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Effective Self-calibration for Camera Parameters
and Hand-eye Geometry Based on Two

Feature Points Motions
Jia Sun, Peng Wang, Member, IEEE, Zhengke Qin, and Hong Qiao, Senior Member, IEEE

Abstract—A novel and effective self-calibration approach for
robot vision is presented, which can effectively estimate both the
camera intrinsic parameters and the hand-eye transformation at
the same time. The proposed calibration procedure is based on
two arbitrary feature points of the environment, and three pure
translational motions and two rotational motions of robot end-
effector are needed. New linear solution equations are deduced,
and the calibration parameters are finally solved accurately
and effectively. The proposed algorithm has been verified by
simulated data with different noise and disturbance. Because of
the need of fewer feature points and robot motions, the proposed
method greatly improves the efficiency and practicality of the
calibration procedure.

Index Terms—Camera calibration, hand-eye calibration, robot
vision, two feature points.

I. INTRODUCTION

IN the area of robot vision, camera is usually used as
visual sensor to aid the robot in performing specific tasks

[1]−[3], such as grasping and assembling objects. The accu-
racy of robot vision system mainly depends on the results
of calibration, including the camera calibration and hand-
eye calibration. In this paper, we will focus on the eye-
in-hand robot vision system that camera is attached to the
end-effector of a robot. In this case, the intrinsic camera
parameters (principal point, focal length and the aspect ratio)
and the hand-eye transformation (the orientation and position
of the camera in relation to the robot end-effector) should be
calculated first.

Much work has been done in the research of camera
calibration techniques [4]−[6]. These techniques can be classi-
fied mainly into two categories: traditional camera calibration
(photogrammetric calibration) and self-calibration. Traditional
methods applied for calibration use a set of 3D to 2D cor-
respondences extracted with the help of a calibration object
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of known structure. According to different structures, the
calibration objects can be divided into three categories: 3D
calibration objects, 2D calibration objects and 1D calibration
objects. 3D calibration object is a block with precisely known
metric structure, often with some sort of grid pattern [7]. Using
3D calibration object, camera parameters with high accuracy
can be obtained. 2D calibration object is usually a board with
checker pattern, and calibration method with 2D calibration
object is more flexible and easier to implement [8]−[11]. 1D
object needs at least three collinear points with known relative
positions [12]−[14]. By observing the certain motion of the
object such as moving around a fixed point, the calibration
can be performed.

However, these methods are not practical in some physical
environments, especially in some robotic application systems.
In these cases, the camera and hand-eye parameters are needed
to calibrate frequently in a closed environment. Therefore, self-
calibration techniques which estimate camera parameters from
information of the static image scenes without any special
calibration object have been proposed. These methods take
advantage of geometric invariants of some image features,
such as straight lines, vanishing points and circles. The earliest
research on the self-calibration is based on the so-called
Kruppa equations, which links the camera intrinsic parameters
with the epi-polar geometry of pairs of views taken by the
camera [15]. Neither the camera motion information nor
the structure information of the environment is used in this
method. Some methods use sets of parallel line segments
extracted from the views of environment to obtain two or more
mutually orthogonal vanishing points [16]. Applying the or-
thogonality constraints imposed by these vanishing points, the
calibration can be performed. These methods are effective and
practical in special applications. For example, the vanishing
points extracted from the features of the roads and traffic signs
are used to calibrate a traffic camera [17]. These methods are
flexible but yield less accurate results. Besides, self-calibration
based on active vision system is also a hot research direction
in this field. These methods require the camera undergoing
a series of special motions, such as translational motions
along arbitrary three dimensional directions, and calculate the
camera parameters via the motion information and the feature
points captured by the camera [18].

Concerning hand-eye calibration, various methods have
been reported. In many literatures [19], [20], the hand-eye
relation is determined by activating a sequence of robot
motions and simultaneously measuring the induced camera
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TABLE I
COMPARISON OF METHODS FOR CALIBRATION

Method Intrinsic parameters Hand-eye geometry Calibration objecta Motion timesb Feature pointsc

Traditional calibration
Zhang [8] Yes No Yes 2 Yes

Andreff et al. [20] No Yes Yes 3 Yes
Malm et al. [22] Yes Yes Yes 4 Yes

Self-calibration

Ma [18] Yes Yes No 7 No
Wang et al. [25] Yes Yes No 6 No
Lei et al. [26] Yes Yes No 6 No

Method proposed in this article Yes Yes No 5 Yes

a Calibration object: If the method needs a calibration object to achieve the calibration;
b Motion times: How many robot motions or pictures does the method need to achieve the calibration;
c Feature points: If the method calibrates cameras using feature points directly.

motion by observing a calibration object. They adopt different
motion representations with the similarly mathematical algo-
rithms. In order to achieve hand-eye calibration in special
environment, the methods without reference object have also
emerged. A hand-eye calibration method using only image
derivatives instead of point correspondences is proposed in
[21]. In that work, the robot end-effector with camera is
controlled to make two translational motions and two normal
motions, and the motion of the camera is recovered using
image derivatives. However, all these mentioned hand-eye cal-
ibration methods assumed that the intrinsic camera parameters
have been calculated first, i.e., the camera parameters and
hand-eye geometry are calculated respectively.

For a robot vision system, both camera calibration and
hand-eye calibration are required, and approaches combining
these two steps are researched. Malm et al. [22] fitted a
hand-eye calibration algorithm and a plane-based intrinsic
camera calibration into one framework to simplify the motions
of the robot end-effector. Zhao et al. [23] proposed a joint
algorithm that combines the two calibration processes together
by moving the robot and observing a 2D reference object. The
method proposed by Strobl et al. [24] relaxes the requirement
of the accurate knowledge of the imprinted pattern dimensions,
while still uses the planarity and regularity of the pattern.
Ma [18] presented a self-calibration approach which performs
two calibration steps simultaneously by applying the focus
of expansion (FOE) and specially designed camera motions.
Wang et al. [25] and Lei et al. [26] apply FOEs to calculate
both the intrinsic parameters and hand-eye geometry, but re-
quire six robot motions. Specifically speaking, four times robot
translations, of which no any three translations are co-planar,
are needed to calculate the camera’s intrinsic parameters and
the camera’s orientation matrix. Additionally, two more robot
rotations are needed to calculate the position vector.

So far, the robot vision system calibration has been deeply
researched. Table I shows the main properties of the aforemen-
tioned methods. There are many problems need to be solved.
Firstly, the traditional methods [8], [20], [22] using calibration
objects can obtain the parameters accurately. However, they
are not available in some practical environments. Camera self-
calibration based on Kruppa equations and vanishing points
cannot satisfy high precision demand. Secondly, if the camera
parameters and hand-eye geometry are calibrated respectively

with different self-calibration methods, it will cause much
large accumulative error. Similarly, methods applying FOEs
to calibrate camera will increase accumulative error as well
[18], [25], [26]. Thirdly, present combined approaches need
plenty of camera motions and feature points, such as at least
seven camera motions [18] and six camera motions [25], [26].
Therefore, an effective and practical combined self-calibration
approach is urgently required for robot vision.

In this paper, a new self-calibration approach that can
effectively estimate both the camera intrinsic parameters and
the hand-eye transformation for robot vision is presented.
Taking advantage of active vision system, only two arbitrary
feature points of the environment and five robot motions are
needed. Because the proposed method applies fewer feature
points and robot motions, the efficiency of the calibration
procedure is greatly improved.

New linear solution equations are deduced to calculate
the calibration parameters. The proposed method has been
tested by computer simulated data with different noise and
disturbance. The results demonstrate the effectiveness and
robustness of the proposed method.

The contributions of this paper can be summarized as
following: Firstly, the procedures of camera calibration and
hand-eye calibration are combined. The efficiency and prac-
ticality are greatly improved, and the accumulative errors are
reduced simultaneously. Secondly, fewer feather points and
robot motions are applied. Because the procedure of feature
recognition and matching are simplified, the calibration effi-
ciency is further enhanced. Thirdly, some new linear solution
equations are deduced, and the calibration parameters are
finally solved accurately and effectively.

The paper is organized as follows. Section II introduces
some preliminaries such as the camera model and the robot
vision system. In Section III, the proposed solution equations
are derived to perform camera calibration and hand-eye self-
calibration based on two feature points. The procedure of
this calibration algorithm is also described here. The results
of experiments are presented in Section IV and the paper is
concluded in Section V.

II. PRELIMINARIES

As shown in Fig. 1, in a robot hand-eye system, the camera
is rigidly mounted on the robot end-effector. The robot end-



372 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 2, APRIL 2017

effector can make rotational and translational motions and the
motion parameters can be read from the controller.

Fig. 1. Hand-eye relation in robot vision system.

There are three coordinate systems: the robot base coor-
dinate system, the robot end-effector coordinate system and
the camera coordinate system, which are denoted by {CB},
{Ch} and {Cc}, respectively (Fig. 1). The motion parameters
read from controller are the transformation of {Ch} in relation
to {CB}, which is described by the matrix TB . The hand-
eye relation can be denoted by a rotation matrix Rm and a
translation vector pm, where Rm represents the orientation
of the camera, and pm represents the position of the camera
relative to {Ch}. Therefore, we can represent the hand-eye
relation by the form

Xca = RmXh + pm (1)

where Xca = (xc, yc, zc)T and Xh = (xh, yh, zh)T are
the coordinates of a point described by {Cc} and {Ch},
respectively.

Using the pinhole camera model, the transformation be-
tween the 2D coordinate of the image point m = (u, v, 1)T

and the 3D coordinate of the space point in {Cc}, Xca = (xc,
yc, zc)T can be described as

zc
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(2)
where (u0, v0) is the principal point, fu and fv are scale factor
of the image plane in the horizontal and vertical direction, s
is skew factor of pixel, zc is the depth value of the point Xca.
The matrix K is called intrinsic camera matrix. Then, (2) can
be written compactly as

zcm = KXca. (3)

In this paper, we propose a new calibration method which
determines both the hand-eye relation (Rm and pm) and the
camera intrinsic parameters u0, v0, fu , fv and s simultane-
ously.

III. SELF-CALIBRATION COMBINING CAMERA AND
HAND-EYE CALIBRATION BASED ON

TWO FEATURE POINTS

Because of the limitation of calibration method based on ref-
erence objects in some practical environments, self-calibration
appears particularly significant for hand-eye robot system. The
known motion parameters of robot end-effector which are
read from the controller provide important information for
self-calibration in the active vision system. The method using
these motion parameters can realize self-calibration effectively,
and avoid the high-dimensional nonlinear estimation problem.
Furthermore, in order to improve the efficiency, the calibration
procedure should be implemented with fewer feather points
and robot motions.

Considering all of the above, we present a novel self-
calibration method combining camera and hand-eye calibration
based on two points for robot vision in this paper. The
proposed method is applied for camera and hand-eye cali-
bration in one procedure, which can reduce the calibration
errors and simplify the calibration procedure. To improve
the efficiency, the proposed calibration procedure applies two
arbitrary feature points of the environment, and three pure
translational motions and two rotational motions of robot end-
effector are required.

The calibration of camera intrinsic matrix K and rotation
matrix Rm will be given in Section III-A. The calibration
of translation vector pm will be given in Section III-B. In
addition, there is a requirement for the initial position of the
camera in this method. Suppose P1 and P2 are two feature
points in practical environment. Then, the image plane of the
camera must be parallel to the line consisting of points P1 and
P2, i.e., the depth values of the two points in {Cc} are equal,
as shown in Fig. 2.

Fig. 2. The initial relative position of camera and feature points.

A. Calibration of Camera Intrinsic Matrix K and Rotation
Matrix Rm

In this subsection, the camera intrinsic matrix K and the
rotation matrix Rm through the three pure translational mo-
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tions of robot end-effector will be calculated. Suppose Xc01

and Xh01 are the initial coordinates of point P1 in {Cc} and
{Ch}, respectively. From (1) we have

Xc01 = RmXh01 + pm. (4)

Let Xc11, Xh11 represent the coordinates of point P1 in {Cc}
and {Ch} after the motion, respectively. Then, we have

Xc11 = RmXh11 + pm. (5)

Since the camera is attached rigidly to the robot end-
effector, the camera motions are the same as the robot end-
effector motions. The translation vector pm in (4) and (5) will
be eliminated when the motion of robot end-effector will be
only a pure translational one. Therefore, we control the robot
end-effector undergoing a pure translational motion described
as b1, and the motion of the camera can be expressed as

Xc11 − Xc01 = Rmb1. (6)

Let m01 = [u01, v01, 1]T and m11 = [u11, v11, 1]T be,
respectively, the image coordinates of P1 before and after the
translational motion b1, and zc01, zc11 denote the depth value
of P1 before and after the translational motion in {Cc}. From
(3) we have {

zc01m01 = KXc01

zc11m11 = KXc11.
(7)

Substituting (7) into (6) yields

zc11m11 − zc01m01 = KRmb1. (8)

Let M = KRm, and denote the ith row of the intermediate
matrix M by mi. From (8) we have





zc11u11 − zc01u01 = m1b1

zc11v11 − zc01v01 = m2b1

zc11 − zc01 = m3b1. (9)

Eliminating the unknown depth value zc11 in (9), we can
obtain two linear constraints on M:{

m1b1 − u11m3b1 = zc01(u11 − u01)
m2b1 − v11m3b1 = zc01(v11 − v01). (10)

Similarly, we can gain the same form constraints for feature
point P2:

{
m1b1 − u12m3b1 = zc02(u12 − u02)
m2b1 − v12m3b1 = zc02(v12 − v02). (11)

As the assumption we proposed at the beginning of this
section, in order to construct solvable linear equations, the
depth value of the two points in {Cc} should be equal. That
means zc01 = zc02. Combining (10) and (11), we have





1
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1

zc01
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zc01
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Let M′=M/zc01 which is a 3×3 matrix. There are 9 unknown
parameters in (12), and four linear equations are built from
one pure translational motion. That is, N translational motions
will provide N×4 equations, and the unknown parameters
can be solved when N×4 > 9. Therefore, at least three pure
translational motions are required. Hence, we control the robot
end-effector to move along b2 and b3 which are also pure
translational motions but different from the previous direc-
tions. Then, we will obtain twelve linear equations, denoted
in matrix form as:

AX = B (13)

where
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and vector 0 = [0, 0, 0]T .
From the linear equations above, matrix M′ can be solved

by least square algorithm (LSA).
In order to obtain the unique solution of (13), there are

some restrictions on the translational motions of the robot
end-effector. The cases in which additional motions do not
provide more constraints on the camera intrinsic parameters
and hand-eye translation matrix are as following. 1) One of
the translational motions of the robot end-effector is along
any coordinate axis described in {Cc}. 2) Two of three
translational motions are parallel with any camera coordinate
planes at the same time. 3) These three translational motions
are moved along the same direction. In practice, it is very easy
to avoid the degenerate configurations mentioned above.

Once the intermediate matrix M′ is obtained, we start to
calculate the camera intrinsic matrix K and the rotation matrix
Rm. From the equation M = KRm = zc01M′, we have
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where m′
i and ri are the ith row of the matrix M′ and R.

Expanding the (14) we have





m1 = fur1 + sr2 + u0r3 = zc01m′
1

m2 = fvr2 + v0r3 = zc01m′
2

m3 = r3 = zc01m′
3. (15)

Rm is a unit orthogonal matrix. Therefore, its row vector r3
is a unit vector, whose 2-norm is 1. From the third equation
of (15), we have

zc01 =
1
|m′

3|
, M = zc01M′. (16)

Since the rotation matrix Rm is a unit orthogonal matrix,
we take the dot-product or cross-product of both sides of (15)
with ri, the intrinsic camera parameters and the rotation matrix
can be calculated as

r3 = m3

v0 = m2rT
3

u0 = m1rT
3

fv = |m2 × r3|

r1 =
m2 × r3
|r2 × r3|

r2 = r3 × r1

fu = m1rT
1

s = m1rT
2 . (17)

B. Calibration of Translation Vectors pm

After solving the camera intrinsic parameters and the orien-
tation of the camera, in this section, we will calibrate the last
unknown vector pm. From (6), the translation vector pm will
be eliminated when the robot moves with pure translational
motion. This implies that pm cannot be solved from pure
translational motion, and the rotational motions of the robot
end-effector should be involved to calculate the translation
vector pm.

Suppose a pure rotational motion of robot end-effector is
described by R4. Let Xc41, Xh41 represent the coordinates
of point P1 described in {Cc} and {Ch} after the rotational
motion, and then we have

Xh41 = R4Xh01 (18)

Xc41 = RmXh41 + pm. (19)

Substituting (1), (3) and (18) into (19) yields

K
(
RmR4R−1

m − E
)

pm + zc41m41

= zc01KRmR4R−1
m K−1m01. (20)

Similarly, we gain the same form constraints for feature
point P2

K
(
RmR4R−1

m − E
)

pm + zc42m42

= zc02KRmR4R−1
m K−1m02 (21)

where, E is unit matrix.

As the assumption zc01 = zc02, we combine (20) and (21)
into a matrix form

[
K

(
RmR4R−1

m − E
)

m41 0
K

(
RmR4R−1

m − E
)

0 m42

]


pm

zc41

zc42




=
[

zc01KRmR4R−1
m K−1m01

zc01KRmR4R−1
m K−1m02

]
. (22)

For these five unknown parameters equations, we can solve
them by twice pure rotational motions of robot end-effector.

Actually, general motions including rotational motions and
translational motions of robot end-effector can obtain the
vector pm as well. Suppose the fourth motion is a general
motion described by a pure rotational motion R4 and a pure
translational motion b4, then (22) will be

[
K

(
RmR4R−1

m − E
)

m41 0
K

(
RmR4R−1

m − E
)

0 m42

]


pm

zc41

zc42




=
[

zc01KRmR4R−1
m K−1m01 + KRmb4

zc01KRmR4R−1
m K−1m02 + KRmb4

]
. (23)

And its solution is the same as of (22).

C. Summary of the Proposed Calibration Procedure

Combining the two calibration sub-processes proposed in
Section III-A and Section III-B, the procedure of the proposed
self-calibration method can be summarized as follow:

Step 1: Control the robot end-effector attached with the
camera to arrive the initial position as described in Section
III. Take the first image. Extract the image coordinates of two
feature points: m01 and m02.

Step 2: Take images at different positions of the robot end-
effector, meanwhile read the robot motion parameters bi (i =
1, 2, 3) and Rj (j = i + 1, i + 2). Extract the image coordinates
of two feature points after corresponding robot motions: mi1,
mi2, mj1 and mj2.

Step 3: Compute the intermediate matrix M (see (12) and
(14)). Estimate the camera intrinsic matrix K and the rotation
matrix Rm.

Step 4: From camera rotation motions Rj and the parameters
solved before, compute the camera translation vector pm (see
(22)).

IV. EXPERIMENTS

For a calibration method, the simplicity of calibration
procedure and the accuracy of calibration results are two
important aspects of evolution. In the aspect of simplicity,
the proposed algorithm calibrates the camera and hand-eye
parameters at the same time, and saves the process of making
and placing the calibration object. Besides, we use only two
arbitrary feature points and five motions of robot, which can
improve the efficiency of feature matching and calibration
procedure greatly. To evaluate the accuracy and robustness of
the proposed method, experimental results on simulated data
with different noise and disturbance are implemented in this
section.
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The spatial configuration in the simulations is shown in
Fig. 2. The distance of two feature points P1 and P2 to the
camera coordinate system is 500 mm. The simulated camera
has the following parameters: fu = 800, fv = 600, s = 0.01, u0

= 400, v0 = 280. The image resolution is 1000×1000 (pixel).
The simulated hand-eye relation is set as follow: the rotation
matrix Rm represented by an angle vector is Rm = [5, 80, 7]T

(degree) the translation vector pm is [20.21, 13.57, 17.83]T

(mm). The two feature points in camera coordinate system
are X01 = [200, 200, 500]T and X02 = [−200 −200 500]T ,
respectively. Three translational motions and two rotational
motions of robot end-effector are shown in Table II.

TABLE II
SIMULATED MOTIONS OF ROBOT END-EFFECTOR

Parameter Value

Translational motions (mm)

b1 20 40 10

b2 13 20 14

b3 35 16 28

Rotation motions (degree)
R4 15 30 15

R5 30 15 25

We establish five group coordinates of feature points from
forward setting parameters using MATLAB software. From
the setting parameters Rm, X01, K, bi and (6) and (7), we
can derive m01, m02, mi1 and mi2. Similarly, from the setting
parameters Rm, X01, K, Rj and (4), (18) and (19), we can
derive mj1, mj2. Gaussian noises with different levels are
added to the corresponding setting parameters. The calibration
parameters using our calibration method are calculated. The
proposed calibration procedure is described in Section III-C.

Usuallythere are mainly two factors to influence the accu-
racy of calibration results: the noise of feature points extracted
from images, and the noise of the robot motion parameters
read from the controller. In the proposed method, another
influence factor needs to be considered, i.e., the relative depth
difference of the two feature points at the initial position of
camera. Therefore, through simulation experiments we will
analyze the influence of these three aspects, respectively.

A. Influence of the Image Noise

Image noise exists inevitably in the image collection pro-
cess. In this experiment, we will analyze the sensitivity to the
image noise of our calibration method. Gaussian noise with
0 mean and σ standard deviation is added to the projected
image points. We vary the noise level from 0.1 to 5 pixels. For
each noise level, we perform 200 independent trials, and the
results are averaged. Then, we compare the estimated camera
and hand-eye parameters with the truth-value and calculate the
absolute errors. Table III lists the results of camera intrinsic
parameters under the influence of image noise, and Table IV
lists the results of hand-eye parameters under the influence of
image noise.

In order to display the results visually, we draw the error
curves as shown in Fig. 3. The absolute and relative errors of
camera intrinsic matrix K are shown in Fig. 3 (a), the rotation

matrix Rm represented by three angles is shown in Fig. 3 (b),
and the translation vector pm are shown in Fig. 3 (c). As we
can see from Fig. 3, for σ = 5 pixels (which is much larger
than the normal noise in practical calibration), the errors of
intrinsic parameters are less than 0.5 pixel, and the rotational
and translational motion parameters of hand-eye relation are
less than 0.004 degree and 0.35 mm, respectively. The relative
errors of intrinsic parameters and rotation vector are less than
0.07 %. For σ = 1.5 pixels, the relative errors of fu, fv are
about 0.7 %, and the absolute errors of u0, v0 are about 4
pixels in Zhang’s paper [8]. From our results, we conclude
that the proposed algorithm has strong disturbance rejection
ability and great robustness against the image noise.

TABLE III
RESULTS OF CAMERA INTRINSIC PARAMETERS

σ ∆fu ∆fv ∆s ∆u0 ∆v0

0.5 0.0038 0.0029 0.0003 0.0087 0.0087

1.0 0.0325 0.0248 0.0024 0.0069 0.0159

1.5 0.0522 0.0399 0.0039 0.0077 0.0292

2.0 0.1071 0.0817 0.0079 0.0055 0.0961

2.5 0.0173 0.0132 0.0013 0.0682 0.1090

3.0 0.1011 0.0772 0.0074 0.0012 0.0735

3.5 0.1749 0.1335 0.0129 0.1280 0.0438

4.0 0.1045 0.0798 0.0077 0.0199 0.0407

4.5 0.3886 0.2967 0.0287 0.1532 0.0854

5.0 0.4392 0.3353 0.0324 0.1700 0.1029

TABLE IV
RESULTS OF HAND-EYE PARAMETERS

σ ∆ϕ(◦) ∆θ(◦) ∆Ψ(◦) ∆X (mm) ∆Y (mm) ∆Z (mm)

0.5 0.0000 0.0000 0.0000 0.0101 0.0068 0.0137

1.0 0.0002 0.0001 0.0001 0.0077 0.0007 0.0139

1.5 0.0004 0.0001 0.0002 0.0168 0.0009 0.0179

2.0 0.0008 0.0002 0.0004 0.0677 0.0269 0.0040

2.5 0.0001 0.0000 0.0001 0.1060 0.0650 0.1063

3.0 0.0008 0.0002 0.0005 0.0523 0.0119 0.0162

3.5 0.0014 0.0004 0.0008 0.0898 0.0870 0.2221

4.0 0.0008 0.0002 0.0005 0.0222 0.0122 0.0547

4.5 0.0030 0.0008 0.0017 0.0111 0.0766 0.2833

5.0 0.0033 0.0009 0.0019 0.0069 0.0842 0.3155

B. Influence of the Robot Motion Noise
In practice, the robot brings motion errors as mentioned

before. This experiment examines the influence of the motion
errors from robot. With the development of the techniques of
robots, most of the precise industrial robots have the repeated
accuracy of positioning from 0.02 mm to 0.1 mm. Therefore,
we add Gaussian noise with mean 0 and standard deviation
from 0 to 0.1 mm to the robot motion parameters and repeat
this process. The average errors are calculated and the results
are shown in Fig. 4. The absolute and relative errors of camera
intrinsic matrix K are shown in Fig. 4 (a), the rotation matrix
Rm represented by three angles is shown in Fig. 4 (b), and the
translation vector pm is shown in Fig. 4 (c).
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Fig. 3. Errors vs. the noise level of the image points. (a) The absolute and relative errors of camera intrinsic matrix. (b) The absolute and relative errors of
the rotation vector. (c) The absolute and relative errors of the translation vector.

As shown in Fig. 4, when the noise level of the robot
motions is 0.08mm, the absolute errors of intrinsic param-
eters are less than 0.6 pixel, and the rotational errors and
translational errors of hand-eye relation are less than 0.02
degree and 0.4 mm, respectively. For σ = 0.1 mm, the relative
errors of intrinsic parameters are less than 0.14 %. Compared
with intrinsic parameters, the rotation and translation vectors

are more sensitive to the robot motion noise, but still can
meet the requirements of practical application. Because of the
uncertainty of the Gaussian noise, the errors are fluctuating
but still increase with the noise level generally. Many robots
have quite high position repeatability, so the proposed method
can achieve the calibration even more accurately in practical
applications.
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Fig. 4. Errors vs. the noise level of robot motion. (a) The absolute and relative errors of camera intrinsic matrix K. (b) The absolute and relative errors of
the rotation vector. (c) The absolute and relative errors of the translation vector.

C. Influence of the Initial Position of Camera

In Section III, we have an assumption about initial position
of the camera: the depth values of the two feature points P1

and P2 in the camera coordinate system are equal. However, it
is not practical to promise this condition absolutely. This ex-
periment investigates the sensitivity of the proposed calibration
method with respect to the initial position of camera. Suppose
the relative depth difference of the feature points is zc, the
sensitivity of self-calibration with respect to zc is examined

in this experiment. Gaussian noise with 0 mean and standard
deviation σ is added to the depth value of feature point P1.
We vary the noise level from 0.1 to 1 mm. 200 independent
trials are performed for each noise level, and the average errors
are computed. The results are shown in Fig. 5. The absolute
and relative errors of camera intrinsic matrix K are shown in
Fig. 5 (a), the rotation matrix Rm represented by three angles
are shown in Fig. 5 (b), and the translation vector pm are shown
in Fig. 5 (c).
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Fig. 5. Errors vs. the noise level of ∆zc. (a) The absolute and relative errors of camera intrinsic matrix K. (b) The absolute and relative errors of the rotation
vector. (c) The absolute and relative errors of the translation vector.

In Fig. 5 (a), it can be seen that the absolute and relative
errors of intrinsic parameters are less than 3 pixels and 0.7 %,
respectively, for σ = 1 mm. The focal length yields better
results than principlalpoint, i.e., the parameters u0 and v0 are
more sensitive to the influence of zc. The relative errors of the
rotation and translation vector parameters are less than 8 %
and 6 %. The errors of the translation vector parameters are
less than 2 mm when the noise level is in the range of 0 to

1 mm. Except the focal length, θ and X, the other parameters
have a relative large variation after the 0.5 mm noise level.
Therefore, the assumption of the camera initial position has
an influence on the calibration results. But in practice, many
methods can be taken to reduce zc. For example, in certain
robot assembly system, laser distance sensors (LDSs) are used
to measure the angles and distance between the object and the
robot end-effector [27], [28]. Because the camera and LDSs
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are both rigidly mounted on the robot end-effector, we can
use these LDSs to adjust the initial position of camera.

The above experimental results show that the presented
self-calibration is simple and practical from the aspect of
calibration procedure and accurate in calibration results. It has
strong anti-disturbance ability and great robustness against the
image noise and the robot motion error. The initial position of
camera can be controlled in a small range by other auxiliary
sensors, such as laser range-finders, and with the feedback of
laser range-finders the robot end-effector can be adjusted to
the correct initial location in a very short time.

From the experiments, there are three factors which influ-
ence the accuracy of calibration results: the image noise, the
robot motion noise and the initial position of feature points.
The noise of robot motion can be reduced by choosing high
precision robot system. For the other two factors, we can
control their influence by choosing better feature points. From
the results of simulation experiments, two important principles
can be concluded. Firstly, the chosen points should be easy to
extract, such as centers of circles and cross corners. Second,
in order to reduce the relative depth difference of the two
feature points, they should be located in the same plane.
Therefore, we can use LDSs to adjust the initial position of
camera. Considering these two principles above, in practical
environments, we can choose centers of regular circles in the
same plane, or cross corners of square ceiling, or intersections
of object’s edges in some assembly tasks.

V. CONCLUSIONS AND FUTURE WORK

A novel self-calibration approach that can effectively es-
timate both the camera intrinsic parameters and the hand-
eye transformation for robot vision are presented in this
paper. The proposed method performs calibration without any
calibration objects, and combines the camera calibration and
hand-eye calibration in one procedure. Based on two arbitrary
feature points of the environment, the proposed calibration
procedure requires only three pure translational motions and
two rotational motions of robot end-effector. Because it needs
only fewer feature points and robot motions, the efficiency of
the calibration procedure is greatly improved. Some new linear
solution equations are deduced and experiments on computer
simulated data have been performed to analyze how different
factors influence the calibration results, such as image noise,
robot motion noise and the difference of the depth value of
feature points. The results demonstrate the proposed method
is effective and practical.

For future work, we will focus on two points: First, the
improvement on the methods to relax the requirement of
the initial camera position. For example, we can use certain
compensation methods to solve this problem in principle, or
use the LDSs mentioned in experiment to solve the problem
from the aspect of hardware. Second, the application and
evaluation of the proposed method in a practical robot vision
system for some special tasks in industrial environments, such
as grasping, handling and assembly.
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