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Abstract—The development of machine learning in complex
system is hindered by two problems nowadays. The first problem
is the inefficiency of exploration in state and action space,
which leads to the data-hungry of some state-of-art data-driven
algorithm. The second problem is the lack of a general theory
which can be used to analyze and implement a complex learning
system. In this paper, we proposed a general methods that can
address both two issues. We combine the concepts of descriptive
learning, predictive learning, and prescriptive learning into a
uniform framework, so as to build a parallel system allowing
learning system improved by self-boosting. Formulating a new
perspective of data, knowledge and action, we provide a new
methodology called parallel learning to design machine learning
system for real-world problems.

Index Terms—Descriptive learning, machine learning, parallel
learning, parallel systems, predictive learning, prescriptive learn-
ing.

I. INTRODUCTION

MOTIVATED by the rapid development of machine learn-
ing and especially the fulminic success of deep learn-

ing, data-driven learning has become the state of art not only
in many conventional pattern recognition and nature language
processing areas [1], [2] but also in some novel areas (e.g.,
Atari game [3] and Go game [4]). Now, the growth of data-
driven learning has impressed both academic and industrial
fields. However, there still exist several difficulties that hinder
us in deploying machine learning dealing complex real world
problems.

First, it is expensive or even impossible to collect all the
needed data in a well labeled manner for a data-driven model
in a complex system. Even crowdsourcing may not be able
to get all the data labeled. We need to let the machine to
self-label the data via learning.

Second, for a challenge in the real world, the space of action
can be too large to explore without any guide. We need to
find an acceptable solution based on the knowledge built on
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limited available data. A rational constraint on the action space
is desirable as well as an efficient explore policy.

Third, lacking a general mathematical framework, it is
extremely difficult to assemble different components into a
practical system for real-world application, or to analyze and
improve the existing works. Three basic elementals, data,
knowledge and actions, of a machine learning system should
be considered in an integrated way rather than in a separated
way.

To address such difficulties, we have to rethink the relation-
ship between data, actions, and knowledge. Conventionally,
it is popular to assume that data was sampled independently
from a distribution [5], and action was taken by a policy given
certain data [6]. Under such assumptions, one might argue that
knowledge is just an abstraction of data [7] and have little to
do with actions.

However, increasing researchers had realized that data are
meaningless without a purpose in many applications. Some
researchers consider knowledge as an expectation of actions’
consequence. However, without a higher-level understanding
the nature of data, such expectations can hardly be gen-
eralized from past experience. As shown in [3], though a
deep reinforcement learning based controller can play simple
Atari games in human level, it cannot deal with complex
environments such as Montezuma’s revenge.

In this paper, we tackle the data and action by their mutual
dependency and consider the knowledge as the way to rebuild
this mutual dependency in an artificial system parallel to the
real system from observations. The basic idea of parallel
system was initialized by Fei-Yue Wang in [8], [9], where
he proposed an approach called ACP: artificial societies for
modeling, computational experiments for analysis, and parallel
execution for control. He proposed the first new paradigm
to combine both data and action with an artificial system
expressing the knowledge. The exploration of both the state
and action space happened independently in the real system
and the artificial system, letting the learning process more
efficiency and less data-hungry. Such approach has already
been applied to solve both theoretical and practical problems
[10]−[15].

Combining the core idea of ACP with some cutting-edge
techniques including descriptive learning, predictive learning
and prescriptive learning, we aim to build a framework named
parallel learning [16], [17] that can extend current machine
learning methods to deal with data collecting and policy
exploring difficulties, and most importantly, guiding the im-
plementation of complex system capable to handle real-world
problem.

To present our ideas, the rest of paper organized as follow.
The framework and elementary components will be introduced
in Section II, then we discuss its role as analyzer and guide
line of machine learning system by examples in Section III.
Finally, we conclude the paper in Section IV.



390 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 3, JULY 2017

II. PARALLEL LEARNING: A GENERAL MACHINE
LEARNING FRAMEWORK

A. The Framework, Descriptive Learning and the Parallel
Systems

Parallel learning framework aims to build a methodology
to determine which operation should be performed based on
online-updated knowledge gained from the consequence of
actions that we took. The core architecture of the parallel
learning is an abstract loop of data, knowledge and action.
The loop started from data, refined as knowledge and guide the
action, which in turn yields new data to update the knowledge
and restart/halt the loop; see Fig. 1 for an illustration.

Fig. 1. Parallel learning framework.

The real system R and artificial system A run by their own
laws. The knowledge, which is model takes the data of one
system as input and parameters of the other as output, form
and connect them together. Presenting the data as records of
mapping from actions to state, the pattern of real system can
be distilled as an experience according to a certain purpose,
and then be used to rectify the artificial system. The right part
of knowledge is the inverse model of experience, which using
the updated policy coming from the artificial system to control
the actor and gain feedback from the real environment.

The blue lines represent a process from the observation
to the imagination, we call it predictive learning, where the
system learn to predict the future base on the past and
prior knowledge. On the other side, the red line shows a
process called prescriptive learning, which is a mapping from
imagination to reality by taking control in real worlds. The
experience and policy interlaces with each other by applying
some constraint upon the update process, as we will discuss
later. The bridge between these two processes is a concretiza-
tion of knowledge and imagination with respect to the purpose
of the designer, whose law is self-consistent and do not violate
the observation of real system.

Drawn by the prior knowledge and rectified by the further
observation, the artificial system exists as both the start and
end point of the complete loop of parallel learning. Consider
a system containing interactions between actions ai ∈ A, i =
0, 1, . . . , n and state si ∈ S, i = 0, 1, . . . , n. The space of
action A is consist of all the possible actions, which can
be finite of infinite sequences of operations. The size of A
depends only on the capability of the controller. The space
of state S consist of all the possible actions, which can be
sequences of situations as well. The size of S depends only

on the capability of the observer. The interaction in a system
can then be defined as

si = f(ai), i = 0, 1, . . .

aj = Π(sj), j = 0, 1, . . . (1)

where f describes how actions induce system states and Π
denotes the policy that guide our actions based on system state.
More precisely, if we aim to gain reward and meanwhile push
the system toward a certain state, we can define f and Π as

f(ai) , arg max
sj∈ S

L(ai, sj)

Π(si) , arg max
aj∈ A

L(si, aj) (2)

where L(ai, sj) refers to the real likelihood that action ai

and state sj happened sequentially, Q(si, aj) is the real long
term reward brought by state si and action aj . In other words,
the inductive function f depends on the possibility that some
states can be observed by given certain actions, and the policy
function Π depends on reward of taken action under given
situation. The same structure can be used to describe an
artificial system, except that the likelihood and reward are
estimated functions; see Fig. 2 for an illustration.

Fig. 2. An artificial system.

Initialized by prior knowledge and limited observations, LA,
QA of the artificial system can be set to a proper form with
reasonable values of θ and ω in an autonomous way. Such
process was named as descriptive learning in our methods. The
core of descriptive learning is to form a self-consistent system
that do not violate the conclusion drawn from observation. We
can formalize this process as

arg min
θ,ω

df,
∏(|s′i − fA(

∏

A

(s′i))|, |a′i −
∏

A

(fA(a′i))|)

i = 0, 1, . . . , m

s.t. gf (|sj − fA(aj)|) ≤ 0
gΠ(|aj −ΠA(sj)|) ≤ 0, j = 0, 1, . . . , n. (3)

The objective function df,Π is a metric describing how well
the mutual-dependency of state and action holds consistent
under current setting of parameter θ and ω. By optimizing
the measurement with respect to θ and ω, the consistency of
the inductive function fA and policy function ΠA increase. For
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the inequality constraints, gf is a constraint upon the inductive
function, holding it from inducting state s′j too far from the
real sample sj . The constraint gΠ plays similar role upon
the policy function. Building a self-consistent artificial system
by descriptive learning, we can then update the likelihood
and reward functions by predictive learning and prescriptive
learning described in following sections.

The integration of the real and artificial system as a whole is
called parallel system. In a first glance, the idea of introducing
the parallel system is similar to some previous works (e.g.,
neural turing machine (NTM) [18] or its advanced version
differentiable neural computer (DNC) [19]) that concretize
knowledge in the learning process. Like the external memory
in NTM and DNC architecture, the parallel system gives
controller more space to store and organize the intermediate
results of computing, make learning machines that can store
knowledge and reason about it flexible, and therefore stabilize
the learning process and extend its learning capability. Such
knowledge can also be shared among different tasks, which
leads to a general intelligent agent. Combining external mem-
ories, the learning system can handle several tasks that require
rational reasoning, such as planning a multi-stage journey
using public transport.

The parallel system goes further than being merely a
random-accessed memory, but providing a complete system
which is parallel to the real system and runs asynchronously.
By executing the artificial system to the real system, the
parallel system provides a playground to explore the space
of state and action in an efficient way. The efficiency comes
from both the nature of simulation and the prior knowledge we
introduced in initialization stage. The likelihood and reward
functions can update in an adversarial way and converge to an
optimal status.

B. Predictive Learning
Started from a prior knowledge coded in parallel system,

the learning system explore the state and action space in a
simplified ideal environment, then guided by the understanding
grasped in this process, it mimics the behavior observed and
processes several operations in the real world, which in turn
brings more records that reveal the consequences of certain
policy. A better understanding of the real system can then
be drawn and used to update the artificial system from these
new experiences. This is somewhat similar to what Prof.
Richard Feynman had stated, “What I cannot create, I do
not understand.” A self-labeling process can be performed by
rectifying the mapping relationship from data to state in the
artificial system, letting same actions in both real and artificial
system generate similar outputs.

The process to draw knowledge from experiences will be
constrained by the knowledge gained from the policy; see
Fig. 3 for an illustration. We can define such process as an
optimization problem:

min dΠ(fR, fA)
s.t. gf (|s′i − fR(ΠA(s′i))|) ≤ 0, i = 1, . . . , m (4)

where the objective function dΠ is a metric describing the
differences between fP and fR conditional to the policy Π.
By minimizing the differences of occurrence frequency in
different systems, we extend the state space of parallel system
to the area that has not been discovered yet. On the other side,
the inequality in (4), similar to the one in (3), indicating that

the predictive learning process will be constrained by policy
gained in the parallel system and take those rare situation in
the real system into consideration with lower confidence.

Fig. 3. Predictive learning.

The goal of predictive learning is to minimize the recon-
struction error of a generative model. This topic has been
studied in unsupervised learning field for a long time and
several important paradigms has been established, such as
predictability minimization [20], adversarial learning [21], etc.
Take the recent achievement of adversarial learning, the gen-
erative adversarial nets (GAN) as an example. The objective
of GAN is to minimize the difference between real samples
and generative samples just like predictive learning [22]. The
discriminator is equivalent to that map a sample si into an
embedding representation ai, and the generator is equivalent
to f that remap representation ai into si. In such perspective,
we can consider GAN as a special case of parallel learning.
The success of GAN has proved the capability of predictive
learning idea while handling with self-labeling missions and
therefore can be used to address data-collection problems.

C. Prescriptive Learning
After self-boosting process happened in the parallel system,

the learning system grasps an idea about how states trans-
formed after taken certain actions, and therefore it develops an
optimal policy. Since the space of action is explored efficiently
in parallel learning, we aim to keep the learning process of
prescriptive learning as stable as possible and makes it mainly
focus on the consequence of actions that likely to happen
according to the experience; see Fig. 4 for an illustration.

The prescriptive learning process is concerned about
whether the policy learned in the parallel system can actually
be adopted in the real world, which means given a state
si ∈ S, the action ai ∈ A given by ΠR should be close to
the action given by ΠA. According to the goal of prescriptive
learning, we can define this learning process as an optimization
problem:

min df (ΠR,ΠA)
s.t. gΠ(|a′i −ΠR(fA(a′i))|) ≤ 0, i = 1, . . . , m (5)

where the objective function df is a metric describing the
differences between ΠA and ΠR conditional to the generative
model f , which can be varied under different circumstances.

In general, dΠ should be correlated to the confidences
of different policies under given situation. Minimizing the
differences of confidence about their reactions, we can extend
the knowledge of policy upon those action space that has not
been explored yet in the parallel system. In the meanwhile, the
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inequality constraint in (5), similar to the one in (3) indicates
that, the prescriptive learning process will be constrained by
experience gained in the parallel system and it will take those
very unlikely taken actions given by real system policy into
consideration very carefully.

Fig. 4. Prescriptive learning.

Analog to the Inverse reinforcement learning (IRL) [23]
and imitation learning (IL) [24], prescriptive learning is about
extracting a reward function from given observed behavior.
Unlike IRL/IL, we do not rely on an oracle to give an optimal
policy. Instead, we will estimate the optimal policy under
some prior assumption about reward functions in the parallel
system, and we then make this policy more executable by
trying to mimic the behaviors of the real system. Such setting
compresses the scale of action space into a reasonable size
and makes the learning process stable and smooth.

D. The Algorithm of Parallel Learning

Combining the idea of parallel system, prescriptive learning,
and predictive learning, we can form a complete loop of data,
knowledge, and action. The algorithm of parallel learning
consists of three stage, including a self-boosting stage in the
parallel system, a self-adaptive stage by prescriptive learning,
and a self-labeling stage by predictive learning; see Fig. 5. The
sketch of this algorithm can be summarized as the following
pseudo code snippet:
—————————————————————————
Algorithm 1 Parallel Learning Algorithm
—————————————————————————
1. L, θ, Q, ω, fP,ΠP ← Initialization according to prior

knowledge;
2. repeat
3. repeat
4. OT

A ← Minibatch of T observations consist of (a′i, s′i),
generated in parallel system according to (1);

5. Update L, Q by OT
A;

6. Set up fA,
∏
A according to (2);

7. Perform the descriptive learning according to (3);
8. until convergence of parameters θ, ω;
9. OT

R←Minibatch of T observations consist of (ai, si),
generated in real system by performing ΠR;

10. Perform the prescriptive learning according to (5) and
OT
R;

11. Perform the predictive learning according to (4) and OT
R;

12. until max iteration;
13. return fA,ΠA
—————————————————————————

III. APPLICATION OF PARALLEL LEARNING

A. Analyze Existing Machine Learning System in Perspective
of Parallel Learning Framework

Parallel learning serves as a suitable framework to analyze
complex machine learning system. In general, considering
actions as reactions to a certain state, we can evaluate our
confidence of actions according to a trainable policy. From
this viewpoint, we can put a large class of machine learning
methods into parallel learning framework.

Let us take the Alpha Go system [4] as an example.
Considering the moves taken by Alpha Go as action a, the
final results given current board situation as a state s, games
played according to the rule of Go as areal system, a Monte
Carlo tree was set as a parallel system. The tree with nodes
containing the V -value of the board situation corresponding
to a given move, which can be viewed as the initial fA. The
policy to pick the move leading to then ode with max V -
value can be viewed as the initial fA. By training supervised
learning (SL) policy networks pσ, pπ , directly from expert
human moves and pρ from reinforcement learning (RL), the
AlphaGo system performed a prescriptive learning letting fA
more similar to ΠA. Then AlphaGo played against itself in
real system guided by policy networks. Using both the human
moves and self-played data, a predictive learning can then be
performed. A value network vθ was trained by mix data, letting
it predict more accurate about what state will most possibly
happen when it takes certain moves. Finally, the AlphaGo
system can then update the value of each state in search
tree by using policy and value networks to get a better fA,
fA. Such process can loop over and over again to achieve a
human-level performance on playing the game of Go. Fig. 6
illustrates the complete framework. A further discussion about
the relationship of AlphaGo system and parallel learning can
be found in [25].

B. Build New Complex Machine Learning System by Using
Parallel Learning Methods

Building a machine learning system upon a parallel system
enable us to combine domain knowledge with the data-driven
method and thus makes the learning process more efficient
and continuous. Such framework has already been adapted
to build intelligent transportation systems [26]−[29], vision
systems [30], [31] and other social systems [32], [33].

Recently, we design a trajectory planning system for au-
tomated vehicles. There exist two major difficulties. First,
it is hard to appropriately consider the dynamic constraints
of vehicles. Second, it is hard to determine the immediate
reward of vehicles. Most existing approaches are indirect
trajectory planning in two steps: First, design a reference
parking trajectory. Second, design a controller to make vehicle
track it. However, such approaches have three problems. First,
the dynamic constraints are implicit and inaccurate. Second,
it is hard to design a proper controller. Third, if the first step
gives a wrong solution, we have no chance to make up in
the second step. To solve these problems, we propose direct
trajectory planning method whose core idea is to learn the
mapping relation between the final state and the corresponding
trajectory via deep learning networks [34]. More precisely, we
obtain the data by randomly simulating actions and obtaining
the resulting trajectories. Then, we use deep neural network
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Fig. 5. Parallel learning loop.

Fig. 6. AlphaGo as a parallel learning system.

to distill and remember the knowledge as the dependence
between actions and the resulting trajectories. This is indeed an
inverse mapping between actions and the resulting trajectories.
Each time when we aim to determine a desired trajectory
that links the start point and the destination point, we can
directly find the answer from the trained deep neural network.
In short, we apply Descriptive Learning to sample all the
possible solutions (trajectories), apply Predictive Learning to
link the destination with the corresponding actions, and apply
Prescriptive Learning to generate trajectory via deep neural
network. The benefits of such a new approach include: 1) the
dynamic constraints are naturally satisfied; 2) there is no need
of complex controller; and 3) we get an integrated solution
in just one step. One major difficulty of this system is to
master general parking skills so that the obtained knowledge
can be used to handle various vehicle dynamics under dif-

ferent environments. A favorable way to solve this problem
is using a parallel learning system that automatically adjusts
our knowledge according to new observation. The parallel
system can be built by combining simulation upon simplified
vehicle dynamic model and a data-driven generative model.
For example, we first build a trajectory generative model as
artificial system. Using the trajectories collected from real
parking scenario and generated by simplified bicycle model,
we can adjust the parallel system to predict the corresponding
trajectories given control sequence in an acceptable level. A
planning model can then be learned in this parallel system and
used for handling parking problems in real scenario, in turns
to generate more raw data to improve the parallel system;
see Fig. 7 for a visualization of such idea. Tests reported in
[35] has shown that, using deep learning technique to build a
trainable model as a parallel system, the parallel learning
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Fig. 7. Parallel learning system for trajectory planning.

system can achieve an excellent performance as well as high
transferability for short-term trajectory planning, by using just
a small fraction of data comparing to traditional data-driven
methods.

IV. CONCLUSION

In this paper, we introduce the general concept and frame-
work of parallel learning. The core idea behind parallel
learning is a new paradigm that takes three basic elements of
machine learning: data, knowledge, and action into consider-
ation as a whole system. Particularly, we apply 1) Descriptive
learning to distill knowledge from data and learn from data
by creating the same (kind of) data. 2) Predictive learning to
label data by letting the system evolve in an unsupervised
manner. 3) Prescriptive learning to guide the system with
growing knowledge and make the system evolve appropriately
by special trying-and-testing. Just like what Peter F. Drucker
said: ”The best way to predict the future is to create it.”

As Whitehead once pointed out, “Every categorical type
of existence in the world presupposes the other types in
terms of which it is explained” [36]. Parallel learning shift
the paradigm from considering these elements separately to
considering mutual co-constitution. In this new framework,
the existence of data and action can only be understood by
considering their dependency of each other, as well as their
dependency of observer and controller.

By looking at the mutual dependency between data and
action, we constrain the exploration of state and action space
into a reasonable scale and thus speed up the learning process
and address the problem of observation-insufficiency. In addi-
tion, the data-driven model, which had long been viewed as an
component irrelevant to the data in learning process, should
be now considered as an important role in data generation and
interpretation process as well. The resulting parallel system,
which is a combination of both real and artificial systems, can
lead to an efficient observation and a desirable action in the
parallel learning process.

Nowadays, while the arsenal of data-driven methods has
been filled with guns of model,the data ammunition tends
to be inadequate, and the general principle to organize these
firepower remains absence. We believe that parallel learning,

as one of the first theory to address both problems in one
framework, will be vital for the further development of ma-
chine learning.
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