Y. Lv, M. Medo, C. H. Yeung, Y. C. Zhang, Z. K. Zhang, and T.
Zhou, “Recommender systems,” Phys. Rep., vol. 519, no. 1, pp. 1−49,
Oct. 2012.

[3] X. Luo, M. C. Zhou, Y. N. Xia, and Q. S. Zhu, “An efficient non-
negative matrix-factorization-based approach to collaborative filtering
for recommender systems,” IEEE Trans. Ind. Inform., vol. 10, no. 2,
pp. 1273−1284, May 2014.

[4] D. D. Lee and H. S. Seung, “Unsupervised learning by convex and conic
coding,” in Proc. 9th Int. Conf. Neural Information Processing Systems,
Cambridge, MA, USA, 1997, pp. 515−521.

[5] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788−791,
May 1999.

[6] N. Guan, D. Tao, Z. Luo, and B. Yuan, “Online nonnegative matrix
factorization with robust stochastic approximation,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 23, no. 7, pp. 1087−1099, Jul. 2012.

[7] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse
recommendation: N -dimensional tensor factorization for context-aware
collaborative filtering,” in Proc. 4th ACM Conf. Recommender Systems,
New York, NY, USA, 2010, pp. 79−86.

[8] J. Li, G. J. Liu, C. J. Jiang, and C. G. Yan, “A hybrid method of recom-
mending POIs based on context and personal preference confidence,” in
Proc. 3rd IEEE/ACM Int. Conf. Big Data Computing, Applications and
Technologies, Shanghai, China, 2016, pp. 287−292.

[9] H. P. Hsieh, C. T. Li, and S. D. Lin, “Measuring and recommending
time-sensitive routes from location-based data,” ACM Trans. Int. Syst.
Technol., vol. 5, no. 3, Article No. 45, Jun. 2014.

[10] W. J. Luan, G. J. Liu, and C. J. Jiang, “Collaborative tensor factorization
and its application in POI recommendation,” in Proc. 13th Int. Network-
ing, Sensing, and Control, Mexico City, Mexico, 2016, pp. 28−30.

[11] Y. Zheng, T. Liu, Y. L. Wang, Y. M. Liu, Y. M. Zhu, and E. Chang,
“Diagnosing New York City’s noises with ubiquitous data,” in Proc.
2014 ACM Int. Joint Conf. Pervasive and Ubiquitous Computing, Seattle,
WA, USA, 2014, pp. 715−725.

[12] X. T. Li, G. Cong, X. L. Li, T. A. N. Pham, and S. Krishnaswamy,
“Rank-GeoFM: a ranking based geographical factorization method for
point of interest recommendation,” in Proc. 38th Int. ACM SIGIR Conf.
Research and Development in Information Retrieval, Santiago, Chile,
2015, pp. 433−442.

[13] A. P. Singh and G. J. Gordon, “Relational learning via collective matrix
factorization,” in Proc. 14th ACM SIGKDD Int. Conf. Knowledge Dis-
covery and Data Mining, Las Vegas, Nevada, USA, 2008, pp. 650−658.

[14] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455−500, Sep. 2009.

[15] L. R. Tucker, “Implications of factor analysis of three-way matrices
for measurement of change,” in Problems in Measuring Change, C. W.
Harris, Ed. Madison, Wisconsin, USA: University of Wisconsin Press,
1963, pp. 122−137.

[16] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279−311, Sep. 1966.

[17] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Mathematical
Statistics and Probability, Berkeley, CA, USA, 1967, pp. 281−297.

[18] X. S. Lu and M. C. Zhou, “Analyzing the evolution of rare events via
social media data and k-means clustering algorithm,” in Proc. 13th Int.
Conf. Networking, Sensing, and Control, Mexico City, Mexico, 2016.

[19] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30−37, Aug. 2009.



446 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 3, JULY 2017

[20] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM Trans. Intell. Syst.
Technol., vol. 5, no. 3, Article No. 38, Sep. 2014.

[21] Y. L. Wang, Y. Zheng, and Y. X. Xue, “Travel time estimation of
a path using sparse trajectories,” in Proc. 20th ACM SIGKDD Int.
Conf. Knowledge Discovery and Data Mining, New York, USA, 2014,
pp. 25−34.

[22] V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang, “Collaborative
filtering meets mobile recommendation: a user-centered approach,” in
Proc. 24th AAAI Conf. Artificial Intelligence, Atlanta, GA, USA, 2010,
pp. 236−241.

[23] V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Towards mobile
intelligence: learning from GPS history data for collaborative recom-
mendation,” Artif. Intell. J., vol. 184−185, pp. 17−37, Jun. 2012.

[24] F. Z. Zhang, D. Wilkie, Y. Zheng, and X. Xie, “Sensing the pulse of
urban refueling behavior,” in Proc. 2013 ACM Int. Joint Conf. Pervasive
and Ubiquitous Computing, Zurich, Switzerland, 2013, pp. 13−22.

[25] J. B. Shang, Y. Zheng, W. Z. Tong, E. Chang, and Y. Yu, “Inferring
gas consumption and pollution emission of vehicles throughout a city,”
in Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, New York, USA, 2014, pp. 1027−1036.

[26] M. Ye, P. F. Yin, and W. C. Lee, “Location recommendation for
location-based social networks,” in Proc. 18th SIGSPATIAL Int. Conf.
Advances in Geographic Information Systems, San Jose, CA, USA,
2010, pp. 458−461.

[27] M. Ye, P. F. Yin, W. C. Lee, and D. L. Lee, “Exploiting geographical
influence for collaborative point-of-interest recommendation,” in Proc.
34th Int. ACM SIGIR Conf. Research and Development in Information
Retrieval, Beijing, China, 2011, pp. 325−334.

[28] V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Collaborative location
and activity recommendations with GPS history data,” in Proc. 19th Int.
Conf. World Wide Web, Raleigh, NC, USA, 2010, pp. 1029−1038.

[29] C. Cheng, H. Yang, I. King, and M. R. Lyu, “Fused matrix factor-
ization with geographical and social influence in location-based social
networks,” in Proc. 26th AAAI Conf. Artificial Intelligence, Toronto, ON,
Canada, 2012, pp. 17−23.

[30] B. W. Bader and T. G. Kolda, MATLAB Tensor Toolbox Version 2.5 [On-
line]. Available: http://www.sandia.gov/∼tgkolda/TensorToolbox, Ac-
cessed on: Jan., 2014.

[31] C. A. Andersson and R. Bro, “The n-way toolbox for MATLAB,”
Chemom. Intell. Lab. Syst., vol. 52, no. 1, pp. 1−4, Aug. 2000.

[32] C. Chen, D. S. Li, Y. Y. Zhao, Q. Lv, and L. Shang, “WEMAREC:
accurate and scalable recommendation through weighted and ensemble
matrix approximation,” in Proc. 38th Int. ACM SIGIR Conf. Research
and Development in Information Retrieval, Santiago, Chile, 2015,
pp. 303−312.

[33] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “GigaTensor:
scaling tensor analysis up by 100 times-algorithms and discoveries,” in
Proc. 18th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, Beijing, China, 2012, pp. 316−324.

[34] E. E. Papalexakis, C. Faloutsos, and N. Sidiropoulos, “Parcube: sparse
parallelizable tensor decompositions,” in Proc. 2012 European Conf.
Machine Learning and Knowledge Discovery in Databases, Bristol, UK,
2012, pp. 521−536.

[35] A. H. Phan and A. Cichocki, “Block decomposition for very large-
scale nonnegative tensor factorization,” in Proc. 3rd IEEE Int. Workshop
Computational Advances in Multi-Sensor Adaptive Processing, Aruba,
Dutch Antilles, 2009, pp. 316−319.

[36] X. S. Li, S. Y. Huang, K. S. Candan, and M. L. Sapino, “Focusing
decomposition accuracy by personalizing tensor decomposition (PTD),”
in Proc. 23rd ACM Int. Conf. Information and Knowledge Management,
Shanghai, China, 2014, pp. 689−698.

Wenjing Luan (S’16) received the B.S. and M.S.
degrees from Shandong University of Science and
Technology, Qingdao, China, in 2009 and 2012,
respectively. She is now pursuing the Ph.D. degree
in the Department of Computer Science and Tech-
nology, Tongji University, Shanghai, China. She re-
ceived the Best Student Paper Award-Finalist in the
13th IEEE International Conference on Networking,
Sensing and Control (ICNSC 2016) Conference. Her
current research interests include location-based so-
cial networks, recommender system, and intelligent

transportation systems.

Guanjun Liu (M’16) received the Ph.D. degree
in computer software and theory from Tongji Uni-
versity, Shanghai, China, in 2011. He was a post-
doctoral research fellow at Singapore University of
Technology and Design, Singapore, from 2011 to
2013. He worked at Humboldt-University zu Berlin,
Germany, from 2013 to 2014 as a postdoctoral
research fellow supported by the Alexander von
Humboldt Foundation. He is currently an associate
professor with the Department of Computer Science
and Technology, Tongji University. He has published

50+ papers. His research interests include Petri net theory, model checking,
web service, workflow, discrete event systems, and information security.

Changjun Jiang received the Ph.D. degree from
the Institute of Automation, Chinese Academy of
Science, Beijing, China, in 1995. He is currently
the leader of the Key Laboratory of the Ministry
of Education for Embedded System and Service
Computing, Tongji University, Shanghai, China. He
is an IET Fellow and an Honorary Professor with
Brunel University, London. He has published more
than 300 papers in journals and conference proceed-
ings, including Chinese Science, the IEEE Trans-
actions on Robotics and Automation, and the IEEE

Transactions on Fuzzy Systems. He has led over 30 projects supported
by the National Natural Science Foundation of China, the National High
Technology Research and Development Program of China, and the National
Basic Research Developing Program of China. His research interests include
concurrency theory, Petri nets, formal verification of software, cluster, grid
technology, intelligent transportation systems, and service-oriented computing.
Prof. Jiang has been the recipient of one international prize and seven domestic
prizes in the field of science and technology.

Liang Qi (S’16) received the B.S. and M.S. degrees
from Shandong University of Science and Technol-
ogy, Qingdao, China, in 2009 and 2012, respectively.
He is currently working toward the Ph.D. degree
with the Department of Computer Science and Tech-
nology, Tongji University, Shanghai, China. He has
been supported by a scholarship from the China
Scholarship Council. From 2015 to 2016, he was a
joint Ph.D. Student with the Department of Electrical
and Computer Engineering, New Jersey Institute of
Technology, Newark, NJ, USA. He has authored

over a dozen technical papers in journals and conference proceedings. His
research interests include Petri nets, recommender system, and intelligent
transportation systems.


